Large-scale Linear Classification: Status and Challenges

Chih-Jen Lin
Department of Computer Science
National Taiwan University

Talk at Criteo Machine Learning Workshop, November 8, 2017
Outline

1. Introduction
2. Optimization methods
3. Multi-core linear classification
4. Distributed linear classification
5. Conclusions
Linear Classification

- Although many new and advanced techniques are available (e.g., deep learning), linear classifiers remain to be useful because of their simplicity.
- We have fast training/prediction for large-scale data.
- A large-scale optimization problem is solved.
- The focus of this talk is on how to solve this optimization problem.
The Software LIBLINEAR

- My talk will be very related to research done in developing the software LIBLINEAR for linear classification

 www.csie.ntu.edu.tw/~cjlin/liblinear

- It is now one of the most used linear classification tools
Linear and Kernel Classification

Methods such as SVM and logistic regression are often used in two ways

- Kernel methods: data mapped to another space

\[x \Rightarrow \phi(x) \]

\[\phi(x)^T \phi(y) \] easily calculated; no good control on \(\phi(\cdot) \)

- Feature engineering + linear classification:
Directly use \(x \) without mapping. But \(x \) may have been carefully generated. Full control on \(x \)
Comparison Between Linear and Kernel

- For certain problems, accuracy by linear is as good as kernel
- But training and testing are much faster
- Especially document classification
 - Number of features (bag-of-words model) very large
 - Large and sparse data
- Training millions of data in just a few seconds
Comparison Between Linear and Nonlinear (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>Linear</th>
<th>RBF Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Accuracy</td>
</tr>
<tr>
<td>MNIST38</td>
<td>0.1</td>
<td>96.82</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>1.6</td>
<td>91.81</td>
</tr>
<tr>
<td>covtype_multiclass</td>
<td>1.4</td>
<td>76.37</td>
</tr>
<tr>
<td>news20</td>
<td>1.1</td>
<td>96.95</td>
</tr>
<tr>
<td>real-sim</td>
<td>0.3</td>
<td>97.44</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>3.1</td>
<td>92.63</td>
</tr>
<tr>
<td>webspam</td>
<td>25.7</td>
<td>93.35</td>
</tr>
</tbody>
</table>

Size reasonably large: e.g., yahoo-japan: 140k instances and 830k features
Comparison Between Linear and Nonlinear (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>Linear</th>
<th>RBF Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Accuracy</td>
</tr>
<tr>
<td>MNIST38</td>
<td>0.1</td>
<td>96.82</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>1.6</td>
<td>91.81</td>
</tr>
<tr>
<td>covtype_multiclass</td>
<td>1.4</td>
<td>76.37</td>
</tr>
<tr>
<td>news20</td>
<td>1.1</td>
<td>96.95</td>
</tr>
<tr>
<td>real-sim</td>
<td>0.3</td>
<td>97.44</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>3.1</td>
<td>92.63</td>
</tr>
<tr>
<td>webspam</td>
<td>25.7</td>
<td>93.35</td>
</tr>
</tbody>
</table>

Size reasonably large: e.g., yahoo-japan: 140k instances and 830k features
Comparison Between Linear and Nonlinear (Training Time & Testing Accuracy)

<table>
<thead>
<tr>
<th>Data set</th>
<th>Linear</th>
<th>RBF Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Accuracy</td>
</tr>
<tr>
<td>MNIST38</td>
<td>0.1</td>
<td>96.82</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>1.6</td>
<td>91.81</td>
</tr>
<tr>
<td>covtype_multiclass</td>
<td>1.4</td>
<td>76.37</td>
</tr>
<tr>
<td>news20</td>
<td>1.1</td>
<td>96.95</td>
</tr>
<tr>
<td>real-sim</td>
<td>0.3</td>
<td>97.44</td>
</tr>
<tr>
<td>yahoo-japan</td>
<td>3.1</td>
<td>92.63</td>
</tr>
<tr>
<td>webspam</td>
<td>25.7</td>
<td>93.35</td>
</tr>
</tbody>
</table>

