Support Vector Machines and Kernel Methods

Chih-Jen Lin
Department of Computer Science
National Taiwan University

Tutorial at ACML, November 8, 2010

Outline

- Basic concepts: SVM and kernels
- Training SVM
- Practical use of SVM
- Research directions: large-scale training
- Research directions: linear SVM
- Research directions: others
- Conclusions

Outline

- Basic concepts: SVM and kernels
- Training SVM
- Practical use of SVM
- Research directions: large-scale training
- Research directions: linear SVM
- Research directions: others
- Conclusions

Data Classification

- Given training data in different classes (labels known)
 - Predict test data (labels unknown)
- Training and testing

Support Vector Classification

- Training vectors : \mathbf{x}_i , i = 1, ..., I
- Feature vectors. For example,
 A patient = [height, weight, ...]^T
- Consider a simple case with two classes:
 Define an indicator vector y

$$y_i = \begin{cases} 1 & \text{if } \mathbf{x}_i \text{ in class } 1 \\ -1 & \text{if } \mathbf{x}_i \text{ in class } 2 \end{cases}$$

A hyperplane which separates all data

• A separating hyperplane: $\mathbf{w}^T \mathbf{x} + b = 0$

$$(\mathbf{w}^T \mathbf{x}_i) + b \ge 1$$
 if $y_i = 1$
 $(\mathbf{w}^T \mathbf{x}_i) + b \le -1$ if $y_i = -1$

• Decision function $f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x} + b)$, \mathbf{x} : test data Many possible choices of \mathbf{w} and \mathbf{b}

Maximal Margin

• Distance between $\mathbf{w}^T \mathbf{x} + b = 1$ and -1:

$$2/\|\mathbf{w}\| = 2/\sqrt{\mathbf{w}^T \mathbf{w}}$$

 A quadratic programming problem (Boser et al., 1992)

$$\min_{\mathbf{w},b} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
subject to
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1,$$

$$i = 1, \dots, I.$$

Data May Not Be Linearly Separable

• An example:

- Allow training errors
- Higher dimensional (maybe infinite) feature space

$$\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots]^T.$$

 Standard SVM (Boser et al., 1992; Cortes and Vapnik, 1995)

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i=1}^{I} \xi_{i}$$
subject to
$$y_{i}(\mathbf{w}^{T}\phi(\mathbf{x}_{i}) + b) \geq 1 - \xi_{i},$$

$$\xi_{i} \geq 0, \ i = 1, \dots, I.$$

• Example: $\mathbf{x} \in R^3, \phi(\mathbf{x}) \in R^{10}$

$$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3]^T$$

Finding the Decision Function

- w: maybe infinite variables
- The dual problem: finite number of variables

$$\begin{aligned} \min_{\boldsymbol{\alpha}} & & \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha} \\ \text{subject to} & & 0 \leq \alpha_i \leq C, i = 1, \dots, I \\ & & \mathbf{y}^T \boldsymbol{\alpha} = 0, \end{aligned}$$

where
$$Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$
 and $\mathbf{e} = [1, \dots, 1]^T$

At optimum

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i y_i \phi(\mathbf{x}_i)$$

• A finite problem: #variables = #training data

Kernel Tricks

- $Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ needs a closed form
- Example: $\mathbf{x}_i \in R^3, \phi(\mathbf{x}_i) \in R^{10}$

$$\phi(\mathbf{x}_i) = [1, \sqrt{2}(x_i)_1, \sqrt{2}(x_i)_2, \sqrt{2}(x_i)_3, (x_i)_1^2, (x_i)_2^2, (x_i)_3^2, \sqrt{2}(x_i)_1(x_i)_2, \sqrt{2}(x_i)_1(x_i)_3, \sqrt{2}(x_i)_2(x_i)_3]^T$$

Then
$$\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$
.

