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@ Basic concepts
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Why SVM and Kernel Methods

@ SVM: in many cases competitive with existing
classification methods

Relatively easy to use
@ Kernel techniques: many extensions
Regression, density estimation, kernel PCA, etc.
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Support Vector Classification

@ T[raining vectors : x;,i=1,...,/
@ Feature vectors. For example,
A patient = [height, weight, .. ]

o Consider a simple case with two classes:

Define an indicator vector y

o 1 ifx;inclass1
YI= 9 =1 if x; in class 2,

@ A hyperplane which separates all data
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@ A separating hyperplane: w'x 4+ b =0

=-1
@ Decision function f(x) = sgn(w’x+ b), x: test data
Many possible choices of w and b

(wix;))+b>0

(wix;) +b <0
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Maximal Margin

@ Distance between w/x + b =1 and —1:
2/[lw| =2/VwTw

@ A quadratic programming problem
[Boser et al., 1992]

1
A
subject to  y;(w'x; + b) > 1,
i=1,..., 1
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Data May Not Be Linearly Separable

@ An example:

@ Allow training errors
@ Higher dimensional ( maybe infinite ) feature space

P(x) = (¢1(x), P2(x), . . .).
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@ Standard SVM [Cortes and Vapnik, 1995]

I
. 1 -
“r’n})r% EW w + C;{,
subject to  yi(w'o(x;) +b) >1—¢,
£>0,i=1,....1

o Example: x € R3,¢(x) € R

o(x) = (1, \/ixl, \/EXQ’ \/§X3, x12,
X22 3 X32 ) \/§X1X2, \/§X1X37 \/§X2X3)
@
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Finding the Decision Function

@ w: maybe infinite variables
@ The dual problem

1
min -a' Qa—e’«
! 2
subjectto 0< ;< C,i=1,...,/
y o =0,

where Q; = yiy;0(xi)"é(x;) and e =[1,...,1]"
@ At optimum
w = > aiyid(x)
@ A finite problem: #variables = #E’graiging_dat:a
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Kernel Tricks

o Qj = yiyio(x;)T#(x;) needs a closed form
e Example: x; € R®, ¢(x;) € RY®

p(xi) = (1, \/§(X/)17 \/E(Xi)% \/§(XI')37 (Xf)%7
()3 (30)5, V2(x)1(x0)2, V20x0)1(x)3, V2(x:)2(x1)3)
Then ¢(x;)"d(x;) = (1 +x/x;)*.
o Kernel: K(x,y) = ¢(x)"¢(y); common kernels:
e VI%=%l* " (Radial Basis Function)
(xx;/a+ b)? (Polynomial kernel)
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ML
Can be inner product in infinite dimensional space
Assume x € R! and v > 0.

e MXi—xl? — a=v(i—%)* _ gm v H2yxixg—x}

(1 2 (el ()

—e —yx? ”yx 1 1_1_\/7" \/TJ 27
(27)3 (27)
B JB e ) — o) at).
where

d(x) = o X [17 \/?x, (227!)2)(27 (237!)3)(3
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More about Kernels

@ How do we know kernels help to separate data?
@ In R', any / independent vectors
= linearly separable

() ]
oL

o If K positive definite = data linearly separable
K=LLT.
Transforming training points to independent vectors

o = = = E= 9Hal
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@ So what kind of kernel should | use?