Size reasonably large: e.g., yahoo-japan: 140k instances and 830k features
Binary Linear Classification

- Training data $\{y_i, x_i\}, x_i \in R^n, i = 1, \ldots, l, y_i = \pm 1$
- l: # of data, n: # of features

$$\min_w f(w), \text{ where } f(w) \equiv$$

$$C \sum_{i=1}^{l} \xi(w; x_i, y_i) + \begin{cases} \frac{1}{2} w^T w & \text{L2 regularization} \\ \|w\|_1 & \text{L1 regularization} \end{cases}$$

- $\xi(w; x, y)$: loss function: we hope $y w^T x > 0$
- C: regularization parameter
Loss Functions

Some commonly used loss functions.

\[\xi_{L1}(w; x, y) \equiv \max(0, 1 - yw^T x), \quad (1) \]
\[\xi_{L2}(w; x, y) \equiv \max(0, 1 - yw^T x)^2, \quad (2) \]
\[\xi_{LR}(w; x, y) \equiv \log(1 + e^{-yw^T x}). \quad (3) \]

- SVM (Boser et al., 1992; Cortes and Vapnik, 1995): (1)-(2)
- Logistic regression (LR): (3)
Outline

1. Introduction
2. Optimization methods
3. Multi-core linear classification
4. Distributed linear classification
5. Conclusions
A difference between linear and kernel is that for kernel, optimization must be over a variable α (usually through the dual problem) where

$$ w = \sum_{i=1}^{l} \alpha_i \phi(x_i) $$

We cannot minimize over w, which may be infinite dimensional.

However, for linear, minimizing over w or α is ok.
Optimization Methods (Cont’d)

Unconstrained optimization methods can be categorized to

- **Low-order methods**: quickly get a model, but slow final convergence
- **High-order methods**: more robust and useful for ill-conditioned situations

We will show both types of optimization methods are useful for linear classification

Further, to handle large problems, the algorithms must take problem structure into account

Let’s discuss a low-order method (coordinate descent) in detail
Coordinate Descent

- We consider L1-loss and the dual SVM problem

\[
\min_{\alpha} \quad f(\alpha)
\]

subject to \(0 \leq \alpha_i \leq C, \forall i, \)

where

\[
f(\alpha) \equiv \frac{1}{2} \alpha^T Q \alpha - e^T \alpha
\]

and

\[
Q_{ij} = y_i y_j x_i^T x_j, \quad e = [1, \ldots, 1]^T
\]

- We will apply coordinate descent (CD) methods
- The situation for L2 or LR loss is very similar
Coordinate Descent (Cont’d)

- For current α, change α_i by fixing others
- Let

 $$e_i = [0, \ldots, 0, 1, 0, \ldots, 0]^T$$

- The sub-problem is

 $$\min_{d} f(\alpha + d e_i) = \frac{1}{2} Q_{ii} d^2 + \nabla_i f(\alpha) d + \text{constant}$$

 subject to $0 \leq \alpha_i + d \leq C$

- Without constraints

 optimal $d = -\frac{\nabla_i f(\alpha)}{Q_{ii}}$
Optimization methods

Coordinate Descent (Cont’d)

- Now $0 \leq \alpha_i + d \leq C$

$$\alpha_i \leftarrow \min \left(\max \left(\alpha_i - \frac{\nabla_i f(\alpha)}{Q_{ii}}, 0 \right), C \right)$$

- Note that

$$\nabla_i f(\alpha) = (Q\alpha)_i - 1 = \sum_{j=1}^{l} Q_{ij} \alpha_j - 1$$

$$= \sum_{j=1}^{l} y_i y_j x_i^T x_j \alpha_j - 1$$

- Expensive: $O(ln)$, l: # instances, n: features
A trick in Hsieh et al. (2008) is to define and maintain

\[u \equiv \sum_{j=1}^{l} y_j \alpha_j x_j, \]

- Easy gradient calculation: the cost is \(O(n) \)

\[\nabla_i f(\alpha) = y_i u^T x_i - 1 \]

