
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 1

A Study on Truncated Newton Methods for Linear
Classification

Leonardo Galli and Chih-Jen Lin, Fellow, IEEE

Abstract—Truncated Newton (TN) methods have been a useful
technique for large-scale optimization. Instead of obtaining the
full Newton direction, a truncated method approximately solves
the Newton equation with an inner Conjugate Gradient (CG)
procedure (TNCG for the whole method). These methods have
been employed to efficiently solve linear classification problems.
But even in this deeply studied field, various theoretical and
numerical aspects were not completely explored. The first con-
tribution of this work is to comprehensively study the global and
local convergence when TNCG is applied to linear classification.
Because of the lack of twice differentiability under some losses,
many past works cannot be applied here. We prove various
missing pieces of theory from scratch and clarify many proper
references. The second contribution is to study the termination of
the CG method. For the first time when TNCG is applied to linear
classification, we show that the inner stopping condition strongly
affects the convergence speed. We propose using a quadratic
stopping criterion to achieve both robustness and efficiency.
The third contribution is that of combining the study on inner
stopping criteria with that of preconditioning. We discuss how
convergence theory is affected by preconditioning and finally
propose an effective preconditioned TNCG.

Index Terms—Truncated Newton, Conjugate gradient, Linear
classification, Truncation criteria, Preconditioning.

I. INTRODUCTION

In this work we focus on the problem of estimating the
model parameter www of a linear classifier. In particular, two
widely used models are logistic regression and linear Support
Vector Machines (SVM). The problem of training both these
models might be written as follows

min
www

f(www) =
1

2
wwwTwww + C

∑l

i=1
ξ(yiwww

Txxxi), (1)

where (yi,xxxi), i = 1, ..., l are the training data, yi = ±1 is the
label, xxxi ∈ Rn is a feature vector, wwwTwww/2 is the regularization
term, C > 0 is a regularization parameter and ξ(yiwww

Txxxi) is
any LC1 (continuously differentiable with locally Lipschitz
continuous gradient) convex loss function. With wwwTwww, f is
a LC1 strongly convex function and the minimum www∗ of f
exists and is unique. The following two losses respectively
correspond to logistic regression (C2, i.e. twice continuously
differentiable) and l2-loss linear SVM (LC1),

ξLR(ywwwTxxx) = log
(
1 + exp

(
−ywwwTxxx

))
ξL2(ywwwTxxx) = (max(0, 1− ywwwTxxx))2.

(2)

In this work we focus on the Truncated Newton (TN) method
for solving large scale optimization problems that might be

L. Galli was with the Department of Information Engineering, University
of Florence, Via Santa Marta 3, Firenze, Italia e-mail: leonardo.galli@unifi.it.

C-J, Lin was with Department of Computer Science, National Taiwan
University, Taipei, Taiwan, 106 e-mail: cjlin@csie.ntu.edu.tw.

Manuscript received ; revised .

written as in (1). In this field, solving the Newton equation to
obtain a direction is often very challenging because of the di-
mensionality of the system. A truncated method approximately
solves the Newton equation with an internal iterative procedure
specific for a linear system of equations. In [1] and [2] they
employ a Conjugate Gradient (CG) method [3] to avoid the
storage of the Hessian in solving the Newton equation. The
resulting method is thus called TNCG.

Our main concern is the convergence of TNCG, both
from the numerical and theoretical points of view. For this
reason, we brought into question various aspects of TNCG
methods for (1) that till now were taken for granted. The first
contribution is to comprehensively study the global and local
theoretical convergence of TNCG. In particular, when f 6∈
C2 as for ξL2, we find out that most of the proofs are not
at hand and some of them are not even existing. We thus
obtained global and local Q-SuperLinear (Q-SL) convergence.
Moreover, we proved that the TNCG is a special case of the
general common-directions framework from [4], so some nice
theoretical properties follow.