• Kernel: $K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y})$; common kernels:

$$e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$
, (Radial Basis Function) $(\mathbf{x}_i^T \mathbf{x}_j / a + b)^d$ (Polynomial kernel)

Can be inner product in infinite dimensional space Assume $x \in R^1$ and $\gamma > 0$.

$$e^{-\gamma ||x_{i}-x_{j}||^{2}} = e^{-\gamma(x_{i}-x_{j})^{2}} = e^{-\gamma x_{i}^{2}+2\gamma x_{i}x_{j}-\gamma x_{j}^{2}}$$

$$= e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}} \left(1 + \frac{2\gamma x_{i}x_{j}}{1!} + \frac{(2\gamma x_{i}x_{j})^{2}}{2!} + \frac{(2\gamma x_{i}x_{j})^{3}}{3!} + \cdots\right)$$

$$= e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}} \left(1 \cdot 1 + \sqrt{\frac{2\gamma}{1!}} x_{i} \cdot \sqrt{\frac{2\gamma}{1!}} x_{j} + \sqrt{\frac{(2\gamma)^{2}}{2!}} x_{i}^{2} \cdot \sqrt{\frac{(2\gamma)^{2}}{2!}} x_{j}^{2} + \sqrt{\frac{(2\gamma)^{3}}{3!}} x_{j}^{3} \cdot \sqrt{\frac{(2\gamma)^{3}}{3!}} x_{j}^{3} + \cdots\right) = \phi(x_{i})^{T} \phi(x_{j}),$$

where

$$\phi(x) = e^{-\gamma x^2} \left[1, \sqrt{\frac{2\gamma}{1!}} x, \sqrt{\frac{(2\gamma)^2}{2!}} x^2, \sqrt{\frac{(2\gamma)^3}{3!}} x^3, \cdots \right]^T.$$

ssues

- So what kind of kernel should I use?
- What kind of functions are valid kernels?
- How to decide kernel parameters?
- Some of these issues will be discussed later

Decision function

At optimum

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i y_i \phi(\mathbf{x}_i)$$

Decision function

$$\mathbf{w}^{T} \phi(\mathbf{x}) + b$$

$$= \sum_{i=1}^{I} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}) + b$$

$$= \sum_{i=1}^{I} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

• Only $\phi(\mathbf{x}_i)$ of $\alpha_i > 0$ used \Rightarrow support vectors

Support Vectors: More Important Data

Only $\phi(\mathbf{x}_i)$ of $\alpha_i > 0$ used \Rightarrow support vectors

Outline

- Basic concepts: SVM and kernels
- Training SVM
- Practical use of SVM
- Research directions: large-scale training
- Research directions: linear SVM
- Research directions: others
- Conclusions

Large Dense Quadratic Programming

$$\begin{aligned} \min_{\boldsymbol{\alpha}} & \quad \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha} \\ \text{subject to} & \quad 0 \leq \alpha_i \leq C, i = 1, \dots, I \\ & \quad \mathbf{y}^T \boldsymbol{\alpha} = 0 \end{aligned}$$

- $Q_{ij} \neq 0$, Q: an I by I fully dense matrix
- 50,000 training points: 50,000 variables: $(50,000^2 \times 8/2)$ bytes = 10GB RAM to store Q
- Traditional optimization methods:
 Newton, quasi Newton cannot be directly applied

Decomposition Methods

- Working on some variables each time (e.g., Osuna et al., 1997; Joachims, 1998; Platt, 1998)
- Similar to coordinate-wise minimization
- Working set B, $N = \{1, ..., I\} \setminus B$ fixed
- Sub-problem at the kth iteration:

$$\begin{aligned} & \min_{\boldsymbol{\alpha}_B} & & \frac{1}{2} \left[\boldsymbol{\alpha}_B^T \ (\boldsymbol{\alpha}_N^k)^T \right] \left[\begin{matrix} Q_{BB} & Q_{BN} \\ Q_{NB} & Q_{NN} \end{matrix} \right] \left[\begin{matrix} \boldsymbol{\alpha}_B \\ \boldsymbol{\alpha}_N^k \end{matrix} \right] - \\ & & & & & & & & & & & \\ \left[\mathbf{e}_B^T \ (\mathbf{e}_N^k)^T \right] \left[\begin{matrix} \boldsymbol{\alpha}_B \\ \boldsymbol{\alpha}_N^k \end{matrix} \right] \\ & & & & & & & \\ \text{subject to} & & & & & & & & \\ 0 \leq \alpha_t \leq C, t \in B, \ \mathbf{y}_B^T \boldsymbol{\alpha}_B = -\mathbf{y}_N^T \boldsymbol{\alpha}_N^k \end{aligned}$$

Avoid Memory Problems

• The new objective function

$$rac{1}{2} oldsymbol{lpha}_B^{\mathsf{T}} oldsymbol{\mathsf{Q}}_{BB} oldsymbol{lpha}_B + (-\mathbf{e}_B + oldsymbol{\mathsf{Q}}_{BN} oldsymbol{lpha}_N^k)^{\mathsf{T}} oldsymbol{lpha}_B + ext{ constant}$$

- Only B columns of Q needed ($|B| \ge 2$)
- Calculated when used
 Trade time for space

How Decomposition Methods Perform?

- Convergence not very fast
- ullet But, no need to have very accurate lpha Prediction not affected much
- In some situations, # support vectors « # training points
 - Initial $\alpha^1 = 0$, some instances never used

 An example of training 50,000 instances using LIBSVM

```
$svm-train -c 16 -g 4 -m 400 22features
Total nSV = 3370
Time 79.524s
```

- On a Xeon 2.0G machine
- Calculating the whole Q takes more time
- $\#SVs = 3,370 \ll 50,000$ A good case where some remain at zero all the time

Issues of Decomposition Methods

Techniques for faster decomposition methods

- store recently used kernel elements
- working set size/selection
- theoretical issues: convergence
- and others (details not discussed here)

Major software:

LIBSVM

```
http://www.csie.ntu.edu.tw/~cjlin/libsvm
```

SVM^{light}

http://svmlight.joachims.org

Outline

- Basic concepts: SVM and kernels
- Training SVM
- Practical use of SVM
- Research directions: large-scale training
- Research directions: linear SVM
- Research directions: others
- Conclusions

Let's Try a Practical Example

A problem from astroparticle physics

```
1 1:2.61e+01 2:5.88e+01 3:-1.89e-01 4:1.25e+02
1 1:5.70e+01 2:2.21e+02 3:8.60e-02 4:1.22e+02
1 1:1.72e+01 2:1.73e+02 3:-1.29e-01 4:1.25e+02
1 1:2.17e+01 2:1.24e+02 3:1.53e-01 4:1.52e+02
1 1:9.13e+01 2:2.93e+02 3:1.42e-01 4:1.60e+02
1 1:5.53e+01 2:1.79e+02 3:1.65e-01 4:1.11e+02
1 1:2.95e+01 2:1.91e+02 3:9.90e-02 4:1.03e+02
```

Training and testing sets available: 3,089 and 4,000 Sparse format: zero values not stored

Poor Results from Direct Training/Testing

Training

```
$./svm-train train.1
optimization finished, #iter = 6131
nSV = 3053, nBSV = 724
Total nSV = 3053
```

Testing

```
$./svm-predict test.1 train.1.model test.1.out
Accuracy = 66.925% (2677/4000)
```

nSV and nBSV: number of SVs and bounded SVs $(\alpha_i = C)$.