- Note that this cannot be done for kernel as \(x_i \) is high dimensional
Coordinate Descent (Cont’d)

The procedure

- While α is not optimal (Outer iteration)
 - For $i = 1, \ldots, l$ (Inner iteration)
 1. $\bar{\alpha}_i \leftarrow \alpha_i$
 2. $G = y_i u^T x_i - 1$
 3. $\alpha_i \leftarrow \min(\max(\alpha_i - G/Q_{ii}, 0), C)$
 4. If α_i needs to be changed
 \[u \leftarrow u + (\alpha_i - \bar{\alpha}_i) y_i x_i \]

Maintaining u also costs

\[O(n) \]
Coordinate Descent (Cont’d)

- Having

\[
\mathbf{u} \equiv \sum_{j=1}^{J} y_j \alpha_j \mathbf{x}_j,
\]

\[
\nabla_i f(\alpha) = y_i \mathbf{u}^T \mathbf{x}_i - 1
\]

and

\[
\bar{\alpha}_i : \text{old} ; \quad \alpha_i : \text{new}
\]

\[
\mathbf{u} \leftarrow \mathbf{u} + (\alpha_i - \bar{\alpha}_i)y_i \mathbf{x}_i.
\]

is very essential

- This isn’t the vanilla CD dated back to Hildreth (1957)

- We take the problem structure into account
Optimization methods

Comparisons

L2-loss SVM is used

- DCDL2: Dual coordinate descent
- DCDL2-S: DCDL2 with shrinking
- PCD: Primal coordinate descent
- TRON: Trust region Newton method

This result is from Hsieh et al. (2008) with $C = 1$
Objective values (Time in Seconds)

- **news20**
- **rcv1**
- **yahoo-japan**
- **yahoo-korea**
Low- versus High-order Methods

We see low-order methods are efficient, but high-order methods are useful for difficult situations.

CD for dual
$\text{time } ./\text{train } -c 1 \text{ news20.scale}$
2.528s
$\text{time } ./\text{train } -c 100 \text{ news20.scale}$
28.589s

Newton for primal
$\text{time } ./\text{train } -c 1 -s 2 \text{ news20.scale}$
8.596s
$\text{time } ./\text{train } -c 100 -s 2 \text{ news20.scale}$
11.088s
Basically a **solved** problem

However, as data and memory continue to grow, new techniques are needed for large-scale sets.

Two possible strategies are

1. Multi-core linear classification
2. Distributed linear classification
Outline

1. Introduction
2. Optimization methods
3. Multi-core linear classification
4. Distributed linear classification
5. Conclusions
Multi-core Linear Classification

- Nowadays each CPU has several cores
- However, parallelizing algorithms to use multiple cores may not be that easy
- In fact, algorithms may need to be redesigned
- Since two years ago we have been working on multi-core LIBLINEAR
Three multi-core solvers have been released:

1. Newton method for primal L2-regularized problem (Lee et al., 2015)
2. Coordinate descent method for dual L2-regularized problem (Chiang et al., 2016)

They are practically useful. For example, one user from USC thanked us because “a job (taking >30 hours using one core) now can finish within 5 hours”

We will briefly discuss the 2nd and the 3rd
Multi-core CD for Dual

Recall the CD algorithm for dual is

- While α is not optimal (Outer iteration)
 - For $i = 1, \ldots, l$ (Inner iteration)
 1. $\bar{\alpha}_i \leftarrow \alpha_i$
 2. $G = y_i u^T x_i - 1$
 3. $\alpha_i \leftarrow \min(\max(\alpha_i - G/Q_{ii}, 0), C)$
 4. If α_i needs to be changed
 $$u \leftarrow u + (\alpha_i - \bar{\alpha}_i)y_i x_i$$
The algorithm is inherently sequential.

Suppose α_i' is updated after α_i.

Then α_i' must wait until the latest u is obtained.

The parallelization is difficult.
Asynchronous CD is possible (Hsieh et al., 2015), but may diverge.

