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@ Part of this talk is based on our survey paper (Yuan
et al., 2012)

Recent Advances of Large-scale Linear
Classification. Proceedings of IEEE, 2012

@ It's also related to our development of the software
LIBLINEAR

www.csie.ntu.edu.tw/~cjlin/liblinear

@ Due to time constraints, we will give overviews
instead of deep technical details.
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Linear and Nonlinear Classification

Linear Nonlinear
0]

By linear we mean a linear function is used to separate
data in the original input space

Original: [height, weight]

Nonlinear: [height, weight, weight /height?]
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Linear and Nonlinear Classification

(Cont'd)

Methods such as SVM and logistic regression can be
used in two ways

@ Kernel methods: data mapped to another space

x = ¢(x)

d(x) " ¢(y) easily calculated; no good control on ¢()
@ Linear classification 4 feature engineering:

We have x without mapping. Alternatively, we can
say that ¢(x) is our x; full control on x or ¢(x)

We will focus on linear here
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Why Linear Classification?

e If ¢(x) is high dimensional, decision function

sgn(w’ ¢(x))
is expensive. So kernel methods use
w = Z (x;) for some o, K(x;, x;) = é(x;) T o(x;)

Then new decision function is sgn (Zf_l oz,-K(x,-,x))

e Special ¢(x) so calculating K(x;, x;) is easy. Example:

K(thj') — (X,'ij + 1)2 _ Qb(X,‘)TQb(xj)? ¢(X) € Ro(n2)
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Why Linear Classification? (Cont'd)

@ However, kernel is still expensive
@ Prediction

/
T . ,
w'Xx versus Zi:l a;K(x;, x)
o If K(x;,x;) takes O(n), then
O(n) versus O(nl)

@ Nonlinear: more powerful to separate data
Linear: cheaper and simpler
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Linear is Useful in Some Places

@ For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

@ Especially document classification
Number of features (bag-of-words model) very large
Large and sparse data

@ Training millions of data in just a few seconds
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Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnnl 1.6 91.81 26.8 98.69
covtype 1.4 76.37 | 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 | 20,955.2 03.31
webspam 25.7 93.35 | 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances

d110 K d
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Binary Linear Classification

@ Training data {y;,x;},x;, € R",i=1,.... 1, yy=+1
o [ # of data, n: # of features

WTW

I
mvin flw), f(w)= 5 + CZﬁ(W;X,‘,yi)
i=1

e w'w/2: regularization term (we have no time to
talk about L1 regularization here)

e &(w;x,y): loss function: we hope yw™x > 0
e C: regularization parameter
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N 'ocuction
Loss Functions

@ Some commonly used ones:

ng(W; x,)/) = max(O, 1-— yWTX), (1)
Ea(w;x, y) = max(0,1 — yw ' x)?, (2)
SLr(w; x, y) = log(1 + e_yWTX). (3)

@ SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

@ Logistic regression (LR): (3); no reference because
it can be traced back to 19th century
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Loss Functions (Cont'd)

§(w; x,y)
L2

/5LR
A

Their performance is usually similar
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Loss Functions (Cont'd)

However, optimization methods for them may be

different

L
€12
LR

not differentiable

. differentiable but not twice differentiable
- twice differentiable
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Outline

@ Optimization Methods
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Optimization: 2nd Order Methods

@ Newton direction

min  Vf(w*)7s + %STVQf(wk)s

S

@ This is the same as solving Newton linear system
V2 (wh)s = —VF(w¥)
@ Hessian matrix V2f(wk) too large to be stored
V2f(w*):nx n, n: number of features
@ But Hessian has a special form
V3f(w) =T + CX' DX,
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- [Cuufoaiiic
Optimization: 2nd Order Methods
(Cont'd)

e X: data matrix. D diagonal. For logistic regression,
—yiw’x;

Di=

1+ e Viw'Xx;

