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Introduction

Linear and Nonlinear Classification

Linear Nonlinear

Linear: a linear function to separate data in the original
input space; nonlinear: data mapped to other spaces

Original: [height, weight]

Nonlinear: [height, weight, weight/height2]

Kernel is one of the nonlinear methods
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Introduction

Linear and Nonlinear Classification
(Cont’d)

Methods such as SVM and logistic regression can be
used in two ways
• Kernel methods: data mapped to another space

x ⇒ φ(x)

φ(x)Tφ(y) easily calculated; no good control on φ(·)
• Linear classification + feature engineering:

Directly use x without mapping. But x may have
been carefully generated using some nonlinear
information. Full control on x

We will focus on the 2nd type of approaches in this talk
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Introduction

Why Linear Classification?

• If φ(x) is high dimensional, decision function

sgn(wTφ(x))

is expensive
• Kernel methods:

w ≡
l∑

i=1

αiφ(x i) for some α,K (x i , x j) ≡ φ(x i)
Tφ(x j)

New decision function: sgn
(∑l

i=1 αiK (x i , x)
)

• Special φ(x) so calculating K (x i , x j) is easy. Example:

K (x i , x j) ≡ (xT
i x j + 1)2 = φ(x i)

Tφ(x j), φ(x) ∈ RO(n2)
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Introduction

Why Linear Classification? (Cont’d)

Prediction

wTx versus
∑l

i=1
αiK (x i , x)

If K (x i , x j) takes O(n), then

O(n) versus O(nl)

Kernel: cost related to size of training data

Linear: cheaper and simpler
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Introduction

Linear is Useful in Some Places

For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

Especially document classification

Number of features (bag-of-words model) very large

Large and sparse data

Training millions of data in just a few seconds
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Introduction

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features
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Introduction

Binary Linear Classification

Training data {yi , x i}, x i ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

f (w), f (w) ≡ wTw
2

+ C
l∑

i=1

ξ(w ; x i , yi)

wTw/2: regularization term (we have no time to
talk about L1 regularization here)

ξ(w ; x , y): loss function: we hope ywTx > 0

C : regularization parameter
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Introduction

Loss Functions

Some commonly used ones:

ξL1(w ; x , y) ≡ max(0, 1− ywTx), (1)

ξL2(w ; x , y) ≡ max(0, 1− ywTx)2, (2)

ξLR(w ; x , y) ≡ log(1 + e−yw
Tx). (3)

SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

Logistic regression (LR): (3); no reference because
it can be traced back to 19th century
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Introduction

Loss Functions (Cont’d)

−ywTx

ξ(w ; x , y)

ξL1

ξL2

ξLR

Their performance is usually similar
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Introduction

Loss Functions (Cont’d)

However,

ξL1: not differentiable
ξL2: differentiable but not twice differentiable
ξLR: twice differentiable

The same optimization method may not be applicable to
all these losses
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Optimization methods

Optimization Methods

Many unconstrained optimization methods can be
applied

For kernel, optimization is over a variable α where

w =
l∑

i=1

αiφ(x i)

We cannot minimize over w because it may be
infinite dimensional

However, for linear, minimizing over w or α is ok
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Optimization methods

Optimization Methods (Cont’d)

Among unconstrained optimization methods,

Low-order methods: quickly get a model, but slow
final convergence

High-order methods: more robust and useful for
ill-conditioned situations

We will quickly discuss some examples and show both
types of optimization methods are useful for linear
classification
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Optimization methods

Optimization: 2nd Order Methods

Newton direction

min
s

∇f (w k)Ts +
1

2
sT∇2f (w k)s

This is the same as solving Newton linear system

∇2f (w k)s = −∇f (w k)

Hessian matrix ∇2f (w k) too large to be stored

∇2f (w k) : n × n, n : number of features

But Hessian has a special form

∇2f (w) = I + CXTDX ,
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Optimization methods

Optimization: 2nd Order Methods
(Cont’d)