Why this Fails

- After training, nearly 100% support vectors
- Training and testing accuracy different
 \$./svm-predict train.1 train.1.model o
 Accuracy = 99.7734% (3082/3089)
- Most kernel elements:

$$\mathcal{K}_{ij} = \mathrm{e}^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2/4} egin{cases} = 1 & ext{if } i = j, \ o 0 & ext{if } i
eq j. \end{cases}$$

• Some features in rather large ranges

Data Scaling

- Without scaling
 Attributes in greater numeric ranges may dominate
- Linearly scale the first to [0, 1] by:

$$\frac{\text{feature value} - \min}{\max - \min}$$

There are other ways

Scaling generally helps, but not always

Data Scaling: Same Factors

A common mistake

```
$./svm-scale -l -1 -u 1 train.1 > train.1.scale
$./svm-scale -l -1 -u 1 test.1 > test.1.scale
```

Same factor on training and testing

```
$./svm-scale -s range1 train.1 > train.1.scale
$./svm-scale -r range1 test.1 > test.1.scale
```


After Data Scaling

Train scaled data and then predict

```
$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
```

test.1.predict
Accuracy = 96.15%

Training accuracy now is

\$./svm-predict train.1.scale train.1.scale.mode?
Accuracy = 96.439%

Default parameter: $C = 1, \gamma = 0.25$

Different Parameters

- If we use $C = 20, \gamma = 400$
 - \$./svm-train -c 20 -g 400 train.1.scale
 \$./svm-predict train.1.scale train.1.scale.r
 - Accuracy = 100% (3089/3089)
- 100% training accuracy but
 - \$./svm-predict test.1.scale train.1.scale.mc
 Accuracy = 82.7% (3308/4000)
- Very bad test accuracy
- Overfitting happens

Overfitting

- In theory
 You can easily achieve 100% training accuracy
- This is useless
- When training and predicting a data, we should Avoid underfitting: small training error Avoid overfitting: small testing error

Parameter Selection

- Need to select suitable parameters
- C and kernel parameters
- Example:

$$\gamma$$
 of $e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$
 a, b, d of $(\mathbf{x}_i^T \mathbf{x}_j / a + b)^d$

How to select them?So performance better?

Performance Evaluation

- Available data ⇒ training and validation
- Train the training; test the validation
- k-fold cross validation (CV): Data randomly separated to k groups Each time k-1 as training and one as testing
- Select parameters/kernels with best CV result

Selecting Kernels

- RBF, polynomial, or others?
- For beginners, use RBF first
- Linear kernel: special case of RBF
 Performance of linear the same as RBF under certain parameters (Keerthi and Lin, 2003)
- ullet Polynomial: numerical difficulties $(<1)^d
 ightarrow 0, (>1)^d
 ightarrow \infty$ More parameters than RBF

A Simple Procedure

- 1. Conduct simple scaling on the data
- 2. Consider RBF kernel $K(\mathbf{x}, \mathbf{y}) = e^{-\gamma \|\mathbf{x} \mathbf{y}\|^2}$
- 3. Use cross-validation to find the best parameter C and γ
- 4. Use the best C and γ to train the whole training set
- 5. Test

For beginners only, you can do a lot more

Contour of Parameter Selection

- The good region of parameters is quite large
- SVM is sensitive to parameters, but not that sensitive
- Sometimes default parameters work
 but it's good to select them if time is allowed

Outline

- Basic concepts: SVM and kernels
- Training SVM
- Practical use of SVM
- Research directions: large-scale training
- Research directions: linear SVM
- Research directions: others
- Conclusions

SVM doesn't Scale Up

Yes, if using kernels

- Training millions of data is time consuming
- Cases with many support vectors: quadratic time bottleneck on

$$Q_{SV, SV}$$

 For noisy data: # SVs increases linearly in data size (Steinwart, 2003)

Some solutions

- Parallelization
- Approximation

Parallelization

Multi-core/Shared Memory/GPU

One line change of LIBSVM

Multicore		Shared-memory		
1	80	1	100	
2	48	2	57	
4	32	4	36	
8	27	8	28	

50,000 data (kernel evaluations: 80% time)

• GPU (Catanzaro et al., 2008)

Distributed Environments

 Chang et al. (2007); Zanni et al. (2006); Zhu et al. (2009).

