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Data Classification

Given training data in different classes (labels
known)

Predict test data (labels unknown)

Classic example: medical diagnosis

Find a patient’s blood pressure, weight, etc.

After several years, know if he/she recovers

Build a machine learning model

New patient: find blood pressure, weight, etc

Prediction

Training and testing
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Data Classification (Cont’d)

Among many classification methods, linear and
kernel are two popular ones

They are very related

We will detailedly discuss linear classification and its
connection to kernel

Talk slides:

http://www.csie.ntu.edu.tw/~cjlin/talks/

course-bilbao.pdf
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Linear classification Maximum margin

Linear Classification

Training vectors: x i , i = 1, . . . , l

Feature vectors. For example,

A patient = [height, weight, . . .]T

Consider a simple case with two classes:

Define an indicator vector y ∈ R l

yi =

{
1 if x i in class 1
−1 if x i in class 2

A hyperplane to linearly separate all data
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Linear classification Maximum margin
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wTx + b =
[
+1
0
−1

]
A separating hyperplane: wTx + b = 0

(wTx i) + b ≥ 1 if yi = 1
(wTx i) + b ≤ −1 if yi = −1

Decision function f (x) = sgn(wTx + b), x : test
data

Many possible choices of w and b
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Linear classification Maximum margin

Maximal Margin

Maximizing the distance between wTx + b = 1 and
−1:

2/‖w‖ = 2/
√
wTw

A quadratic programming problem

min
w ,b

1

2
w

T
w

subject to yi(w
T
x i + b) ≥ 1,

i = 1, . . . , l .

This is the basic formulation of support vector
machines (Boser et al., 1992)
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Linear classification Maximum margin

Data May Not Be Linearly Separable

An example:
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We can never find a linear hyperplane to separate
data

Remedy: allow training errors
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Linear classification Maximum margin

Data May Not Be Linearly Separable
(Cont’d)

Standard SVM (Boser et al., 1992; Cortes and
Vapnik, 1995)

min
w ,b,ξ

1

2
w

T
w + C

l∑
i=1

ξi

subject to yi(w
T
x i + b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , l .

We explain later why this method is called support
vector machine
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Linear classification Maximum margin

The Bias Term b

Recall the decision function is

sgn(wT
x + b)

Sometimes the bias term b is omitted

sgn(wT
x)

That is, the hyperplane always passes through the
origin

This is fine if the number of features is not too small

In our discussion, b is used for kernel, but omitted
for linear (due to some historical reasons)
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Linear classification Regularization and losses
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Linear classification Regularization and losses

Equivalent Optimization Problem

• Recall SVM optimization problem (without b) is

min
w ,ξ

1

2
w

T
w + C

l∑
i=1

ξi

subject to yiw
T
x i ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , l .

• It is equivalent to

min
w

1

2
w

T
w + C

l∑
i=1

max(0, 1− yiw
T
x i) (1)

• This reformulation is useful for subsequent discussion
Chih-Jen Lin (National Taiwan Univ.) 15 / 157



Linear classification Regularization and losses

Equivalent Optimization Problem (Cont’d)

That is, at optimum,

ξi = max(0, 1− yiw
T
x i)

Reason: from constraint

ξi ≥ 1− yiw
T
x i and ξi ≥ 0

but we also want to minimize ξi
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Linear classification Regularization and losses

Equivalent Optimization Problem (Cont’d)

We now derive the same optimization problem (1)
from a different viewpoint
We now aim to minimize the training error

min
w

(training errors)

To characterize the training error, we need a loss
function ξ(w ; x , y) for each instance (x , y)
Ideally we should use 0–1 training loss:

ξ(w ; x , y) =

{
1 if ywTx < 0,

0 otherwise
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Linear classification Regularization and losses

Equivalent Optimization Problem (Cont’d)

However, this function is discontinuous. The
optimization problem becomes difficult

−ywTx

ξ(w ; x , y)

We need continuous approximations
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Linear classification Regularization and losses

Common Loss Functions

Hinge loss (l1 loss)

ξL1(w ; x , y) ≡ max(0, 1− ywT
x) (2)

Squared hinge loss (l2 loss)

ξL2(w ; x , y) ≡ max(0, 1− ywT
x)2 (3)

Logistic loss

ξLR(w ; x , y) ≡ log(1 + e−yw
Tx) (4)

SVM: (2)-(3). Logistic regression (LR): (4)
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Linear classification Regularization and losses

Common Loss Functions (Cont’d)

−ywTx

ξ(w ; x , y)

ξL1

ξL2

ξLR

Logistic regression is very related to SVM

Their performance is usually similar
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Linear classification Regularization and losses

Common Loss Functions (Cont’d)

However, minimizing training losses may not give a
good model for future prediction

Overfitting occurs
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Linear classification Regularization and losses

Overfitting

See the illustration in the next slide

For classification,

You can easily achieve 100% training accuracy

This is useless

When training a data set, we should

Avoid underfitting: small training error

Avoid overfitting: small testing error
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Linear classification Regularization and losses

l and s: training; © and 4: testing
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Linear classification Regularization and losses

Regularization

To minimize the training error we manipulate the w

vector so that it fits the data

To avoid overfitting we need a way to make w ’s
values less extreme.