@ What kind of functions are valid kernels?
@ How to decide kernel parameters?

o Will be discussed later

_
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I Gosic concepts
Decision function

o At optimum

/
W = Zi:l O‘i)’i¢(xi)
@ Decision function

w'p(x) + b

/
- Z al'yi¢(xl')T¢(x) + b
=1

/
= Z a;yiK(x;,x) + b
i=1

@ Only ¢(x;) of a; > 0 used = supportsvectors z= sac
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Support Vectors: More Important Data
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@ So we have roughly shown basic ideas of SVM
@ A 3-D demonstration
www.csie.ntu.edu.tw/"cjlin/libsvmtools /svmtoy3d
@ Further references, for example,
[Cristianini and Shawe-Taylor, 2000,
Scholkopf and Smola, 2002]
@ Also see discussion on kernel machines blackboard

www.kernel-machines.org/phpbb/

_
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@ SVM primal/dual problems

_
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Deriving the Dual

@ Consider the problem without &;

_ 1
min —WTW
w,b 2

subject to  yi(w'o(x;)+b)>1,i=1,...,1

@ |ts dual
- 1 1 T
min -o' Qa—e' o
« 2
subject to 0 < «, i=1,...,1,
T
y a=
=] = = = == DA

MLSS 2006, Taipei 19 / 98

Chih-Jen Lin (National Taiwan Univ.)



Lagrangian Dual

max(min L(w, b, ).

where

Lw.b.x) = Slwl — 3" o (5w o) + 5) ~ 1)

i=1
Strong duality (be careful about this)

min Primal = IEES((T’I[I;] L(w, b, at))
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o Simplify the dual. When « is fixed,

migl L(w, b, a) =

0 if 2;21 a;yi # 0
mindw w — 30 ailyi(wTo(x;) — 1] if 3L iy =0

w

o If Zf-zl a;y; # 0,
decrease

/
—b> aiy;
i—1

in L(w, b, @) to —o0

o F = = == Dad
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o If 2/ . ajy; = 0, optimum of the strictly convex

ww — S ailyi(wT¢(x;) — 1] happens when

0
a—WL(W, b, a) =0.

@ Thus,
I
w =) aiyig(x).
i=1
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SVM primal/dual problems

@ Note that

I T, |
wiw = <Z ;yid(X;) > (Z a;y;p(Xj >

= Zaw’m (xi)T (%))

@ The dual is
/
> — Z Qo @Jyl%¢(xl)T¢(xj) if 2;21 a;y; =0,
megy=
a —00 if Z;:l Q;yi ;é 0.
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SVM primal/dual problems
@ Lagrangian dual: maxazo(minw’b L(w,b,a))
@ —oo definitely not maximum of the dual
Dual optimal solution not happen when

/
Z a;y; 7 0
i=1
@ Dual simplified to

/ 1
max Qi — =
acR/ Z I 2
i=1
subject to

Z Z @iani)G¢(xi)T¢(xj)
i=1 j=1
y'a=0,
Oé;ZO,i:]_,...,/.

[m]
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More about Dual Problems

o After SVM is popular

Quite a few people think that for any optimization
problem

= Lagrangian dual exists and strong duality holds
@ Wrong! We usually need

Convex programming; Constraint qualification
@ We have them

SVM primal is convex; Linear constraints

_
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@ Our problems may be infinite dimensional
@ Can still use Lagrangian duality
See a rigorous discussion in [Lin, 2001]

_
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@ Training linear and nonlinear SVMs

_
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. Training linear and nonlinear SVMs
Training Nonlinear SVMs

@ If using kernels, we solve the dual

1
min EaTQa—eTa
subjectto 0< ;< C,i=1,...,/
ya=0

@ Large dense quadratic programming
© Qi #0, Q:an/by/fully dense matrix
@ 30,000 training points: 30,000 variables:
(30,000% x 8/2) bytes = 3GB RAM to store Q:
@ Traditional methods:
Newton, Quasi Newton cannot beDdirg,ctI}_/ apJJIig:d__ 0
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. Training linear and nonlinear SVMs
Decomposition Methods

@ Working on some variables each time (e.g.,
[Osuna et al., 1997, Joachims, 1998, Platt, 1998])

@ Similar to coordinate-wise minimization
o Working set B, N = {1,...,/}\B fixed
@ Sub-problem at each iteration:

min 5 lof (ah)7) o2 Jon ] [oe] -
o5 ][]

subjectto 0<a; < C,t€B, yhag= yNaN'

o & = = == Dad
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Avoid Memory Problems

@ The new objective function

§O‘EQBBCVB + (—es + QBNCY;(\/)TOLB + constant

@ B columns of @ needed
o Calculated when used
Trade time for space

_
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Does it Really Work?