@ Using CG to solve the linear system. Only
Hessian-vector products are needed

V2f(w)s =s+ C - XT(D(Xs))

@ Therefore, we have a Hessian-free approach
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2nd-order Methods (Cont'd)

@ In LIBLINEAR, we use the trust-region + CG
approach by Steihaug (1983); see details in Lin
et al. (2008)

@ What if we use L2 loss? It's differentiable but not
twice differentiable

Ea(w; x,y) = max(0,1 — wax)2

@ We can use generalized Hessian (Mangasarian,
2002). Details not discussed here
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Optimization: 1st Order Methods

@ We consider L1-loss and the dual SVM problem

main fla)

subjectto 0<a; < C,Vi,

where

a'Qa—e’a

fla) =
and
Qi =yiyx/x, e=][L,...,1]"
@ We will apply coordinate descent methods
@ The situation for L2 or LR loss is very similar
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1st Order Methods (Cont'd)

e Coordinate descent: a simple and classic technique
Change one variable at a time
e Given current . Let e; =10,...,0,1,0,...,0].

1
mdin f(a+ de;) = 5Q,-,-d2 + Vf(a)d + constant

@ Without constraints
V,-f(a)
Qii

optimal d = —

@ Now0<a;+d<C
;i < min | max | a; — ,0),C
( ( Qii
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N O ication Methods
1st Order Methods (Cont'd)
I
Vif(a)=(Qa) — 1= ijl Qo — 1
/ T
— ijl Viyix; xjo —1
@ O(In) cost; I:# data, n: # features. But we can
define /
u= Zj_l YioX;,
@ Easy gradient calculation: costs O(n)

| v TS v 1 — vuTx
Vif(a) = (yix;) ijlijjaj l=yu x;—1

Chih-Jen Lin (National Taiwan Univ.) 21/ 42




1st Order Methods (Cont'd)

@ All we need is to maintain u
/
=1 II%D

o If

then
u<u-+ (CE,' — o‘z,-)y,-x,-.
Also costs O(n)
References: first use for SVM probably by Mangasarian

and Musicant (1999); Friess et al. (1998), but
popularized for linear SVM by Hsieh et al. (2008)
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1st Order Methods (Cont'd)

Summary of the dual coordinate descent method
e Given initial o and find u = ), yiax;.
@ While a is not optimal ~ (Outer iteration)
Fori=1,...,1 (Inner iteration)
(a) Q) < Q;
(b) G = y,'UTX,' —1
(c) If a; can be changed
a; <— min(max(a; — G/Q;;,0), C)
u < u+ (o — a;)yx;
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Comparisons

L2-loss SVM is used

e DCDL2: Dual coordinate descent

e DCDL2-S: DCDL2 with shrinking

@ PCD: Primal coordinate descent

@ TRON: Trust region Newton method
This result is from Hsieh et al. (2008)
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Analysis

@ First-order methods can quickly get a model

@ But second-order methods are more robust and
faster for ill-conditioned situations

@ Both type of optimization methods are useful for
linear classification
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An Example When # Features Small

@ # instance: 32,561, # features: 123
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If number of features is small, solving primal is more
suitable
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@ Extension of Linear Classification
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_ Extension of Linear Classification
Extension of Linear Classification

@ Linear classification can be extended in different
ways

@ An important one is to approximate nonlinear
classifiers

@ Goal: better accuracy of nonlinear but faster
training/testing

e Examples
1. Explicit data mappings + linear classification
2. Kernel approximation + linear classification
@ | will focus on the first
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I = :<rsion of Linear Classification
Linear Methods to Explicitly Train ¢(x;)

@ Example: low-degree polynomial mapping:
O(X) = [1, X1, - - Xns X2 o X2 X1X0, oy X1 Xn] |
e For this mapping, # features = O(n?)
@ When is it useful?
Recall O(n) for linear versus O(nl) for kernel
e Now O(n?) versus O(nl)
@ Sparse data
n = n, average # non-zeros for sparse data
i < n= O(nA?) may be much smaller than O(/n)
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_ Extension of Linear Classification
Example: Dependency Parsing