One idea is to make the objective function smoother
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Linear classification Regularization and losses

General Form of Linear Classification

Training data {yi , x i}, x i ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

f (w), f (w) ≡ wTw

2
+ C

l∑
i=1

ξ(w ; x i , yi)

(5)

wTw/2: regularization term

ξ(w ; x , y): loss function

C : regularization parameter
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Linear classification Regularization and losses

General Form of Linear Classification
(Cont’d)

If hinge loss

ξL1(w ; x , y) ≡ max(0, 1− ywT
x)

is used, then (5) goes back to the SVM problem
described earlier (b omitted):

min
w ,ξ

1

2
w

T
w + C

l∑
i=1

ξi

subject to yiw
T
x i ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , l .

Chih-Jen Lin (National Taiwan Univ.) 26 / 157



Linear classification Regularization and losses

Solving Optimization Problems

We have an unconstrained problem, so many
existing unconstrained optimization techniques can
be used

However,
ξL1: not differentiable
ξL2: differentiable but not twice differentiable
ξLR: twice differentiable

We may need different types of optimization
methods

Details of solving optimization problems will be
discussed later
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Linear classification Other derivations
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Linear classification Other derivations

Logistic Regression

Logistic regression can be traced back to the 19th
century

It’s mainly from statistics community, so many
people wrongly think that this method is very
different from SVM

Indeed from what we have shown they are very
related.

Let’s see how to derive it from a statistical viewpoint
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Linear classification Other derivations

Logistic Regression (Cont’d)

For a label-feature pair (y , x), assume the
probability model

p(y |x) =
1

1 + e−ywTx
.

Note that

p(1|x) + p(−1|x)

=
1

1 + e−wTx
+

1

1 + ewTx

=
ew

Tx

1 + ewTx
+

1

1 + ewTx

= 1

w is the parameter to be decided
Chih-Jen Lin (National Taiwan Univ.) 30 / 157



Linear classification Other derivations

Logistic Regression (Cont’d)

Idea of this model

p(1|x) =
1

1 + e−wTx

{
→ 1 if wTx � 0,

→ 0 if wTx � 0

Assume training instances are

(yi , x i), i = 1, . . . , l
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Linear classification Other derivations

Logistic Regression (Cont’d)

Logistic regression finds w by maximizing the
following likelihood

max
w

l∏
i=1

p (yi |x i) . (6)

Negative log-likelihood

− log
l∏

i=1

p (yi |x i) = −
l∑

i=1

log p (yi |x i)

=
l∑

i=1

log
(

1 + e−yiw
Tx i

)
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Linear classification Other derivations

Logistic Regression (Cont’d)

Logistic regression

min
w

l∑
i=1

log
(

1 + e−yiw
Tx i

)
.

Regularized logistic regression

min
w

1

2
w

T
w + C

l∑
i=1

log
(

1 + e−yiw
Tx i

)
. (7)

C : regularization parameter decided by users
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Linear classification Other derivations

Discussion

We see that the same method can be derived from
different ways

SVM

Maximal margin

Regularization and training losses

LR

Regularization and training losses

Maximum likelihood
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Kernel classification
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Kernel classification Nonlinear mapping
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Kernel classification Nonlinear mapping

Data May Not Be Linearly Separable

This is an earlier example:
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4

In addition to allowing training errors, what else can
we do?

For this data set, shouldn’t we use a nonlinear
classifier?
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Kernel classification Nonlinear mapping

Mapping Data to a Higher Dimensional
Space

But modeling nonlinear curves is difficult. Instead,
we map data to a higher dimensional space

φ(x) = [φ1(x), φ2(x), . . .]T .

For example,
weight

height2

is a useful new feature to check if a person
overweights or not
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Kernel classification Nonlinear mapping

Kernel Support Vector Machines

Linear SVM:

min
w ,b,ξ

1

2
w

T
w + C

∑l

i=1
ξi

subject to yi(w
T
x i + b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , l .

Kernel SVM:

min
w ,b,ξ

1

2
w

T
w + C

∑l

i=1
ξi

subject to yi(w
Tφ(x i) + b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , l .
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Kernel classification Nonlinear mapping

Kernel Logistic Regression

min
w ,b

1

2
w

T
w + C

l∑
i=1

log
(

1 + e−yi (w
Tφ(x i )+b)

)
.
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Kernel classification Nonlinear mapping

Difficulties After Mapping Data to a
High-dimensional Space

# variables in w = dimensions of φ(x)

Infinite variables if φ(x) is infinite dimensional

Cannot do an infinite-dimensional inner product for
predicting a test instance

sgn(wTφ(x))

Use kernel trick to go back to a finite number of
variables
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Kernel classification Kernel tricks
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Kernel classification Kernel tricks

Kernel Tricks

• It can be shown at optimum, w is a linear
combination of training data

w =
∑l

i=1
yiαiφ(x i)

Proofs not provided here. Later we will show that α is
the solution of a dual problem
• Special φ(x) such that the decision function becomes

sgn(wTφ(x)) = sgn

(∑l

i=1
yiαiφ(x i)

Tφ(x)

)
= sgn

(∑l

i=1
yiαiK (x i , x)

)
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Kernel classification Kernel tricks

Kernel Tricks (Cont’d)

φ(x i)
Tφ(x j) needs a closed form

Example: x i ∈ R3, φ(x i) ∈ R10

φ(x i) = [1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3]T

Then φ(x i)
Tφ(x j) = (1 + xT

i x j)
2.