Approximately Training SVM

- Can be done in many aspects
- Data level: sub-sampling
- Optimization level:
 Approximately solve the quadratic program
- Other non-intuitive but effective ways
 I will show one today
- Many papers have addressed this issue

Subsampling

Simple and often effective

More advanced techniques

- Incremental training: (e.g., Syed et al., 1999))

 Data \Rightarrow 10 parts

 train 1st part \Rightarrow SVs, train SVs + 2nd part, ...
- Select and train good points: KNN or heuristics
 For example, Bakır et al. (2005)

- Approximate the kernel; e.g., Fine and Scheinberg (2001); Williams and Seeger (2001)
- Use part of the kernel; e.g., Lee and Mangasarian (2001); Keerthi et al. (2006)
- Early stopping of optimization algorithms Tsang et al. (2005) and others
- And many more
 Some simple but some sophisticated

- Sophisticated techniques may not be always useful
- Sometimes slower than sub-sampling
- covtype: 500k training and 80k testing rcv1: 550k training and 14k testing

covtype			rcv1		
	Training size	Accuracy	Training size	Accuracy	
-	50k	92.5%	50k	97.2%	
	100k	95.3%	100k	97.4%	
	500k	98.2%	550k	97.8%	

- Sophisticated techniques may not be always useful
- Sometimes slower than sub-sampling
- covtype: 500k training and 80k testing rcv1: 550k training and 14k testing

covtyp	oe	rcv1		
Training size	Accuracy	Training size	Accuracy	
50k	92.5%	50k	97.2%	
100k	95.3%	100k	97.4%	
500k	98.2%	550k	97.8%	

Discussion: Large-scale Training

- We don't have many large and well labeled sets
 Expensive to obtain true labels
- Specific properties of data should be considered
 We will illustrate this point using linear SVM
- The design of software for very large data sets should be application different

Outline

- Basic concepts: SVM and kernels
- Training SVM
- Practical use of SVM
- Research directions: large-scale training
- Research directions: linear SVM
- Research directions: others
- Conclusions

Linear SVM

Data not mapped to another space

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i=1}^{I} \xi_{i}$$
subject to
$$y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \geq 1 - \xi_{i},$$

$$\xi_{i} \geq 0, \ i = 1, \dots, I.$$

- In theory, RBF kernel with certain parameters ⇒ as good as linear (Keerthi and Lin, 2003):
 Test accuracy of linear ≤ Test accuracy of RBF
- But can be an approximation to nonlinear
 Recently linear SVM an important research topic

Linear SVM for Large Document Sets

- Bag of words model (TF-IDF or others)
 A large # of features
- Accuracy similar with/without mapping vectors
- What if training is much faster?
 A very effective approximation to nonlinear SVM

A Comparison: LIBSVM and LIBLINEAR

- rcv1: # data: > 600k, # features: > 40k
- Using LIBSVM (linear kernel): > 10 hours
- Using LIBLINEAR (same stopping condition)
 Computation: < 5 seconds; I/O: 60 seconds
- Accuracy similar to nonlinear; more than 100x speedup
- Training millions of data in a few seconds
- See some results in Hsieh et al. (2008) by running LIBLINEAR

```
http:
```

//www.csie.ntu.edu.tw/~cjlin/liblinear

Testing Accuracy versus Training Time

Why Training Linear SVM Is Faster?