A multi-class problem with sparse data

n| Dim. of ¢(x) | I| 7| w's# nonzeros
46,155 | 1,065,165,000 | 204,582 | 13.3 | 1,438,456

@ n: average # nonzeros per instance
@ Degree-2 polynomial is used
@ Dimensionality of w is too large, but w is sparse

@ Some interesting Hashing techniques are used to
handle sparse w
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Example: Dependency Parsmg (Cont d)

LIBSVM LIBLINEAR
RBF Poly | Linear  Poly
Training time | 3h34m53s 3h21mb51s | 3m36s 3m43s
Parsing speed 0.7x 1x | 1652x  103x
UAS 89.92 91.67 | 89.11 091.71
LAS 88.55 90.60 | 88.07 90.71

@ We get faster training/testing, but maintain good
accuracy

@ See detailed discussion in Chang et al. (2010)
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http://www.csie.ntu.edu.tw/~cjlin/libsvm

_ Extension of Linear Classification
Example: Classifier in a Small Device

@ In a sensor application (Yu et al., 2013), the
classifier must use less than 16KB of RAM

Classifiers | Test accuracy | Model Size
Decision Tree 77.77 76.02KB
AdaBoost (10 trees) 78.84 | 1,500.54KB
SVM (RBF kernel) 85.33 | 1,287.15KB

@ Number of features: 5
@ We consider a degree-3 mapping

5+3

3 > + bias term = 57.

dimensionality = (
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_ Extension of Linear Classification
Example: Classifier in a Small Device

(Cont'd)
@ One-against-one strategy for 5-class classification

<Z) x 57 x 4bytes = 2.28KB

Assume single precision

@ Results
SVM method \ Test accuracy \ Model Size
RBF kernel 85.33 | 1,287.15KB
Polynomial kernel 84.79 2.28KB

Linear kernel 78.51 0.24KB
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_ Extension of Linear Classification
Example: Classifier in a Small Device

(Cont'd)
@ Running time (in seconds)
LIBLINEAR
LIBSVM Primal ‘ Dual

Training time ‘ 30,519.10 ‘ 1,368.25 ‘ 4,039.20
e LIBSVM: polynomial kernel
o LIBLINEAR: training polynomial expansions
primal: 2nd-order method; dual: 1st-order
o LIBLINEAR dual: slow convergence. Now

#data > #features = 57

Chih-Jen Lin (National Taiwan Univ.)
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_ Extension of Linear Classification
Discussion

@ Unfortunately, polynomial mappings easily cause
high dimensionality. Some have proposed
“projection” techniques to use fewer features as
approximations

Examples: Kar and Karnick (2012); Pham and Pagh
(2013)

@ Recently, ensemble of tree models (e.g., random
forests or GBDT) become very useful. But under
model-size constraints (the 2nd application), linear
may still be the way to go
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@ Discussion and Conclusions
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_ Discussion and Conclusions
Big-data Linear Classification

Shared and distributed scenarios are very different
Here | discuss more about distributed classification
The major saving is parallel data loading

But high communication cost is a big concern
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I Discussion and Conclusions
Big-data Linear Classification (Cont'd)

@ Data classification if often only one component of
the whole workflow

@ Example: distributed feature generation may be
more time consuming than classification

@ This explains why so far not many effective
packages are available for big-data classification

@ Many research and engineering issues remain to be
solved
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_ Discussion and Conclusions
Conclusions

@ Linear classification is an old topic; but recently
there are new and interesting applications
@ Kernel methods are still useful for many

applications, but linear classification -+ feature
engineering are suitable for some others

@ Advantages of linear: because of working on x,
easier for feature engineering

@ We expect that linear classification can be widely
used in situations ranging from small-model to
big-data classification
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