Kernel: K (x , y) = φ(x)Tφ(y); common kernels:

e−γ‖x i−x j‖2

, (Radial Basis Function)

(xT
i x j/a + b)d (Polynomial kernel)
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Kernel classification Kernel tricks

K (x , y) can be inner product in infinite dimensional
space. Assume x ∈ R1 and γ > 0.

e−γ‖xi−xj‖
2

= e−γ(xi−xj)
2

= e−γx
2
i +2γxixj−γx2

j

=e−γx
2
i −γx2

j
(
1 +

2γxixj
1!

+
(2γxixj)

2

2!
+

(2γxixj)
3

3!
+ · · ·

)
=e−γx

2
i −γx2

j
(
1 · 1+

√
2γ

1!
xi ·
√

2γ

1!
xj +

√
(2γ)2

2!
x2i ·

√
(2γ)2

2!
x2j

+

√
(2γ)3

3!
x3i ·

√
(2γ)3

3!
x3j + · · ·

)
= φ(xi)

Tφ(xj),

where

φ(x) = e−γx
2

[
1,

√
2γ

1!
x ,

√
(2γ)2

2!
x2,

√
(2γ)3

3!
x3, · · ·

]T
.
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Linear versus kernel classification
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Linear versus kernel classification
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Linear versus kernel classification Comparison on the cost

Linear and Kernel Classification

Now we see that methods such as SVM and logistic
regression can be used in two ways

Kernel methods: data mapped to a higher
dimensional space

x ⇒ φ(x)

φ(x i)
Tφ(x j) easily calculated; little control on φ(·)

Linear classification + feature engineering:

We have x without mapping. Alternatively, we can
say that φ(x) is our x ; full control on x or φ(x)
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Linear versus kernel classification Comparison on the cost

Linear and Kernel Classification

The cost of using linear and kernel classification is
different

Let’s check the prediction cost

w
T
x versus

∑l

i=1
yiαiK (x i , x)

If K (x i , x j) takes O(n), then

O(n) versus O(nl)

Linear is much cheaper

A similar difference occurs for training

Chih-Jen Lin (National Taiwan Univ.) 51 / 157



Linear versus kernel classification Comparison on the cost

Linear and Kernel Classification (Cont’d)

In fact, linear is a special case of kernel

We can prove that accuracy of linear is the same as
Gaussian (RBF) kernel under certain parameters
(Keerthi and Lin, 2003)

Therefore, roughly we have

accuracy: kernel ≥ linear
cost: kernel � linear

Speed is the reason to use linear
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Linear versus kernel classification Comparison on the cost

Linear and Kernel Classification (Cont’d)

For some problems, accuracy by linear is as good as
nonlinear

But training and testing are much faster

This particularly happens for document classification

Number of features (bag-of-words model) very large

Data very sparse (i.e., few non-zeros)
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Linear versus kernel classification Numerical comparisons
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Linear versus kernel classification Numerical comparisons

Comparison Between Linear and Kernel
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features
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Linear versus kernel classification A real example
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Linear versus kernel classification A real example

Linear Methods to Explicitly Train φ(x i)

We may directly train φ(x i),∀i without using kernel

This is possible only if φ(x i) is not too high
dimensional

Next we show a real example of running a machine
learning model is a small sensor hub
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Linear versus kernel classification A real example

Example: Classifier in a Small Device

In a sensor application (Yang, 2013), the classifier
can use less than 16KB of RAM

Classifiers Test accuracy Model Size
Decision Tree 77.77 76.02KB
AdaBoost (10 trees) 78.84 1,500.54KB
SVM (RBF kernel) 85.33 1,287.15KB

Number of features: 5

We consider a degree-3 polynomial mapping

dimensionality =

(
5 + 3

3

)
+ bias term = 57.
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Linear versus kernel classification A real example

Example: Classifier in a Small Device

One-against-one strategy for 5-class classification(
5

2

)
× 57× 4bytes = 2.28KB

Assume single precision

Results

SVM method Test accuracy Model Size
RBF kernel 85.33 1,287.15KB
Polynomial kernel 84.79 2.28KB
Linear kernel 78.51 0.24KB
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Solving optimization problems
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Solving optimization problems Kernel: decomposition methods
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Solving optimization problems Kernel: decomposition methods

Dual Problem

Recall we said that the difficulty after mapping x to
φ(x) is the huge number of variables

We mentioned

w =
l∑

i=1

αiyiφ(x i) (8)

and used kernels for prediction

Besides prediction, we must do training via kernels

The most common way to train SVM via kernels is
through its dual problem
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Solving optimization problems Kernel: decomposition methods