@ Compared to Newton, Quasi-Newton
Slow convergence
@ However, no need to have very accurate «

Zoz,y, (x;,x) + b

Prediction not affected much

@ In some situations, # support vectors < # training
points
Initial a! = 0, some elements never used

@ Machine learning knowledge afFects optlmlzatlon

== Dad
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@ An example of training 50,000 instances using
LIBSVM

$ ./svm-train -m 200 -c 16 -g 4 22features
optimization finished, #iter = 24981

Total nSV = 3370

time 5m1.456s

@ On a Pentium M 1.4 GHz Laptop
o Calculating @ may have taken more than 5 minutes
e #SVs = 3,370 <« 50,000

A good case where some remain at zero all the time

_

=] F = = == Dad
Chih-Jen Lin (National Taiwan Univ. MLSS 2006, Taipei 32 /98



http://www.csie.ntu.edu.tw/~cjlin/libsvm

. Training linear and nonlinear SVMs
Issues of Decomposition Methods

Working set size/selection

Asymptotic convergence

Finite termination & stopping conditions
Convergence rate

@ Numerical issues

Optimization researchers are now also interested in these
issues

If interested in them, check my talk to optimization
researchers in Rome last year:
http://www.csie.ntu.edu.tw/~cjlin/talks/rome.gg
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. Training linear and nonlinear SVMs
Caching and Shrinking

@ Speed up decomposition methods

@ Caching [Joachims, 1998]
Store recently used kernel columns in computer
memory

@ 100K Cache
$ time ./libsvm-2.81/svm-train -m 0.01 ada
11.463s

@ 40M Cache
$ time ./libsvm-2.81/svm-train -m 40 ada

7.817s

o & = E == Dad
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@ Shrinking [Joachims, 1998]

Some bounded elements remain until the end
Heuristically resized to a smaller problem

@ After certain iterations, most bounded elements

identified and not changed [Lin, 2002]
So caching and shrinking are useful

Chih-Jen Lin (National Taiwan Univ.)
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. Training linear and nonlinear SVMs
Caching: Issues

@ A simple way:
Store recently used columns

@ What if in working set selection,
deliberately select some indices in cache

@ Goal: minimize the total number of columns
calculated

@ Difficult to connect algorithm and this goal

_
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. Training linear and nonlinear SVMs
SVM doesn’t Scale Up

Yes, if you use kernels
@ Training millions of data is time consuming
@ But other nonlinear methods face the same problem
e.g., kernel logistic regression
Two possibilities
@ Linear SVMs: in some situations, can solve much
larger problems
@ Approximation

=] F = = = = 9DA¢
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Training Linear SVMs

@ Linear kernel:

/
. 1 7
min - Sw w—|—CZl:§,-

w.b

b

subject to Yi(wa,- +b)>1-¢, & > 0.
o At optimum:
& = max(O, 1— yi(w'x + b))
_
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Training linear and nonlinear SVMs

@ Remaining variables: w, b

1 :
TIZ\ EwTw + C; max (0,1 — yi(wx; + b))

@ #variables = #features + 1
o If #features small, easier to solve

_

o F = = == Dad

Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 39 /98



@ Traditional optimization methods can be applied

@ Training time similar to methods such as logistic
regression

@ What if #features and #instances both large?
Very challenging
@ Some language/document problems are of this type

_
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. Training linear and nonlinear SVMs
Decomposition Methods for Linear SVMs

@ Could we still solve the dual by decomposition
methods?