X : data matrix. D diagonal. For logistic regression,

Dii =
e−yiw

Tx i

1 + e−yiwTx i

Using CG to solve the linear system. Only
Hessian-vector products are needed

∇2f (w)s = s + C · XT (D(X s))

Therefore, we have a Hessian-free approach
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Optimization methods

Optimization: 1st Order Methods

We consider L1-loss and the dual SVM problem

min
α

f (α)

subject to 0 ≤ αi ≤ C ,∀i ,

where

f (α) ≡ 1

2
αTQα− eTα

and
Qij = yiyjxT

i x j , e = [1, . . . , 1]T

We will apply coordinate descent (CD) methods

The situation for L2 or LR loss is very similar
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Optimization methods

1st Order Methods (Cont’d)

Coordinate descent: a simple and classic technique
Change one variable at a time
Given current α. Let e i = [0, . . . , 0, 1, 0, . . . , 0]T .

min
d

f (α + de i) =
1

2
Qiid

2 +∇i f (α)d + constant

Without constraints

optimal d = −∇i f (α)

Qii

Now 0 ≤ αi + d ≤ C

αi ← min

(
max

(
αi −

∇i f (α)

Qii
, 0

)
,C

)
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Optimization methods

Comparisons

L2-loss SVM is used

DCDL2: Dual coordinate descent

DCDL2-S: DCDL2 with shrinking

PCD: Primal coordinate descent

TRON: Trust region Newton method

This result is from Hsieh et al. (2008)
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Optimization methods

Objective values (Time in Seconds)

news20 rcv1

yahoo-japan yahoo-korea
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Optimization methods

Low- versus High-order Methods

• We saw that low-order methods are efficient to give a
model. However, high-order methods may be useful
for difficult situationa
• An example: # instance: 32,561, # features: 123

Objective value Accuracy

# features is small ⇒ solving primal is more suitable
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Extension of linear classification

Extension of Linear Classification

Linear classification can be extended in different
ways

An important one is to approximate nonlinear
classifiers

Goal: better accuracy of nonlinear but faster
training/testing

Examples

1. Explicit data mappings + linear classification

2. Kernel approximation + linear classification

I will focus on the first
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Extension of linear classification

Linear Methods to Explicitly Train φ(x i)

Example: low-degree polynomial mapping:

φ(x) = [1, x1, . . . , xn, x
2
1 , . . . , x

2
n , x1x2, . . . , xn−1xn]T

For this mapping, # features = O(n2)

When is it useful?

Recall O(n) for linear versus O(nl) for kernel

Now O(n2) versus O(nl)

Sparse data

n⇒ n̄, average # non-zeros for sparse data

n̄� n⇒ O(n̄2) may be much smaller than O(l n̄)
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Extension of linear classification

Example: Dependency Parsing

A multi-class problem with sparse data

n Dim. of φ(x) l n̄ w ’s # nonzeros
46,155 1,065,165,090 204,582 13.3 1,438,456

n̄: average # nonzeros per instance

Degree-2 polynomial is used

Dimensionality of w is very high, but w is sparse

Some training feature columns of xixj are entirely
zero

Hashing techniques are used to handle sparse w
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Extension of linear classification

Example: Dependency Parsing (Cont’d)

LIBSVM LIBLINEAR
RBF Poly Linear Poly

Training time 3h34m53s 3h21m51s 3m36s 3m43s
Parsing speed 0.7x 1x 1652x 103x
UAS 89.92 91.67 89.11 91.71
LAS 88.55 90.60 88.07 90.71

We get faster training/testing, but maintain good
accuracy

See detailed discussion in Chang et al. (2010)
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Extension of linear classification

Discussion

In the above example, we use all pairs

This is fine for some applications, but # features
may become too large

People have proposed projection or hashing
techniques to use fewer features as approximations

Examples: Kar and Karnick (2012); Pham and Pagh
(2013)

This has been used in computational adversitements
(Chapelle et al., 2014)
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Big-data linear classification

Big-data Linear Classification

Nowadays data can be easily larger than memory
capacity

Disk-level linear classification: Yu et al. (2012) and
subsequent developments

Distributed linear classification: recently an active
research topic

Example: we can parallelize the 2nd-order method
discussed earlier. Recall the Hessian-vector product

∇2f (w)s = s + C · XT (D(X s))
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Big-data linear classification

Parallel Hessian-vector Product

Hessian-vector products are the computational
bottleneck

XTDX s

Data matrix X is now distributedly stored

X1

X2

. . .