Dual Problem (Cont’d)

The dual problem

min
α

1

2
αTQα− e

Tα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0,

where Qij = yiyjφ(x i)
Tφ(x j) and e = [1, . . . , 1]T

From primal-dual relationship, at optimum (8) holds

Dual problem has a finite number of variables

If no bias term b, then yTα = 0 disappears
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Solving optimization problems Kernel: decomposition methods

Example: Primal-dual Relationship

Consider the earlier example:

4
0

©
1

Now two data are x1 = 1, x2 = 0 with

y = [+1,−1]T

The solution is (w , b) = (2,−1)
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Solving optimization problems Kernel: decomposition methods

Example: Primal-dual Relationship
(Cont’d)

The dual objective function

1

2

[
α1 α2

] [1 0
0 0

] [
α1

α2

]
−
[
1 1

] [α1

α2

]
=

1

2
α2
1 − (α1 + α2)

In optimization, objective function means the
function to be optimized
Constraints are

α1 − α2 = 0, 0 ≤ α1, 0 ≤ α2.
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Solving optimization problems Kernel: decomposition methods

Example: Primal-dual Relationship
(Cont’d)

Substituting α2 = α1 into the objective function,

1

2
α2
1 − 2α1

has the smallest value at α1 = 2.

Because [2, 2]T satisfies constraints

0 ≤ α1 and 0 ≤ α2,

it is optimal
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Solving optimization problems Kernel: decomposition methods

Example: Primal-dual Relationship
(Cont’d)

Using the primal-dual relation

w = y1α1x1 + y2α2x2
= 1 · 2 · 1 + (−1) · 2 · 0
= 2

This is the same as that by solving the primal
problem.
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Solving optimization problems Kernel: decomposition methods

Decision function

At optimum

w =
∑l

i=1 αiyiφ(x i)

Decision function

w
Tφ(x) + b

=
∑l

i=1
αiyiφ(x i)

Tφ(x) + b

=
∑l

i=1
αiyiK (x i , x) + b

Recall 0 ≤ αi ≤ C in the dual problem
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Solving optimization problems Kernel: decomposition methods

Support Vectors

Only x i of αi > 0 used ⇒ support vectors
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Solving optimization problems Kernel: decomposition methods

Large Dense Quadratic Programming

min
α

1

2
αTQα− e

Tα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0

Qij 6= 0, Q : an l by l fully dense matrix

50,000 training points: 50,000 variables:

(50, 0002 × 8/2) bytes = 10GB RAM to store Q
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Solving optimization problems Kernel: decomposition methods

Large Dense Quadratic Programming
(Cont’d)

Traditional optimization methods cannot be directly
applied here because Q cannot even be stored

Currently, decomposition methods (a type of
coordinate descent methods) are what used in
practice
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Solving optimization problems Kernel: decomposition methods

Decomposition Methods

Working on some variables each time (e.g., Osuna
et al., 1997; Joachims, 1998; Platt, 1998)

Similar to coordinate-wise minimization

Working set B , N = {1, . . . , l}\B fixed

Let the objective function be

f (α) =
1

2
αTQα− e

Tα
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Solving optimization problems Kernel: decomposition methods

Decomposition Methods (Cont’d)

Sub-problem on the variable dB

min
dB

f ([ αB
αN ] +

[
dB
0

]
)

subject to −αi ≤ di ≤ C − αi ,∀i ∈ B

di = 0,∀i /∈ B ,

yTBdB = 0

The objective function of the sub-problem

f ([ αB
αN ] +

[
dB
0

]
)

=
1

2
d
T
BQBBdB +∇B f (α)TdB + constant.
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Solving optimization problems Kernel: decomposition methods

Avoid Memory Problems

QBB is a sub-matrix of Q[
QBB QBN

QNB QNN

]
Note that

∇f (α) = Qα− e, ∇B f (α) = QB,:α− eB
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Solving optimization problems Kernel: decomposition methods

Avoid Memory Problems (Cont’d)

Only B columns of Q are needed

In general |B | ≤ 10 is used. We need |B | ≥ 2
because of the linear constraint

yTBdB = 0

Calculated when used: trade time for space

But is such an approach practical?
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Solving optimization problems Kernel: decomposition methods

How Decomposition Methods Perform?

Convergence not very fast. This is known because
of using only first-order information

But, no need to have very accurate α

decision function:
∑l

i=1
yiαiK (x i , x) + b

Prediction may still be correct with a rough α

Further, in some situations,

# support vectors � # training points

Initial α1 = 0, some instances never used
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Solving optimization problems Kernel: decomposition methods

How Decomposition Methods Perform?
(Cont’d)

An example of training 50,000 instances using the
software LIBSVM (|B | = 2)

$svm-train -c 16 -g 4 -m 400 22features

Total nSV = 3370

Time 79.524s

This was done on a typical desktop

Calculating the whole Q takes more time

#SVs = 3,370 � 50,000

A good case where some remain at zero all the time

Chih-Jen Lin (National Taiwan Univ.) 78 / 157

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Solving optimization problems Linear: coordinate descent method