@ Even if #features small
Slow convergence when C is large

$bsvm-train -b 500 -c 500 -t O australian_scale
optimization finished, #iter = 260092
obj = -99310.588975, rho = 0.000000

o Kj = x[x;, rank < #features

i
positive semi-definite only
@ Still a research topic in understanding this
[m] [ =

= == 9a0C
MLSS 2006, Taipei 41 /98

Chih-Jen Lin (National Taiwan Univ



Decomposition Methods for Linear SVMs

@ But no need to use large C

@ C large enough, w the same [Keerthi and Lin, 2003]
@ Remember

decision function the same
/

i=1

W:ZCK,'y,'X,'G Rn, b e R!

[#of 0<a;<C|<n+1
and C

[m]

=
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@ As C changes, optimal a share many elements at 0
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Decomposition Methods for Linear SVMs
(Cont'd)

@ Warm start very effective [Kao et al., 2004]
Starting from small C, faster convergence

o Using C =1,2,4,8,...
$bsvm-train -c 500 -t O australian_scale
optimization finished, #iter = 10087

@ So decomposition methods can still handle large
linear SVMs

o = = = z= 9Han
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. Training linear and nonlinear SVMs
Approximations

@ #instances large and using nonlinear kernels
Difficult to solve the dual
@ Subsampling
Simple and often effective
@ From this many more advanced techniques
o E.g., stratified subsampling

_
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. Training linear and nonlinear SVMs
Approximations (Cont'd)

@ Incremental way: (e.g., [Syed et al., 1999])
Data = 10 parts
train 1st part = SVs, train SVs + 2nd part, ...
@ Select good points first: KNN or heuristics
e.g., [Bakir et al., 2005]
@ Hierarchical settings (e.g., [Yu et al., 2003])
Clustering training data to several groups
SVM models built for each group

_
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Training linear and nonlinear SVMs

Approximations (Cont'd)

@ Using only a subset to construct w
w =) aiyig(x).
ieB
@ Put this into the primal
1 /
- T
min — o C i
min. 3 g @sBCXB + ;5
subject to Q.pag+ by >e—§
@ Without considering &;, #variables = |B| + 1

o 5 = == Dad
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. Training linear and nonlinear SVMs
Approximations (Cont'd)

@ Selecting B:
random [Lee and Mangasarian, 2001],
incremental [Keerthi et al., 2006],
and many other ways

_
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. Training linear and nonlinear SVMs
Approximations (Cont'd)

@ All these approaches
some simple but some sophisticated
@ In machine learning, very often
balance between simplification and performance

_
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@ Parameter/kernel selection and practical issues

_

o F = = == Dad

Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 49 / 98



Let's Try a Practical Example

A problem from astroparticle physics

1 1:2.6173e+01 2:5
1 1:5.7073e+01 2:2
1 1:1.725%9e+01 2:1
1 1:2.1779%e+01 2:1
1 1:9.1339e+01 2:2
1 1:5.5375e+01 2:1
1 1:2.9562e+01 2:1

.88670e+01
.21404e+02
.73436e+02
.24953e+02
.93569e+02
.79222e+02
.91357e+02

3:
3:
3:
3:
3:
3:
3:

-1.89469e-01 4:1.25122e+02
8.60795e-02 4:1.22911e+02
-1.29805e-01 4:1.25031e+02
1.53885e-01 4:1.52715e+02
1.42391e-01 4:1.60540e+0z
1.65495e-01 4:1.11227e+0z2
9.90143e-02 4:1.03407e+02

Training and testing sets available: 3,089 and 4,000

Chih-Jen Lin (National Taiwan Univ.)
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_ Parameter/kernel selection and practical issues
The Story Behind this Data Set

o User:
I am using libsvm in a astroparticle
physics application .. First, let me
congratulate you to a really easy to use
and nice package. Unfortunately, it
gives me astonishingly bad results...

