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Linear Classification

@ The model is a weight vector w (for binary
classification)

@ The decision function is
sgn(w " x)

@ Although many new and advanced techniques are
available (e.g., deep learning), linear classifiers
remain to be useful because of their simplicity

@ We will give an overview of this topic in this talk
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linear and Kernel Classification

Linear Nonlinear
0]

Linear: data in the original input space; nonlinear: data
mapped to other spaces

Original: [height, weight]

Nonlinear: [height, weight, weight /height?]
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Linear and Nonlinear Classification

Methods such as SVM and logistic regression can be
used in two ways

e Kernel methods: data mapped to another space
x = §(x)

d(x)T¢(y) easily calculated; no good control on ¢(-)
e Linear classification + feature engineering:

Directly use x without mapping. But x may have
been carefully generated. Full control on x

We will focus on the 2nd type of approaches in this taIk
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Why Linear Classification?

e If ¢(x) is high dimensional, decision function

sgn(w " ¢(x))
IS expensive
e Kernel methods:

I
w = Z a;p(x;) for some a, K(x;, x;) = o(x;) " ¢(x;)
i=1
New decision function: sgn (Z;_l a;K(x;, x))
e Special ¢(x) so calculating K(x;, x;) is easy. Example:

K(xi,x;) = (x] x;+1)% = ¢(x;) T p(x;), ¢(x) € ROUVIED
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Why Linear Classification? (Cont'd)

@ Prediction

I
w'x versus Zi:loz,-K(x,-,x)
o If K(xj,x;) takes O(n), then
O(n) versus  O(nl)

@ Kernel: cost related to size of training data
Linear: cheaper and simpler
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Linear is Useful in Some Places

@ For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

@ Especially document classification
Number of features (bag-of-words model) very large
Large and sparse data

@ Training millions of data in just a few seconds
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Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnnl 1.6 91.81 26.8 98.69
covtype 1.4 76.37 | 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 | 20,955.2 03.31
webspam 25.7 93.35 | 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
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Binary Linear Classification

@ Training data {y;, x;},x; € R"i=1,...,1, yi=+1
o [ # of data, n: # of features

WTW

I
mMi,nf(w), flw) = 5 +CZ§(W;X,',)//)
i=1

e w’w/2: regularization term (we have no time to
talk about L1 regularization here)

e &(w; x,y): loss function: we hope yw'x > 0
e C: regularization parameter
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Loss Functions

@ Some commonly used ones:

&l1(w; x,y) = max(0,1 — wax), (1)
Ea(w; x, y) = max(0,1 — yWTx)z, (2)
Er(w; x, y) = log(1 + e_yWT"). (3)

@ SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

@ Logistic regression (LR): (3)
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Loss Functions (Cont'd)

E(w; x,y)
L2

/fLR
_._j T

—yw'x

Their performance is usually similar

Optimization methods may be different because of
differentiability
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Optimization Methods

@ Many unconstrained optimization methods can be
applied
@ For kernel, optimization is over a variable o where

/
w = Z Qi¢(xi)
i=1

We cannot minimize over w because it may be
infinite dimensional

@ However, for linear, minimizing over w or « is ok
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Optimization Methods (Cont'd)

Among unconstrained optimization methods,

@ Low-order methods: quickly get a model, but slow
final convergence

@ High-order methods: more robust and useful for
ill-conditioned situations

We will quickly discuss some examples and show both
types of optimization methods are useful for linear
classification
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Optimization: 2nd Order Methods

@ Newton direction (if twice differentiable)

min  Vf(w*)Ts + %STVZf(Wk)S

S

@ This is the same as solving Newton linear system
V2f(wk)s = —VF(w")
@ Hessian matrix V2f(w*) too large to be stored
V2f(w*):nxn, n: number of features
@ But Hessian has a special form
V3 f(w) =T+ CXTDX,
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Optimization: 2nd Order Methods
(Cont'd)

e X: data matrix. D diagonal.

@ Using Conjugate Gradient (CG) to solve the linear
system. Only Hessian-vector products are needed

VZf(w)s =s+ C-X"(D(Xs))

@ Therefore, we have a Hessian-free approach
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Optimization: 1st Order Methods

@ We consider L1-loss and the dual SVM problem

main fla)

subjectto 0<a; < C,Vi,

where

a'Qa—e'a

fla) =

N | —

and
Qi =yiyix!x, e=11,...,1]"
@ We will apply coordinate descent (CD) methods
@ The situation for L2 or LR loss is very similar
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imization methods

1st Order Methods (Cont'd)

e Coordinate descent: a simple and classic technique
Change one variable at a time
e Given current a. Let e; =[0,...,0,1,0,...,0]".