Outline

4 Solving optimization problems
Kernel: decomposition methods
Linear: coordinate descent method
Linear: second-order methods
Experiments

Chih-Jen Lin (National Taiwan Univ.) 79 / 157



Solving optimization problems Linear: coordinate descent method

Coordinate Descent Methods for Linear
Classification

We consider L1-loss SVM as an example here

The same method can be extended to L2 and
logistic loss

More details in Hsieh et al. (2008); Yu et al. (2011)
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Solving optimization problems Linear: coordinate descent method

SVM Dual (Linear without Kernel)

From primal dual relationship

min
α

f (α)

subject to 0 ≤ αi ≤ C ,∀i ,

where

f (α) ≡ 1

2
αTQα− e

Tα

and
Qij = yiyjx

T
i x j , e = [1, . . . , 1]T

No linear constraint yTα = 0 because of no bias
term b
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Solving optimization problems Linear: coordinate descent method

Dual Coordinate Descent

Very simple: minimizing one variable at a time

While α not optimal

For i = 1, . . . , l

min
αi

f (. . . , αi , . . .)

A classic optimization technique

Traced back to Hildreth (1957) if constraints are
not considered
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Solving optimization problems Linear: coordinate descent method

The Procedure

Given current α. Let e i = [0, . . . , 0, 1, 0, . . . , 0]T .

min
d

f (α + de i) =
1

2
Qiid

2 +∇i f (α)d + constant

This sub-problem is a special case of the earlier
sub-problem of the decomposition method for kernel
classifiers

That is, the working set B = {i}
Without constraints

optimal d = −∇i f (α)

Qii
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Solving optimization problems Linear: coordinate descent method

The Procedure (Cont’d)

Now 0 ≤ αi + d ≤ C

αi ← min

(
max

(
αi −

∇i f (α)

Qii
, 0

)
,C

)
Note that

∇i f (α) = (Qα)i − 1 =
∑l

j=1
Qijαj − 1

=
∑l

j=1
yiyjx

T
i x jαj − 1
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Solving optimization problems Linear: coordinate descent method

The Procedure (Cont’d)

Directly calculating gradients costs O(ln)

l :# data, n: # features

This is the case for kernel classifiers

For linear SVM, define

u ≡
∑l

j=1
yjαjx j ,

Easy gradient calculation: costs O(n)

∇i f (α) = yiu
T
x i − 1
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Solving optimization problems Linear: coordinate descent method

The Procedure (Cont’d)

All we need is to maintain u

u =
∑l

j=1
yjαjx j ,

If
ᾱi : old ; αi : new

then
u← u + (αi − ᾱi)yix i .

Also costs O(n)
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Solving optimization problems Linear: coordinate descent method

Algorithm: Dual Coordinate Descent

Given initial α and find

u =
∑
i

yiαix i .

While α is not optimal (Outer iteration)

For i = 1, . . . , l (Inner iteration)

(a) ᾱi ← αi

(b) G = yiuTx i − 1

(c) If αi can be changed

αi ← min(max(αi − G/Qii , 0),C )

u← u + (αi − ᾱi)yix i
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Solving optimization problems Linear: coordinate descent method

Difference from the Kernel Case

• We have seen that coordinate-descent type of
methods are used for both linear and kernel classifiers
• Recall the i -th element of gradient costs O(n) by

∇i f (α) =
l∑

j=1

yiyjx
T
i x jαj − 1 = (yix i)

T
( l∑
j=1

yjx jαj

)
− 1

= (yix i)
Tu− 1

but we cannot do this for kernel because

K (x i , x j) = φ(x i)
Tφ(x j)

cannot be separated
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Solving optimization problems Linear: coordinate descent method

Difference from the Kernel Case (Cont’d)

If using kernel, the cost of calculating ∇i f (α) must
be O(ln)

However, if O(ln) cost is spent, the whole ∇f (α)
can be maintained (details not shown here)

In contrast, the setting of using u knows ∇i f (α)
rather than the whole ∇f (α)
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Solving optimization problems Linear: coordinate descent method

Difference from the Kernel Case (Cont’d)

In existing coordinate descent methods for kernel
classifiers, people also use ∇f (α) information to
select variables (i.e., select the set B) for update

In optimization there are two types of coordinate
descent methods:

sequential or random selection of variables

greedy selection of variables

To do greedy selection, usually the whole gradient
must be available
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Solving optimization problems Linear: coordinate descent method

Difference from the Kernel Case (Cont’d)

Existing coordinate descent methods for linear ⇒
related to sequential or random selection

Existing coordinate descent methods for kernel ⇒
related to greedy selection
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Solving optimization problems Linear: coordinate descent method

Bias Term b and Linear Constraint in Dual

In our discussion, b is used for kernel but not linear

Mainly history reason

For kernel SVM, we can also omit b to get rid of
the linear constraint yTα = 0

Then for kernel decomposition method, |B | = 1 can
also be possible
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Solving optimization problems Linear: second-order methods
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Solving optimization problems Linear: second-order methods

Optimization for Linear and Kernel Cases

Recall that

w =
l∑

i=1

yiαiφ(x i)

Kernel: can only solve an optimization problem of α

Linear: can solve either w or α

We will show an example to minimize over w
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Solving optimization problems Linear: second-order methods

Newton Method

Let’s minimize a twice-differentiable function

min
w

f (w)

For example, logistic regression has

min
w

1

2
w

T
w + C

l∑
i=1

log
(

1 + e−yiw
Tx i

)
.