The second finding was that the choice of the CG inner
termination (or truncation) criterion has never been addressed
for linear classification problems. In fact, we show that the
convergence speed of some widely used machine learning
software can be improved by very simple modifications on
this stopping rule. Through conceptual and experimental il-
lustrations we thus identify that a criterion based on checking
the quadratic model of the current Newton iteration is robust
and effective for large scale linear classification. Finally, with
an adaptive setting in the inner stopping criteria, local Q-SL
convergence is proved.

The third contribution is that of combining the study on
truncation criteria with that on preconditioning. It is well
known that for ill-conditioned linear systems the Precondi-
tioned CG (PCG) can be helpful to improve the rate of
convergence of the original CG. The idea is to pre-multiply
the linear system by a preconditioner matrix that will improve
its condition. Let us call TNPCG the complete method. In
this work, we first discuss how the convergence proofs are
affected by the use of preconditioners. Then, we integrate our
numerical analysis on truncation criteria with that conducted in
[5] on preconditioning. They found out that a mixed approach
between the identity matrix and a diagonal preconditioner was
able to improve convergence speed in the majority of the
data sets employed. Thanks to this new extensive numerical
analysis on the combination between the truncation criteria and
the preconditioning, we are able to propose a highly robust and
effective TNPCG method for linear classification.

This paper is organized as follows. In Section II we go

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 2

over past works from the literature that have some similarities
with ours. In Section III, we review TNCG for large scale
linear classification. Section IV gives a detailed analysis on the
theoretical aspects related to TNCG, including both global and
local convergence. In Section V we first discuss the importance
of having a robust inner stopping criterion. Then we investigate
some criteria and prove their theoretical local convergence. In
Section VI we first show how to apply preconditioning in our
case, which approach has been employed, and how to obtain
local and global convergence in the preconditioned case. In
Section VII we conduct extensive experiments on termination
criteria, while in Section VIII we combine them with the
use of preconditioning. Further in Section IX, some running-
time comparisons with state-of-the-art methods demonstrate
the superiority of the proposed approach on ill-conditioned
problems. Conclusions are given in Section X. Proofs of some
theorems are in the appendix, while the rest of the proofs and
of the experiments are enclosed in the supplementary avail-
able at https://www.csie.ntu.edu.tw/∼cjlin/papers/tncg/. Pro-
grams used for experiments are available at the same page,
while the proposed method has been incorporated into the
software LIBLINEAR (version 2.40 and after).

II. RELATED WORKS

TNCG is a classical optimization method so the conver-
gence theory has been deeply investigated. One would expect
that, when TNCG is applied to linear classification, all the
theorems are easily accessible. We instead found out that this
is not the case. Theoretical properties (especially the fast local
convergence ones) may either be partially covered in some
works or be disjointedly presented in various paper fragments.
The original Q-SL convergence result for TN methods was
given in [6]. In this result, f is assumed to be C2, which is true
in the case of the logistic loss, but not true for the l2 loss (2).
This loss is only LC1, so the Hessian of f does not exist and
we should instead refer to the generalized Hessian ∂∇f in the
sense of Clarke [7] (see Section IV-B for details). Nonetheless,
in some studies on TNCG for linear classification (for instance
[2]), theory has been studied for the ξLR loss, but was ignored
for the ξL2 loss. In the field of linear classification, many
following works focused on various aspects of the TNCG
(e.g. hyperparameter selection [8], globalization techniques
[9], preconditioning [5]), but never on the fast convergence
result for not twice continuous differentiable losses. See [10]
for a detailed survey on the topic.