We note that for a given set \bar{B}

\[
\nabla_i f(w) = w^T x_i, \forall i \in \bar{B}
\]

can be calculated in parallel.

We then propose a framework.
While α is not optimal

(a) Select a set \bar{B}

(b) Calculate $\nabla_{\bar{B}}f(\alpha)$ in parallel

(c) Select $B \subset \bar{B}$ with $|B| \ll |\bar{B}|$

(d) Sequentially update $\alpha_i, i \in B$
The selection of $B \subset \bar{B}$ with $|B| \ll |\bar{B}|$

is by $\nabla_{\bar{B}} f(w)$

The idea is simple, but needs efforts to have a practical setting (details omitted)
Multi-core linear classification

Multi-core CD for Dual (Cont’d)

- **Alg-4**: the method in Chiang et al. (2016)
- Asynchronous CD (Hsieh et al., 2015)

Graphs showing performance comparison with different methods for webspam and url_combined.

Chih-Jen Lin (National Taiwan Univ.)
Multi-core CD for L1 Regularization

- Currently, **primal** CD (Yuan et al., 2010) or its variants (Yuan et al., 2012) is the state-of-the-art for L1.
- Each CD step involves one feature.
- Some attempts of parallel CD for L1 include:
 - Asynchronous CD (Bradley et al., 2011)
 - Block CD (Bian et al., 2013)
- These methods are not satisfactory for either:
 - divergence issue, or
 - poor speedup.
Multi-core CD for L1 Regularization (Cont’d)

- We struggled for years for find a solution
- Recently, in a work (Zhuang et al., 2017) we have an effective setting
- It’s partially supported by Criteo Faculty Research Award
- Our idea is simple: **direct parallelization of CD**
- But wait.. This shouldn’t work because **each CD iteration is cheap**
Direct Parallelization of CD

- Let's consider a simple setting to decide if one CD step should be parallelized or not.
- If \# non-zeros in an instance/feature \(\geq \) a threshold then multi-core.
- Else single-core.
- Idea: a CD step is parallelized if there are enough operations.
Direct Parallelization of CD (Cont’d)

- **Speedup of CD for dual, L2 regularization**

<table>
<thead>
<tr>
<th>Data set</th>
<th>#threads</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>sparse sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avazu-app</td>
<td></td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>criteo</td>
<td></td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>dense sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>epsilon_normalized</td>
<td></td>
<td>1.3</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>splice_site.t.10%</td>
<td></td>
<td>1.8</td>
<td>2.8</td>
<td>4.1</td>
</tr>
</tbody>
</table>

- **CD for dual:** one instance at a time
- **Threshold:** 0 (sparse), 500 (dense)
- **If 500 for sparse, no instance parallelized**
- **The speedup is poor**
% of instances/features containing 50% and 80%

Features’ non-zero distribution is extremely skewed
Non-zeros are in few dense (and parallelizable) features

<table>
<thead>
<tr>
<th>Data set</th>
<th>Instance</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>avazu-app</td>
<td>50% 80%</td>
<td>0.2% 1%</td>
</tr>
<tr>
<td>criteo</td>
<td>50% 80%</td>
<td>0.01% 0.2%</td>
</tr>
<tr>
<td>kdd2010-a</td>
<td>40% 73%</td>
<td>0.03% 2%</td>
</tr>
<tr>
<td>kdd2012</td>
<td>50% 80%</td>
<td>0.003% 0.5%</td>
</tr>
<tr>
<td>rcv1_test</td>
<td>24% 54%</td>
<td>1% 5%</td>
</tr>
<tr>
<td>splice_site.t.10%</td>
<td>50% 80%</td>
<td>9% 57%</td>
</tr>
<tr>
<td>url_combined</td>
<td>44% 76%</td>
<td>0.002% 0.006%</td>
</tr>
<tr>
<td>webspam</td>
<td>29% 55%</td>
<td>0.6% 2%</td>
</tr>
<tr>
<td>yahoo-korea</td>
<td>20% 48%</td>
<td>0.07% 0.5%</td>
</tr>
</tbody>
</table>
Speedup of CD for L1 Regularization