Newton direction at iterate w k

min
s

∇f (w k)Ts +
1

2
s
T∇2f (w k)s
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Solving optimization problems Linear: second-order methods

Truncated Newton Method

The above sub-problem is equivalent to solving
Newton linear system

∇2f (w k)s = −∇f (w k)

Approximately solving the linear system ⇒
truncated Newton

However, Hessian matrix ∇2f (w k) is too large to be
stored

∇2f (w k) : n × n, n : number of features

For document data, n can be millions or more
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Solving optimization problems Linear: second-order methods

Using Special Properties of Data
Classification

But Hessian has a special form

∇2f (w) = I + CXTDX ,

D diagonal. For logistic regression,

Dii =
e−yiw

Tx i

1 + e−yiwTx i

X : data, # instances × # features

X = [x1, . . . , x l ]
T
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Solving optimization problems Linear: second-order methods

Using Special Properties of Data
Classification (Cont’d)

Using Conjugate Gradient (CG) to solve the linear
system.

CG is an iterative procedure. Each CG step mainly
needs one Hessian-vector product

∇2f (w)d = d + C · XT (D(Xd))

Therefore, we have a Hessian-free approach
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Solving optimization problems Linear: second-order methods

Using Special Properties of Data
Classification (Cont’d)

Now the procedure has two layers of iterations

Outer: Newton iterations

Inner: CG iterations per Newton iteration

Past machine learning works used Hessian-free
approaches include, for example, (Keerthi and
DeCoste, 2005; Lin et al., 2008)

Second-order information used: faster convergence
than first-order methods

Chih-Jen Lin (National Taiwan Univ.) 99 / 157



Solving optimization problems Experiments
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Solving optimization problems Experiments

Comparisons

L2-loss SVM is used

DCDL2: Dual coordinate descent (Hsieh et al.,
2008)

DCDL2-S: DCDL2 with shrinking (Hsieh et al.,
2008)

PCD: Primal coordinate descent (Chang et al.,
2008)

TRON: Trust region Newton method (Lin et al.,
2008)
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Solving optimization problems Experiments

Objective values (Time in Seconds)

news20 rcv1

yahoo-japan yahoo-korea
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Solving optimization problems Experiments

Analysis

Dual coordinate descents are very effective if #
data and # features are both large

Useful for document classification

Half million data in a few seconds

However, it is less effective if

# features small: should solve primal; or

large penalty parameter C ; problems are more
ill-conditioned
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Solving optimization problems Experiments

An Example When # Features Small

# instance: 32,561, # features: 123

Objective value Accuracy
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Multi-core linear classification

Multi-core Linear Classification

Parallelization in shared-memory system: use the
power of multi-core CPU if data can fit in memory

Example: we can parallelize the 2nd-order method
(i.e., the Newton method) discussed earlier.

We discuss the study in Lee et al. (2015)

Recall the bottleneck is the Hessian-vector product

∇2f (w)d = d + C · XT (D(Xd))

See the analysis in the next slide
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Multi-core linear classification

Matrix-vector Multiplications: More Than
90% of the Training Time

Data set #instances #features ratio
kddb 19,264,097 29,890,095 82.11%
url combined 2,396,130 3,231,961 94.83%
webspam 350,000 16,609,143 97.95%
rcv1 binary 677,399 47,236 97.88%
covtype binary 581,012 54 89.20%
epsilon normalized 400,000 2,000 99.88%
rcv1 518,571 47,236 97.04%
covtype 581,012 54 89.06%
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Multi-core linear classification

Matrix-vector Multiplications: More Than
90% of the Training Time (Cont’d)

This result is by Newton methods using one core

We should parallelize matrix-vector multiplications

For ∇2f (w)d we must calculate

u = Xd (9)

u← Du (10)

ū = XTu, where u = DXd (11)

Because D is diagonal, (10) is easy

We will discuss the parallelization of (9) and (11)
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Multi-core linear classification Parallel matrix-vector multiplications

Parallel Xd Operation

Assume that X is in a row-oriented sparse format

X =

x
T
1

...

xT
l

 and u = Xd =

x
T
1 d

...

xT
l d


we have the following simple loop

1: for i = 1, . . . , l do
2: ui = xT

i d

3: end for
Because the l inner products are independent, we
can easily parallelize the loop by, for example,
OpenMP
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Multi-core linear classification Parallel matrix-vector multiplications

Parallel XTu Operation

For the other matrix-vector multiplication

ū = XTu, where u = DXd ,

we have
ū = u1x1 + · · ·+ ulx l .