Xp

node 1

node 2

node p

XTDX s = XT
1 D1X1s + · · ·+ XT

p DpXps
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Big-data linear classification

Parallel Hessian-vector Product (Cont’d)

We use allreduce to let every node get XTDX s

s

s

s

XT
1 D1X1s

XT
2 D2X2s

XT
3 D3X3s

ALL REDUCE

XTDX s

XTDX s

XTDX s

Allreduce: reducing all vectors (XT
i DiXix ,∀i) to a single

vector (XTDX s ∈ Rn) and then sending the result to
every node
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Big-data linear classification

Instance-wise and Feature-wise Data Splits

Xiw,1

Xiw,2

Xiw,3

Xfw,1Xfw,2Xfw,3

Instance-wise Feature-wise

Feature-wise: each machine calculates part of the
Hessian-vector product

(∇2f (w)v)fw,1 = v 1+CXT
fw,1D(Xfw,1v 1+· · ·+Xfw,pv p)
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Big-data linear classification

Instance-wise and Feature-wise Data Splits
(Cont’d)

Xfw,1v 1 + · · ·+ Xfw,pv p ∈ R l must be available on
all nodes (by allreduce)

Data moved per Hessian-vector product

Instance-wise: O(n), Feature-wise: O(l)
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Big-data linear classification

Experiments

Two sets:

Data set l n #nonzeros
epsilon 400,000 2,000 800,000,000
webspam 350,000 16,609,143 1,304,697,446

For results of more sets, see Zhuang et al. (2014)

We use Amazon AWS

We compare

1. TRON: Trust-region Newton method

2. ADMM: alternating direction method of
multipliers (Boyd et al., 2011; Zhang et al., 2012)
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Big-data linear classification

Experiments (Cont’d)
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16 machines are used
Horizontal line: test accuracy has stabilized
TRON has faster convergence than ADMM
Instance-wise and feature-wise splits useful for
l � n and l � n, respectively
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Big-data linear classification

Programming Frameworks

We use MPI for the above experiments

How about others like MapReduce?

MPI is more efficient, but has no fault tolerance

In contrast, MapReduce is slow for iterative
algorithms due to heavy disk I/O

Many new frameworks are being actively developed

1. Spark (Zaharia et al., 2010)

2. REEF (Chun et al., 2013)

Selecting suitable frameworks for distributed
classification isn’t that easy!
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Big-data linear classification

A Comparison Between MPI and Spark
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We use the data set epsilon (8 nodes). Spark is slower,
but in general competitive
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Conclusions and future directions

Resources on Linear Classification

Since 2007, we have been actively developing the
software LIBLINEAR for linear classification

www.csie.ntu.edu.tw/~cjlin/liblinear

It’s now widely used in Internet companies

An earlier survey on linear classification is Yuan
et al. (2012)

Recent Advances of Large-scale Linear
Classification. Proceedings of IEEE, 2012

It contains many references on this subject
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Conclusions and future directions

Distributed LIBLINEAR

We recently released an extension of LIBLINEAR for
distributed classification

See http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/distributed-liblinear

We support both MPI and Spark

The development is still in an early stage. Your
comments are very welcome.
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Conclusions and future directions

Conclusions

Linear classification is an old topic; but recently
there are new and interesting applications

Kernel methods are still useful for many
applications, but linear classification + feature
engineering are suitable for some others

Advantages of linear: easier feature engineering

We expect that linear classification can be widely
used in situations ranging from small-model to
big-data classification
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Conclusions and future directions
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