• In optimization, each iteration often needs

$$\nabla_i f(\alpha) = (Q\alpha)_i - 1$$

Nonlinear SVM

$$\nabla_i f(\boldsymbol{\alpha}) = \sum_{j=1}^l y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \alpha_j - 1$$

cost: O(nl); n: # features, l: # data

Linear: use

$$\mathbf{w} \equiv \sum_{j=1}^{I} y_j \alpha_j \mathbf{x}_j$$
 and $\nabla_i f(\alpha) = y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i - 1$

• Only O(n) cost if **w** is maintained

Extension: Training Explicit Form of Nonlinear Mappings

Linear-SVM method to train $\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_l)$

- Kernel not used
- Applicable only if dimension of $\phi(\mathbf{x})$ not too large Low-degree Polynomial Mappings

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^2 = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$
$$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \dots, \sqrt{2}x_n, x_1^2, \dots, x_n^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{n-1}x_n]^T$$

• When degree is small, train the explicit form of $\phi(\mathbf{x})$

Testing Accuracy and Training Time

	Degree-2 Polynomial			Accuracy diff.	
Data set	Training to	` '	Accuracy	Linear	RBF
a9a	1.6	89.8	85.06	0.07	0.02
real-sim	59.8	1,220.5	98.00	0.49	0.10
ijcnn1	10.7	64.2	97.84	5.63	-0.85
MNIST38	8.6	18.4	99.29	2.47	-0.40
covtype	5,211.9	NA	80.09	3.74	-15.98
webspam	3,228.1	NA	98.44	5.29	-0.76

Training $\phi(\mathbf{x}_i)$ by linear: faster than kernel, but sometimes competitive accuracy

Discussion: Directly Train $\phi(\mathbf{x}_i), \forall i$

- See details in our work (Chang et al., 2010)
- A related development: Sonnenburg and Franc (2010)
- Useful for certain applications

Linear Classification: Data Larger than Memory

- Existing methods cannot easily handle this situation
- See our recent KDD work (Yu et al., 2010)
 KDD 2010 best paper award
- Training several million data (or more) on your laptop

Linear Classification: Online Learning

For extremely large data, cannot keep all data

 After using new data to update the model; may not need them any more

Online learning instead of offline learning

- Training often by stochastic gradient descent methods
 - They use only a subset of data at each step
- Now an important research topic (e.g., Shalev-Shwartz et al., 2007; Langford et al., 2009; Bordes et al., 2009)

Linear Classification: L1 Regularization

1-norm versus 2-norm

$$\|\mathbf{w}\|_1 = |w_1| + \cdots + |w_n|, \quad \|\mathbf{w}\|_2^2 = w_1^2 + \cdots + w_n^2$$

- 2-norm: all w_i are non-zeros; 1-norm: some w_i may be zeros; useful for feature selection
- Recently a hot topic; see our survey (Yuan et al., 2010)

Outline

- Basic concepts: SVM and kernels
- Training SVM
- Practical use of SVM
- Research directions: large-scale training
- Research directions: linear SVM
- Research directions: others
- Conclusions

Multiple Kernel Learning (MKL)

How about using

$$t_1K_1 + t_2K_2 + \cdots + t_rK_r$$
, where $t_1 + \cdots + t_r = 1$

as the kernel

- Related to parameter/kernel selection If K_1 better $\Rightarrow t_1$ close to 1, others close to 0
- Earlier development (Lanckriet et al., 2004): high computational cost
- Many subsequent works (e.g., Rakotomamonjy et al., 2008).
- Still ongoing; so far MKL has not been a practical tool yet

Ranking

- Labels become ranking information
 e.g., x₁ ranks higher than x₂
- RankSVM (Joachims, 2002): add constraint

$$\mathbf{w}^T \mathbf{x}_i \geq \mathbf{w}^T \mathbf{x}_j + \xi_{ij}$$
 if \mathbf{x}_i ranks better than \mathbf{x}_j

- Many subsequent works
- However, whether SVM is the most suitable method for ranking is an issue

Other Directions

- Semi-supervised learning
 Use information from unlabeled data
- Active learning
 Needs cost to obtain labels of data
- Cost sensitive learning
 For unbalanced data
- Structured Learning
 Data instance not an Euclidean vector
 Maybe a parse tree of a sentence
- Feature selection

Outline

- Basic concepts: SVM and kernels
- Training SVM
- Practical use of SVM
- Research directions: large-scale training
- Research directions: linear SVM
- Research directions: others
- Conclusions

