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Introduction

Linear Classification

The model is a weight vector w (for binary
classification)

The decision function is

sgn(wTx)

Although many new and advanced techniques are
available (e.g., deep learning), linear classifiers
remain to be useful because of their simplicity

We will give an overview of this topic in this talk
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Introduction

Linear and Kernel Classification

Linear Nonlinear

Linear: data in the original input space; nonlinear: data
mapped to other spaces

Original: [height, weight]

Nonlinear: [height, weight, weight/height2]

Kernel is one of the nonlinear methods
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Introduction

Linear and Nonlinear Classification

Methods such as SVM and logistic regression can be
used in two ways

• Kernel methods: data mapped to another space

x ⇒ φ(x)

φ(x)Tφ(y) easily calculated; no good control on φ(·)
• Linear classification + feature engineering:

Directly use x without mapping. But x may have
been carefully generated. Full control on x

We will focus on the 2nd type of approaches in this talk
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Introduction

Why Linear Classification?

• If φ(x) is high dimensional, decision function

sgn(wTφ(x))

is expensive
• Kernel methods:

w ≡
l∑

i=1

αiφ(x i) for some α,K (x i , x j) ≡ φ(x i)
Tφ(x j)

New decision function: sgn
(∑l

i=1 αiK (x i , x)
)

• Special φ(x) so calculating K (x i , x j) is easy. Example:

K (x i , x j) ≡ (xT
i x j + 1)2 = φ(x i)

Tφ(x j), φ(x) ∈ RO(n2)
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Introduction

Why Linear Classification? (Cont’d)

Prediction

wTx versus
∑l

i=1
αiK (x i , x)

If K (x i , x j) takes O(n), then

O(n) versus O(nl)

Kernel: cost related to size of training data

Linear: cheaper and simpler
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Introduction

Linear is Useful in Some Places

For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

Especially document classification

Number of features (bag-of-words model) very large

Large and sparse data

Training millions of data in just a few seconds
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Introduction

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features
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Introduction

Binary Linear Classification

Training data {yi , x i}, x i ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

f (w), f (w) ≡ wTw
2

+ C
l∑

i=1

ξ(w ; x i , yi)

wTw/2: regularization term (we have no time to
talk about L1 regularization here)

ξ(w ; x , y): loss function: we hope ywTx > 0

C : regularization parameter
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Introduction

Loss Functions

Some commonly used ones:

ξL1(w ; x , y) ≡ max(0, 1− ywTx), (1)

ξL2(w ; x , y) ≡ max(0, 1− ywTx)2, (2)

ξLR(w ; x , y) ≡ log(1 + e−yw
Tx). (3)

SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

Logistic regression (LR): (3)
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Introduction

Loss Functions (Cont’d)

−ywTx

ξ(w ; x , y)

ξL1

ξL2

ξLR

Their performance is usually similar

Optimization methods may be different because of
differentiability
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Optimization methods

Optimization Methods

Many unconstrained optimization methods can be
applied

For kernel, optimization is over a variable α where

w =
l∑

i=1

αiφ(x i)

We cannot minimize over w because it may be
infinite dimensional

However, for linear, minimizing over w or α is ok
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Optimization methods

Optimization Methods (Cont’d)

Among unconstrained optimization methods,

Low-order methods: quickly get a model, but slow
final convergence

High-order methods: more robust and useful for
ill-conditioned situations

We will quickly discuss some examples and show both
types of optimization methods are useful for linear
classification

Chih-Jen Lin (National Taiwan Univ.) 16 / 43



Optimization methods

Optimization: 2nd Order Methods

Newton direction (if twice differentiable)

min
s

∇f (w k)Ts +
1

2
sT∇2f (w k)s

This is the same as solving Newton linear system

∇2f (w k)s = −∇f (w k)

Hessian matrix ∇2f (w k) too large to be stored

∇2f (w k) : n × n, n : number of features

But Hessian has a special form

∇2f (w) = I + CXTDX ,
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Optimization methods

Optimization: 2nd Order Methods
(Cont’d)

X : data matrix. D diagonal.

Using Conjugate Gradient (CG) to solve the linear
system. Only Hessian-vector products are needed

∇2f (w)s = s + C · XT (D(X s))

Therefore, we have a Hessian-free approach
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Optimization methods

Optimization: 1st Order Methods

We consider L1-loss and the dual SVM problem

min
α

f (α)

subject to 0 ≤ αi ≤ C ,∀i ,

where

f (α) ≡ 1

2
αTQα− eTα

and
Qij = yiyjxT

i x j , e = [1, . . . , 1]T

We will apply coordinate descent (CD) methods

The situation for L2 or LR loss is very similar
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Optimization methods

1st Order Methods (Cont’d)

Coordinate descent: a simple and classic technique
Change one variable at a time
Given current α. Let e i = [0, . . . , 0, 1, 0, . . . , 0]T .

min
d

f (α + de i) =
1

2
Qiid

2 +∇i f (α)d + constant

Without constraints

optimal d = −∇i f (α)

Qii

Now 0 ≤ αi + d ≤ C

αi ← min

(
max

(
αi −

∇i f (α)

Qii
, 0

)
,C

)
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Optimization methods

Comparisons

L2-loss SVM is used

DCDL2: Dual coordinate descent

DCDL2-S: DCDL2 with shrinking

PCD: Primal coordinate descent

TRON: Trust region Newton method

This result is from Hsieh et al. (2008)
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Optimization methods

Objective values (Time in Seconds)

news20 rcv1

yahoo-japan yahoo-korea
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Optimization methods