@ OK. Please send us your data

@ | am able to get 97% test accuracy. Is that good
enough for you ?
o User:
You earned a copy of my PhD thesis
[m] = =

E = = 9DA¢
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Training and Testing
Training

$./svm-train train.1

optimization finished, #iter = 6131
nSV = 3053, nBSV = 724

Total nSV = 30563

Testing

$./svm-predict test.l train.l.model test.l.out
Accuracy = 66.925%, (2677/4000)

nSV and nBSV: number of SVs and bounded SVs
(a: = C).

o & = = == Dad
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Why this Fails

@ After training, nearly 100% support vectors
@ Training and testing accuracy different

$./svm-predict train.l train.l.model o
Accuracy = 99.7734% (3082/3089)

@ Most kernel elements:
K — e-lxxiza ) =1 1=,
/ — 0 if i #].
@ Some features in rather large ranges

=] F = = = = 9DA¢
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Data Scaling

o Without scaling
Attributes in greater numeric ranges may dominate

o Example:
height gender
X1 150 F
x, 180 M
X3 185 M
and

n = O7y2 = 1,_)/3 = 1.
_
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@ The separating hyperplane almost vertical
X1 :'

@ Strongly depends on the first attribute; but second

may be also important
@ Linearly scale the first to [0, 1] by:

1st attribute — 150
185 — 150

Y

@ Scaling generally helps, but not always o

o (=1
Chih-Jen Lin (National Taiwan Univ.)
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@ Other ways for scaling

@ Needed for k Nearest Neighbor, Neural networks as
well

unless the method is scale-invariant

_
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_ Parameter/kernel selection and practical issues
Data Scaling: Same Factors

A common mistake

$./svm-scale -1 -1 -u 1 train.l > train.l.scale
$./svm-scale -1 -1 -u 1 test.1 > test.l.scale

Same factor on training and testing

$./svm-scale -s rangel train.l > train.l.scale
$./svm-scale -r rangel test.l > test.l.scale

_
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_ Parameter/kernel selection and practical issues
After Data Scaling

Train scaled data and then prediction

$./svm-train train.l.scale

$./svm-predict test.l.scale train.1l.scale.model
test.l.predict

Accuracy = 96.15Y%

Training accuracy now is

$./svm-predict train.l.scale train.l.scale.mode
Accuracy = 96.439% (2979/3089)

Default parameter: C =1,7v=025 _ . . . ... .a
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_ Parameter/kernel selection and practical issues
Different Parameters

o If we use C =20,v =400

$./svm-train -c 20 -g 400 train.l.scale
$./svm-predict train.l.scale train.l.scale.r
Accuracy = 100% (3089/3089)

@ 100% training accuracy but
$./svm-predict test.l.scale train.l.scale.m
Accuracy = 82.7% (3308/4000)

@ Very bad test accuracy
o Overfitting happens

o & = = == Dad
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_ Parameter/kernel selection and practical issues
Overfitting

@ In theory
You can easily achieve 100% training accuracy
@ This is useless
@ When training and predicting a data, we should
Avoid underfitting: small training error
Avoid overfitting: small testing error

_
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Parameter/kernel selection and practical issues

e and A: training; () and A: testing

o

ih-Jen Lin (National Taiwan Univ.)
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_ Parameter/kernel selection and practical issues
Parameter Selection

@ Is important

@ Now parameters are
C, kernel parameters

o Example:

f}/ Of e_’YHXI'_XJ'H2
a, b, d of (x/x;/a+ b)?

@ How to select them?
So performance better?

_
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I Parameter/kernel selection and practical issues
Parameter Selection (Cont'd)

@ Also how to select kernels?
e.g., RBF or polynomial

@ Moreover, how to select methods?
e.g., SVM or decision trees?

_
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_ Parameter/kernel selection and practical issues
Performance Evaluation

@ |/ training data, x; € R"y; € {+1,-1},i=1,...,1,
a learning machine:

x — f(x,a), f(x,a) =1or —1.