Discussion and Conclusions

- SVM and kernel methods are rather mature areas
- But still quite a few interesting research issues
- Many are extensions of standard classification (e.g., semi-supervised learning)
- It is possible to identify more extensions through real applications

References I

- G. H. Bakır, L. Bottou, and J. Weston. Breaking svm complexity with cross-training. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 81–88. MIT Press, Cambridge, MA, 2005.
- A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-Newton stochastic gradient descent. *Journal of Machine Learning Research*. 10:1737–1754. 2009.
- B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In *Proceedings of the Fifth Annual Workshop on Computational Learning Theory*, pages 144–152. ACM Press, 1992.
- B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine training and classification on graphics processors. In *Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML)*, 2008.
- E. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. Parallelizing support vector machines on distributed computers. In *NIPS 21*, 2007.
- Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. Training and testing low-degree polynomial data mappings via linear SVM. *Journal of Machine Learning Research*, 11:1471-1490, 2010. URL http://www.csie.ntu.edu.tw/~cjlin/papers/lowpoly_journal.pdf.
- C. Cortes and V. Vapnik. Support-vector network. *Machine Learning*, 20:273–297, 1995.

References II

- S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel representations. *Journal of Machine Learning Research*, 2:243–264, 2001.
- C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear SVM. In *Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML)*, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.
- T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.
- T. Joachims. Optimizing search engines using clickthrough data. In *Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining*, 2002.
- S. S. Keerthi and C.-J. Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15(7):1667–1689, 2003.
- S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classifier complexity. *Journal of Machine Learning Research*, 7:1493–1515, 2006.
- G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan. Learning the Kernel Matrix with Semidefinite Programming. *Journal of Machine Learning Research*, 5:27–72, 2004.

References III

- J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. *Journal of Machine Learning Research*, 10:771–801, 2009.
- Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In *Proceedings* of the First SIAM International Conference on Data Mining, 2001.
- E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In *Proceedings of CVPR'97*, pages 130–136, New York, NY, 1997. IEEE.
- J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods -Support Vector Learning, Cambridge, MA, 1998. MIT Press.
- A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. *Journal of Machine Learning Research*, 9:2491–2521, 2008.
- S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-gradient solver for SVM. In Proceedings of the Twenty Fourth International Conference on Machine Learning (ICML), 2007.
- S. Sonnenburg and V. Franc. COFFIN: A computational framework for linear SVMs. In Proceedings of the Twenty Seventh International Conference on Machine Learning (ICML), 2010.
- Steinwart. Sparseness of support vector machines. Journal of Machine Learning Research, 4 1071–1105, 2003.

References IV

- N. A. Syed, H. Liu, and K. K. Sung. Incremental learning with support vector machines. In Workshop on Support Vector Machines, IJCAI99, 1999.
- I. Tsang, J. Kwok, and P. Cheung. Core vector machines: Fast SVM training on very large data sets. *Journal of Machine Learning Research*, 6:363–392, 2005.
- C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In T. Leen, T. Dietterich, and V. Tresp, editors, *Neural Information Processing Systems* 13, pages 682–688. MIT Press, 2001.
- H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large linear classification when data cannot fit in memory. In *Proceedings of the 16th ACM SIGKDD International Conference* on *Knowledge Discovery and Data Mining*, 2010. URL http://www.csie.ntu.edu.tw/~cjlin/papers/kdd_disk_decomposition.pdf.
- G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A comparison of optimization methods and software for large-scale l1-regularized linear classification. 2010. URL http://www.csie.ntu.edu.tw/~cjlin/papers/l1.pdf. To appear in Machine Learning Research.
- L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale support vector machines on multiprocessor systems. *Journal of Machine Learning Research*, 7: 1467–1492, 2006.
- Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen. P-packSVM: Parallel primal gradient descent kernel SVM. In *Proceedings of the 2009 edition of the IEEE International Conference on Data Mining*, 2009.