Because matrix X is row-oriented, accessing
columns in XT is much easier than rows

We can use the following loop

1: for i = 1, . . . , l do
2: ū← ū + uix i

3: end for
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Multi-core linear classification Parallel matrix-vector multiplications

Parallel XTu Operation (Cont’d)

There is no need to store a separate XT

However, it is possible that threads on ui1x i1 and
ui2x i2 want to update the same component ūs at the
same time:

1: for i = 1, . . . , l do in parallel
2: for (x i)s 6= 0 do
3: ūs ← ūs + ui(x i)s
4: end for
5: end for
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Multi-core linear classification Parallel matrix-vector multiplications

Atomic Operations for Parallel XTu

An atomic operation can avoid other threads to
write ūs at the same time.

1: for i = 1, . . . , l do in parallel
2: for (x i)s 6= 0 do
3: atomic: ūs ← ūs + ui(x i)s
4: end for
5: end for

However, waiting time can be a serious problem

Chih-Jen Lin (National Taiwan Univ.) 114 / 157



Multi-core linear classification Parallel matrix-vector multiplications

Reduce Operations for Parallel XTu

Another method is using temporary arrays
maintained by each thread, and summing up them
in the end

That is, store

ûp =
∑
i

{uix i | i run by thread p}

and then
ū =

∑
p

ûp
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Multi-core linear classification Parallel matrix-vector multiplications

Atomic Operation: Almost No Speedup

Reduce operations are superior to atomic operations

1 2 4 6 8 10 12
# threads

0

2

4

6

8

10

Sp
ee

du
p

OMP-array
OMP-atomic

1 2 4 6 8 10 12
# threads

0

1

2

3

4

5

Sp
ee

du
p

OMP-array
OMP-atomic

rcv1 binary covtype binary

Subsequently we use the reduce operations
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Multi-core linear classification Parallel matrix-vector multiplications

Existing Algorithms for Sparse
Matrix-vector Product

This is always an important research issue in
numerical analysis

Instead of our direct implementation to parallelize
loops, in the next slides we will consider two existing
methods
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Multi-core linear classification Parallel matrix-vector multiplications

Recursive Sparse Blocks (Martone, 2014)

RSB (Recursive Sparse Blocks) is
an effective format for fast parallel
sparse matrix-vector multiplications

It recursively partitions a matrix to
be like the figure
Locality of memory references improved, but the
construction time is not negligible

Chih-Jen Lin (National Taiwan Univ.) 118 / 157



Multi-core linear classification Parallel matrix-vector multiplications

Recursive Sparse Blocks (Cont’d)

Parallel, efficient sparse matrix-vector operations

Improve locality of memory references

But the initial construction time is about 20
multiplications, which is not negligible in some cases

We will show the result in the experiment part
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Multi-core linear classification Parallel matrix-vector multiplications

Intel MKL

Intel Math Kernel Library (MKL) is a commercial
library including optimized routines for linear algebra
(Intel)

It supports fast matrix-vector multiplications for
different sparse formats.

We consider the row-oriented format to store X .
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Multi-core linear classification Experiments

Experiments

Baseline: Single core version in LIBLINEAR 1.96

OpenMP to parallelize loops

MKL: Intel MKL version 11.2

RSB: librsb version 1.2.0
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Multi-core linear classification Experiments

Speedup of Xd : All are Excellent
rcv1 binary webspam kddb

url combined covtype binary rcv1
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Multi-core linear classification Experiments

More Difficult to Speed up XTu
rcv1 binary webspam kddb

url combined covtype binary rcv1
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Multi-core linear classification Experiments

Reducing Memory Access to Improve
Speedup

In computing

Xd and XT (DXd)

the data matrix is accessed twice

We notice that these two operations can be
combined together

XTDXd =
∑l

i=1
x iDiix

T
i d

We can parallelize one single loop by OpenMP
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Multi-core linear classification Experiments

Reducing Memory Access to Improve
Speedup (Cont’d)

Better speedup as memory accesses reduced
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The number of operations is the same, but memory
access dramatically affects the idle time of threads
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Multi-core linear classification Experiments

OpenMP Scheduling

An OpenMP loop assigns tasks to different threads.

The default schedule(static) splits indices to P
blocks, where each contains l/P elements.

However, as tasks may be unbalanced, we can have
a dynamic scheduling – available threads are
assigned to the next tasks.

For example, schedule(dynamic,256) implies
that a thread works on 256 elements each time.

Unfortunately, overheads occur for the dynamic task
assignment.
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Multi-core linear classification Experiments

OpenMP Scheduling (Cont’d)

Deciding suitable scheduling is not trivial.

Consider implementing XTu as an example. This
operation involves the following three loops.