1
mdin flaa+ de;) = EQ;,-d2 + V,f(a)d + constant
@ Without constraints
V,-f(a)
Qii

optimal d = —

@ Now0<a;+d<C
;i < min | max | a; — ,0),C
( ( Qii
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Comparisons

L2-loss SVM is used

e DCDL2: Dual coordinate descent

e DCDL2-S: DCDL2 with shrinking

@ PCD: Primal coordinate descent

@ TRON: Trust region Newton method
This result is from Hsieh et al. (2008)
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Optimization methods
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Low- versus High-order Methods

e We saw that low-order methods are efficient to give a
model. However, high-order methods may be useful
for difficult situations

e An example: # instance: 32,561, # features: 123

°
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© Sample applications
@ Dependency parsing using feature combination
@ Transportation-mode detection in a sensor hub
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Dependency parsing usin

g feature combination

Dependency Parsing: an NLP Application

Kernel Linear
RBF Poly-2 | Linear Poly-2
Training time | 3h34m53s 3h21mb51s | 3m36s 3m43s
Parsing speed 0.7x 1x | 1652x  103x
UAS 89.92 91.67 | 89.11 091.71
LAS 88.55 90.60 | 88.07 90.71

@ We get faster training/testing, while maintain good

accuracy

@ But how to achieve this?
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Dependency parsing using feature combination

Linear Methods to Explicitly Train ¢(x;)

@ Example: low-degree polynomial mapping:

o(x) =11, xq,. .. ,x,,,xlz, . ,x,?,xlx2, . ,X,,_1X,,]T

For this mapping, # features = O(n?)

Now O(n?) versus O(nl)

°
@ Recall O(n) for linear versus O(nl) for kernel
°
@ Sparse data

n = n, average # non-zeros for sparse data
i < n= O(A%) may be much smaller than O(/n)
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Dependency parsing using feature combination

Handing High Dimensionality of ¢(x)

A multi-class problem with sparse data

n| Dim. of ¢(x) | | 7| w's # nonzeros

46,155 | 1,065,165,090 | 204,582 | 133 | 1,438,456

@ 1. average # nonzeros per instance
@ Degree-2 polynomial is used
@ Dimensionality of w is very high, but w is sparse

Some training feature columns of x;x; are entirely
zero

@ Hashing techniques are used to handle sparse w
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Dependency parsing using feature combination

Discussion

@ See more details in Chang et al. (2010)

o If ¢(x) is too high dimensional, people have
proposed projection or hashing techniques to use
fewer features as approximations
Examples: Kar and Karnick (2012); Pham and Pagh
(2013)

@ This has been used in computational advertising
(Chapelle et al., 2014)
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Transportation-mode detection in a sensor hub

Example: Classifier in a Small Device

@ In a sensor application (Yu et al., 2013), the
classifier can use less than 16KB of RAM

Classifiers | Test accuracy | Model Size
Decision Tree 77.77 76.02KB
AdaBoost (10 trees) 78.84 | 1,500.54KB
SVM (RBF kernel) 85.33 | 1,287.15KB

@ Number of features: 5
@ We consider a degree-3 polynomial mapping

5+3

3 > + bias term = 57.

dimensionality = (
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Transportation-mode detection in a sensor hub

Example: Classifier in a Small Device
@ One-against-one strategy for 5-class classification

(2) X 57 x 4bytes = 2.28KB

Assume single precision

@ Results
SVM method \ Test accuracy \ Model Size
RBF kernel 85.33 | 1,287.15KB
Polynomial kernel 84.79 2.28KB
Linear kernel 78.51 0.24KB
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Big-data Linear Classification

@ Nowadays data can be easily larger than memory
capacity

@ Disk-level linear classification: Yu et al. (2012) and
subsequent developments

@ Distributed linear classification: recently an active
research topic

@ Example: we can parallelize the 2nd-order method
discussed earlier. Recall the Hessian-vector product

V2f(w)s = s+ C - XT(D(Xs))
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Parallel Hessian-vector Product

@ Hessian-vector products are the computational
bottleneck
X"DXs

@ Data matrix X is now distributedly stored

node 1 — X1
node 2 — X2
node p — Xy

XTDXs =X DiXis + -+ + X] D,X,s
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)<iw,1 ! !

)<iw,2 Xfw,léxfw,2§Xfw,3

)<iw,3 | |
Instance-wise Feature-wise

@ We won't have time to get into details. But their
communication cost is different

@ Data moved per Hessian-vector product
Instance-wise: O(n), Feature-wise: O(/)
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Discussion: Dostributed Training or Not?

@ One can always subsample data to one machine for
deep analysis

@ Deciding to do distributed classification or not is an
Issue

@ In some areas distributed training has been
successfully applied

@ One example is CTR (click-through rate) prediction
in computational advertising
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Discussion: Platform lIssues

@ For the above-mentioned Newton methods, we have
MPI and Spark implementations

@ We are preparing the integration to Spark MLIib

@ Other existing distributed linear classifiers include
Vowpal Wabbit from Yahoo!/Microsoft and Sibyl
from Google

@ Platforms such as Spark are still being rapidly
changed. This is a bit annoying

@ A carefully implementation may sometimes
thousands times faster than a casual one
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Discussion: Design of Distributed
Algorithms

@ On one computer, often we do batch rather than
online learning

Online and streaming learning may be more useful
for big-data applications

@ The example (Newton method) we showed is a
synchronous parallel algorithms

Maybe asynchronous ones are better for big data?
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Resources on Linear Classification

e Since 2007, we have been actively developing the
software LIBLINEAR for linear classification
www.csie.ntu.edu.tw/~cjlin/liblinear

e A distributed extension (MPI and Spark) is now
available

e An earlier survey on linear classification is Yuan et al.
(2012)

Recent Advances of Large-scale Linear Classification.
Proceedings of IEEE, 2012

It contains many references on this subject
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www.csie.ntu.edu.tw/~cjlin/liblinear

Conclusions

@ Linear classification is an old topic; but recently
there are new and interesting applications

@ Kernel methods are still useful for many
applications, but linear classification -+ feature
engineering are suitable for some others

@ Linear classification will continue to be used in
situations ranging from small-model to big-data
applications
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