Different «: different machines
@ The expected test error (generalized error)

Rla) = [ 5l — flx.a)ldP(x.y)

y: class of x (i.e. 1 or-1)

o & = E == Dad
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@ P(x,y) unknown, empirical risk (training error):

/
1
Remp(@t) = 5 D lyi—f(xi, )
i=1

@ Training errors not important; only test errors count
° %|y,- — f.(x,-,oz)\ : loss, choose 0 < n < 1, with
probability at least 1 — n:

R(®) < Remp(a) + another term

@ A good classification method:
minimize both terms at the same time

=] F = = == Dad
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@ But Remp(cr) — 0; another term — large
e SVM:

w,b.& 2
subject to  yi(w'p(x;)+b) >1—£,6>0,i=1,.

I
1
min  —w'w+ CZ&-
i=1

° Zle &; related to training error
@ w’w/2 relate to another term: called regularization
term

@ C: balance between the two

_
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I Parameter/kernel selection and practical issues
Performance Evaluation (Cont'd)

@ In practice
Available data = training and validation
@ Train the training
@ Test the validation
@ k-fold cross validation:
Data randomly separated to k groups
Each time k — 1 as training and one as testing

=] F = = = = 9DA¢
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@ Using CV on training + validation
@ Predict testing with the best parameters from CV
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_ Parameter/kernel selection and practical issues
CV and Test Accuracy

o If we select parameters so that CV is the highest,
Does CV represent future test accuracy ?
Slightly different

o If we have enough parameters, we can achieve 100%
CV as well
e.g., more parameters than # of training data

@ Available data with class labels
= training, validation, testing
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_ Parameter/kernel selection and practical issues
Selecting Kernels

o RBF, polynomial, or others?
or even combinations

@ Two situations:
Too many kernels complicates the selection
Design kernels suitable for target applications

o 5 = =, (=
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Selecting Kernels (Cont'd)

Contradicting but practically ok
@ We have few general kernels
RBF, polynomial, etc. somewhat related
Beginners' don’t have many choices
@ On the other hand
researchers design many special ones
e.g., string kernels
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Selecting Kernels (Cont'd)

@ For beginners, use RBF first
@ Linear kernel: special case of RBF

Performance of linear the same as RBF under
certain parameters [Keerthi and Lin, 2003]

@ Polynomial: numerical difficulties
(<1)9¢—0,(>1)9—
More parameters than RBF
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_ Parameter/kernel selection and practical issues
A Simple Procedure

© Conduct simple scaling on the data
@ Consider RBF kernel K(x,y) = e x-yI’

© Use cross-validation to find the best parameter C
and y

@ Use the best C and 7 to train the whole training set
Q Test

For beginners only, you can do a lot more

_
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Contour of Parameter Selection

d2
98.6 -
98.4
T T T T T 3 97.8
97.6
97.4
| 1, 97.2 ——
- 41
lg(gamma)
= 40
o 4-1
™
1 1 1 1 1 2
1 2 3 4 5 6 7
19(C)
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@ The good region of parameters is quite large

@ SVM is sensitive to parameters, but not that
sensitive

@ Sometimes default parameters work
but it's good to select them if time is allowed
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Efficient Parameter Selection

@ CV on grid points may be time consuming
OK if one or two parameters
@ But if more than two?

E.g., feature scaling:

K(x’ y) — ei Z?:lﬁ/f(xifyi)2
Some features more important
@ Still a challenging research issue
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_ Parameter/kernel selection and practical issues
@ Remember given parameters C and -, we solve
SVM to obtain optimal w or «
@ Model a function of parameters

min f(a(C7717"'77n)7CJ’Yl)"wfyn)
C,’yl,...7’7n

But usually non-convex
@ The function
from Bayesian frameworks (e.g., [Chu et al., 2003])
or
smoothing CV bound

CV(C”)/L.,,”}/”) S f(a(C/yla"'afyn)? C7/717"'7
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@ The minimization:

Gradient-type methods

or

global optimization (e.g., genetic algorithms)
o The difficulty:

Certainly more efforts than one single ~

But performance may be just similar?
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_ Parameter/kernel selection and practical issues
Kernel Combination