1 Initializing ûp = 0,∀p = 1, . . . ,P .
2 Calculating ûp,∀p by

ûp =
∑
{uix i | i run by thread p}

3 Calculating ū =
∑P

p=1 û
p.
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Multi-core linear classification Experiments

OpenMP Scheduling (Cont’d)

• Consider the second step

covtype binary rcv1 binary
schedule(static) 0.2879 2.9387
schedule(dynamic) 1.2611 2.6084
schedule(dynamic, 256) 0.2558 1.6505

• Clearly, a suitable scheduling is essential

• The other two steps are more balanced, so
schedule(static) is used (details omitted)
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Multi-core linear classification Experiments

Speedup of Total Training Time
rcv1 binary webspam kddb

url combined covtype binary rcv1
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Multi-core linear classification Experiments

Analysis of Experimental Results

For RSB, the speedup for Xd is excellent, but is
poor for XTu on some n� l data (e.g. covtype)
Furthermore, construction time is expensive

OpenMP is the best for almost all cases, mainly
because of combing Xd and XTu together

Therefore, with appropriate settings, simple
implementations by OpenMP can achieve excellent
speedup
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Distributed linear classification Distributed matrix-vector multiplications

Data in a Distributed System

When data are too large, we may for example let
each node store some instances

X1

X2

. . .

Xp

node 1

node 2

node P

We would like to distributedly compute

∇f (w)d = XTDXd
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Distributed linear classification Distributed matrix-vector multiplications

Parallel Hessian-vector Product

Like in the shared-memory situation, we have

XTDXd = XT
1 D1X1d + · · ·+ XT

P DPXPd

We let each node calculate

XT
p DpXpd

and sum resulting vectors together

This is a reduce operation. We have used similar
techniques for multi-core situations
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Distributed linear classification Distributed matrix-vector multiplications

Master-slave or Master-master

Master-slave: only master gets XTDXd and runs
the whole Newton method

Master-master: every node gets XTDXd . Then
each node has all the information to finish the
Newton method

Here we consider a master-master setting.

One reason is that for master-slave,
implementations on master and slaves are different

This is different from multi-core situations, where
only one master copy is run
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Distributed linear classification Distributed matrix-vector multiplications

Allreduce Operation

We let every node get XTDXd

d

d

d

XT
1 D1X1d

XT
2 D2X2d

XT
3 D3X3d

ALL REDUCE

XTDXd

XTDXd

XTDXd

Allreduce: reducing all vectors (XT
i DiXid ,∀i) to a single

vector (XTDXd ∈ Rn) and then sending the result to
every node
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Distributed linear classification Distributed matrix-vector multiplications

Instance-wise and Feature-wise Data Splits

Instead of storing a subset of data at each node, we
can store a subset of features

Xiw,1

Xiw,2

Xiw,3

Xfw,1Xfw,2Xfw,3

Instance-wise Feature-wise
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Distributed linear classification Distributed matrix-vector multiplications

Instance-wise and Feature-wise Data Splits
(Cont’d)

Feature-wise: each machine calculates part of the
Hessian-vector product

(∇2f (w)d)fw,1 = d 1+CXT
fw,1D(Xfw,1d 1+· · ·+Xfw,PdP)

Xfw,1d 1 + · · ·+ Xfw,PdP ∈ R l must be available on
all nodes (by allreduce)
Because

XT
k DkXkd : O(n), Xfw,pd p : O(l),

amount of data moved per Hessian-vector product:
Instance-wise: O(n), Feature-wise: O(l)
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Distributed linear classification Experiments

Experiments

We compare

TRON: Newton method
ADMM: alternating direction method of
multipliers (Boyd et al., 2011; Zhang et al.,
2012)
Vowpal Wabbit (Langford et al., 2007)

TRON and ADMM are implemented by MPI

Details in Zhuang et al. (2015)

Chih-Jen Lin (National Taiwan Univ.) 142 / 157



Distributed linear classification Experiments

Experiments (Cont’d)
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32 machines are used

Horizontal line: test accuracy has stabilized

Instance-wise and feature-wise splits useful for
l � n and l � n, respectively
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Experiments (Cont’d)

We have seen that communication cost is a big
concern

In terms of running time, multi-core implementation
is often faster

However, data preparation and loading are issues
other than running time

Overall we see that distributed training is a
complicated issue
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Software

• Most materials in this talks are based on our
experiences in developing two popular software

• Kernel: LIBSVM (Chang and Lin, 2011)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

• Linear: LIBLINEAR (Fan et al., 2008).

http://www.csie.ntu.edu.tw/~cjlin/liblinear

See also a survey on linear classification in Yuan et al.
(2012)
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Multi-core LIBLINEAR

An extension of the software LIBLINEAR

See http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/multicore-liblinear

This is based on the study in Lee et al. (2015)

We already have many users. For example, one user
from USC uses this tool to reduce his training time
from over 30 hours to 5 hours
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Distributed LIBLINEAR

An extension of the software LIBLINEAR

See http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/distributed-liblinear

We support both MPI (Zhuang et al., 2015) and
Spark (Lin et al., 2014)

Chih-Jen Lin (National Taiwan Univ.) 150 / 157

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear


Discussion and conclusions Conclusions

Outline

7 Discussion and conclusions
Some resources
Conclusions

Chih-Jen Lin (National Taiwan Univ.) 151 / 157



Discussion and conclusions Conclusions

Conclusions

Linear classification is an old topic; but recently
there are new and interesting applications

Kernel methods are still useful for many
applications, but linear classification + feature
engineering are suitable for some others

Linear classification will continue to be used in
situations ranging from small-model to big-data
applications
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