<table>
<thead>
<tr>
<th>LR loss used</th>
<th>Naive</th>
<th>Block CD</th>
<th>Async. CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data set</td>
<td>2 4 8</td>
<td>2 4 8</td>
<td>2 4 8</td>
</tr>
<tr>
<td>avazu-app</td>
<td>1.9 3.4 5.6</td>
<td>0.4 0.7 1.0</td>
<td>1.4 2.7 3.4</td>
</tr>
<tr>
<td>criteo</td>
<td>1.8 3.3 5.5</td>
<td>0.7 1.2 1.9</td>
<td>1.5 2.9 4.8</td>
</tr>
<tr>
<td>epsilon_normalized</td>
<td>2.0 4.0 7.9</td>
<td>x x x</td>
<td>1.3 2.1 x</td>
</tr>
<tr>
<td>HIGGS</td>
<td>2.0 3.9 7.5</td>
<td>0.7 0.8 0.9</td>
<td>1.0 1.3 x</td>
</tr>
<tr>
<td>kdd2010-a</td>
<td>1.7 2.4 3.1</td>
<td>0.8 1.4 2.4</td>
<td>1.5 2.7 4.8</td>
</tr>
<tr>
<td>kdd2012</td>
<td>1.9 2.8 3.9</td>
<td>0.2 0.4 0.6</td>
<td>2.1 4.7 7.0</td>
</tr>
<tr>
<td>rcv1_test</td>
<td>1.9 3.4 5.9</td>
<td>x x x</td>
<td>1.3 2.5 4.5</td>
</tr>
<tr>
<td>splice_site_t.10%</td>
<td>1.9 3.6 6.2</td>
<td>x x x</td>
<td>1.6 2.7 4.3</td>
</tr>
<tr>
<td>url_combined</td>
<td>2.0 3.5 6.2</td>
<td>0.5 0.9 1.3</td>
<td>1.0 1.7 1.7</td>
</tr>
<tr>
<td>webspam</td>
<td>1.8 3.2 4.8</td>
<td>0.1 0.3 0.5</td>
<td>1.4 2.5 4.1</td>
</tr>
<tr>
<td>yahoo-korea</td>
<td>1.9 3.5 5.9</td>
<td>0.2 0.3 0.5</td>
<td>1.3 2.4 4.4</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Optimization methods
3. Multi-core linear classification
4. Distributed linear classification
5. Conclusions
It’s even more complicated than multi-core

I don’t have time to discuss this topic in detail, but let me share some lessons

A big mistake was that we worked on distributed before multi-core
A few years ago, big data was hot. So we extended a Newton solver in LIBLINEAR to MPI (Zhuang et al., 2015) and Spark (Lin et al., 2014).

We were a bit ahead of time; Spark MLlib wasn’t even available then.

Unfortunately, very few people use our code, especially the Spark one.

We moved to multi-core. Immediately, multi-core LIBLINEAR has many users.
Distributed Linear Classification (Cont’d)

- Why we failed? Several possible reasons
- Not many people have big data??
- System issues are more important than we thought.
 At that time Spark wasn’t easy to use and was being actively changed
- System configuration and application scenarios may significantly vary
 An algorithm useful for systems with fast network speed may be useless for systems with slow communication
Application dependency is stronger. L2 and L1 regularization often give similar accuracy. On a single machine, we may not want to use L1 because training is more difficult and the smaller model size isn’t that important. However, for distributed applications many have told me that they need L1.

A lesson is that for people from academia, it’s better to collaborate with industry for research on distributed machine learning.
Outline

1. Introduction
2. Optimization methods
3. Multi-core linear classification
4. Distributed linear classification
5. Conclusions
Conclusions

- Linear classification is an old topic, but it remains to be useful for many applications.
- Efficient training relies on designing optimization algorithms by incorporating the problem structure.
- Many issues about multi-core and distributed linear classification still need to be studied.