@ How about using
K+ Ky + -+ 6K,

where
4+t =1

as the kernel
@ Related to parameter selection

ne vl g g eyl

If v1 good = t; close to 1, others close to 0
o = = = E= 9Hac
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@ [Lanckriet et al., 2004] form a convex

fla(ty,...,t,), t1,..., t)

when C is fixed
@ Semi-definite programming problem
@ But computational cost is also high
@ Need more empirical studies
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Design Kernels

@ Still a research issue
e.g., in bioinformatics and vision, many new kernels
@ But, should be careful if the function is a valid one

K(x,y) = ¢(x) " o(y)

@ For example, any two strings s;, s, we can define

edit distance
e—fyedit(sl ,52)

It's not a valid kernel [Cortes et al., 2003|
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Mercer condition

@ What kind of Kj; can be represented as ¢(x;) " &(x;)?
o K(x,y) = ¢(x)T¢(y) if and only if Vg s.t.

[ g(x)2dx finite
= [ K(x,y)g(x)g(y)dxdy >0

A condition developed early last century
@ However, still not easy to check
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Outline

@ Multi-class classification
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Multi-class Classification

@ k classes
@ One-against-the rest: Train k binary SVMs:

Ist class vs. (2 — k)th class
2nd class vs. (1,3 — k)th class

@ k decision functions

(w')"é(x) + by

(WH)To(x) + by
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@ Prediction:
argmax (w/)7o(x) + b,
J
@ Reason: If the 1st class, then we should have

(wh)To(x) + by > +1
(W) o(x) + by < —1

(W) p(x) + b < -1
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Multi-class Classification (Cont d)

@ One-against-one: train k(k — 1)/2 binary SVMs
(1,2),(1,3),...,(1,k),(2,3),(2,4),...,(k—1,k)
o If 4 classes = 6 binary SVMs

yi=1 yi=-1 Decision functions
class 1 class2 f?(x) = (w!?)Tx + b'?

class 1 class3  f13(x) = (w!®)Tx + b13
class1 class 4 fM(x) = (w*)"x + b1
class 2 class 3 f3(x) = (w 23)Tx + b%
class 2 class 4 f*(x) = (w*)Tx + b**
class 3 class 4 f3*(x) = (w**)"x + b*
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@ For a testing data, predicting all binary SVMs

Classes | winner
2 1

NN R = =
PP WP W
W AN ==

3
@ Select the one with the largest vote

class 1 2 3 4
#votes 3 1 1 1

@ May use decision values as well
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More Complicated Forms

@ For example,
[Vapnik, 1998, Weston and Watkins, 1999]:

R MU 3 o

i=1 m=#y;
wy,.qﬁ(x,-)+by,.zwl¢(x;)+bm+2—£f”,
EM>0,i=1,....0, me{l, ... k}\y.

yi: class of x;
@ kl constraints
@ Dual: kl variables; very large
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@ There are many other methods

@ A comparison in [Hsu and Lin, 2002]

@ Accuracy similar for many problems
But 1-against-1 fastest for training
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Why 1vsl Faster in Training

o lvs. 1
k(k — 1)/2 problems, each 2//k data on average
o 1vs. all
k problems, each / data
o If solving the optimization problem:
polynomial of the size with degree d
@ Their complexities

0((2)) s
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Outline

@ Discussion and conclusions
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Future Directions

| mentioned quite a few. Here are others.
@ Better ways to handle unbalanced data
i.e., some classes few data, some classes a lot
o Multi-label classification
An instance associated with > 2 labels
e.g., a document in both politics, sports
@ Structural data sets
An instance may not be a vector
e.g., a tree from a sentence
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_ Discussion and conclusions
Conclusions

@ Dealing with data is interesting
especially if you get good accuracy

@ Some basic understandings are essential when
applying classification methods

@ SVM is a rather mature topic
but still quite a few interesting research issues
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