Low- versus High-order Methods

• We saw that low-order methods are efficient to give a
model. However, high-order methods may be useful
for difficult situations
• An example: # instance: 32,561, # features: 123

Objective value Accuracy

# features is small ⇒ solving primal is more suitable
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Sample applications Dependency parsing using feature combination

Dependency Parsing: an NLP Application

Kernel Linear
RBF Poly-2 Linear Poly-2

Training time 3h34m53s 3h21m51s 3m36s 3m43s
Parsing speed 0.7x 1x 1652x 103x
UAS 89.92 91.67 89.11 91.71
LAS 88.55 90.60 88.07 90.71

We get faster training/testing, while maintain good
accuracy

But how to achieve this?
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Sample applications Dependency parsing using feature combination

Linear Methods to Explicitly Train φ(x i)

Example: low-degree polynomial mapping:

φ(x) = [1, x1, . . . , xn, x
2
1 , . . . , x

2
n , x1x2, . . . , xn−1xn]T

For this mapping, # features = O(n2)

Recall O(n) for linear versus O(nl) for kernel

Now O(n2) versus O(nl)

Sparse data

n⇒ n̄, average # non-zeros for sparse data

n̄� n⇒ O(n̄2) may be much smaller than O(l n̄)
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Sample applications Dependency parsing using feature combination

Handing High Dimensionality of φ(x)

A multi-class problem with sparse data

n Dim. of φ(x) l n̄ w ’s # nonzeros
46,155 1,065,165,090 204,582 13.3 1,438,456

n̄: average # nonzeros per instance

Degree-2 polynomial is used

Dimensionality of w is very high, but w is sparse

Some training feature columns of xixj are entirely
zero

Hashing techniques are used to handle sparse w
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Sample applications Dependency parsing using feature combination

Discussion

See more details in Chang et al. (2010)

If φ(x) is too high dimensional, people have
proposed projection or hashing techniques to use
fewer features as approximations

Examples: Kar and Karnick (2012); Pham and Pagh
(2013)

This has been used in computational advertising
(Chapelle et al., 2014)
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Sample applications Transportation-mode detection in a sensor hub

Example: Classifier in a Small Device

In a sensor application (Yu et al., 2013), the
classifier can use less than 16KB of RAM

Classifiers Test accuracy Model Size
Decision Tree 77.77 76.02KB
AdaBoost (10 trees) 78.84 1,500.54KB
SVM (RBF kernel) 85.33 1,287.15KB

Number of features: 5

We consider a degree-3 polynomial mapping

dimensionality =

(
5 + 3

3

)
+ bias term = 57.
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Sample applications Transportation-mode detection in a sensor hub

Example: Classifier in a Small Device

One-against-one strategy for 5-class classification(
5

2

)
× 57× 4bytes = 2.28KB

Assume single precision

Results

SVM method Test accuracy Model Size
RBF kernel 85.33 1,287.15KB
Polynomial kernel 84.79 2.28KB
Linear kernel 78.51 0.24KB
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Big-data linear classification

Big-data Linear Classification

Nowadays data can be easily larger than memory
capacity

Disk-level linear classification: Yu et al. (2012) and
subsequent developments

Distributed linear classification: recently an active
research topic

Example: we can parallelize the 2nd-order method
discussed earlier. Recall the Hessian-vector product

∇2f (w)s = s + C · XT (D(X s))
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Big-data linear classification

Parallel Hessian-vector Product

Hessian-vector products are the computational
bottleneck

XTDX s

Data matrix X is now distributedly stored

X1

X2

. . .

Xp

node 1

node 2

node p

XTDX s = XT
1 D1X1s + · · ·+ XT

p DpXps
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Big-data linear classification

Instance-wise and Feature-wise Data Splits

Xiw,1

Xiw,2

Xiw,3

Xfw,1Xfw,2Xfw,3

Instance-wise Feature-wise

We won’t have time to get into details. But their
communication cost is different

Data moved per Hessian-vector product

Instance-wise: O(n), Feature-wise: O(l)
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Big-data linear classification

Discussion: Dostributed Training or Not?

One can always subsample data to one machine for
deep analysis

Deciding to do distributed classification or not is an
issue

In some areas distributed training has been
successfully applied

One example is CTR (click-through rate) prediction
in computational advertising
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Big-data linear classification

Discussion: Platform Issues

For the above-mentioned Newton methods, we have
MPI and Spark implementations

We are preparing the integration to Spark MLlib

Other existing distributed linear classifiers include
Vowpal Wabbit from Yahoo!/Microsoft and Sibyl
from Google

Platforms such as Spark are still being rapidly
changed. This is a bit annoying

A carefully implementation may sometimes
thousands times faster than a casual one
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Big-data linear classification

Discussion: Design of Distributed
Algorithms

On one computer, often we do batch rather than
online learning

Online and streaming learning may be more useful
for big-data applications

The example (Newton method) we showed is a
synchronous parallel algorithms

Maybe asynchronous ones are better for big data?
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Conclusions

Resources on Linear Classification

• Since 2007, we have been actively developing the
software LIBLINEAR for linear classification

www.csie.ntu.edu.tw/~cjlin/liblinear

• A distributed extension (MPI and Spark) is now
available

• An earlier survey on linear classification is Yuan et al.
(2012)

Recent Advances of Large-scale Linear Classification.
Proceedings of IEEE, 2012

It contains many references on this subject
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Conclusions

Conclusions

Linear classification is an old topic; but recently
there are new and interesting applications

Kernel methods are still useful for many
applications, but linear classification + feature
engineering are suitable for some others

Linear classification will continue to be used in
situations ranging from small-model to big-data
applications
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Conclusions
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