The first Q-SL convergence proof for TN methods in the
case of a nonsmooth system of equations was given in [11].
Such a result is useful in our case since the arising Newton
equation is also a nonsmooth system, but the convergence in
[11] is not covering the whole theory since their theorems are
only given for a non-globalized TN method (i.e. the TNCG
without line search, see (8) and the discussion above it). A fast
convergence result for a globalized TNCG is instead given in
Theorem 5.3 of [12]. This theorem is applied to functions with
globally Lipschitz gradient, but here we develop the theory to
cover the more general situation of functions whose gradient
is only locally Lipschitz. Besides this main distinction, [12]

differs from us in the following aspects. They need to prove
the regularity of the generalized Hessian, while we employ the
more standard and general BD-regularity (see Lemma V of the
supplementary). Next, we provide an additional intermediate
result to cope with inner stopping rules with a more general
shape, while they assume a precise property for their inner
stopping rule (see a discussion at the end of Section V-C and
the proof of Lemma 1 in the supplementary). To conclude
this section we can also mention the recent paper [13] on
linear SVM, even if the theory therein is not very clear. In
their Theorem 1 they cite Theorem 3.2 of [14], which is the
first fast convergence result for a (non-truncated) semismooth
Newton method, but the truncated situation is not discussed.

III. THE TNCG FOR LINEAR CLASSIFICATION

At each iterate wwwk, where k is the iteration index, a Newton
method finds an update direction by minimizing the following
second-order approximation

Qk(sss) ≈ ∇f(wwwk)
T
sss+

1

2
sssT∇2f(wwwk)sss. (3)

As f ∈ LC1, ∇2f is the generalized Hessian; see Section
IV-B. Because of the convexity of (1), this minimization is
equivalent to solving the Newton equation

∇2f(wwwk)sss = −∇f(wwwk). (4)

The gradient and the Hessian of f(www) are

ggg := ∇f(www) = www + C
∑l

i=1
ξ′(yiwww

Txxxi)yixxxi

H := ∇2f(www) = I + CXTDX,
(5)

where I is the identity matrix, X = [xxx1, . . . ,xxxl]
T is the data

matrix and D is a diagonal matrix with Dii = ξ′′(yiwww
Txxxi).

The linear system (4) is difficult to solve because of the
possible high dimensionality of wwwk. Thus the CG method
is applied to avoid the explicit forming of the Hessian and
employing instead the following Hessian-vector products

Hsss = (I + CXTDX)sss = sss+ CXT (D(Xsss)). (6)

Therefore, each Newton iteration (called an outer iteration
from now on) involves an inner iterative procedure of some
CG steps, each of which conducts a Hessian-vector product.

Unfortunately, accurately solving the Newton equation (4)
may expensively require many CG steps. As we will show
later, CG steps are the bottleneck of the Newton method to
solve (1). To reduce the number of CG steps, TN methods
are applied to solve the Newton equation approximately. This
approximation is controlled by the CG inner termination
criterion. We will show that this choice has a direct and great
impact on the convergence speed. Assume sss1k, sss

2
k, . . . are inner

CG iterates. CG is stopped at a step j whenever sssjk satisfies a
truncation rule as

ratio(sssjk) ≤ ηk, (7)

where the left side is the actual condition to be checked,
usually a ratio between two terms, and ηk ∈ (0, 1) is the
forcing sequence. The resulting sssjk is then called sssk.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 3

To ensure the convergence of TNCG, by following most
existing optimization methods, a globalization procedure is
needed. Usually this means to find a suitable step size ωk
so that ωksssk is used to update the iterate wwwk. Two major
globalization techniques are line search and Trust-Region
(TR). While TR may be more stable, it is more sophisticated
(see final discussion in Section VIII). We therefore consider
the easiest line search, Armijo (8). It finds the largest ωk ∈
{1, δ, δ2, . . . } with δ ∈ (0, 1) such that the function value is
sufficiently decreased, satisfying the following condition, with
γ ∈ (0, 1),

f(wwwk + ωksssk) ≤ f(wwwk) + γωkgggk
Tsssk. (8)

Our implementation of TNCG is given in Algorithm 1.

Algorithm 1: Truncated Newton Conjugate Gradient
Input: www1 ∈ Rn starting point

1 for k = 1, 2, . . . do
2 compute the direction sssk by approximately solving

(4) with a CG method, until (7) is satisfied
3 compute a step length ωk by an Armijo line search

technique (8)
4 wwwk+1 = wwwk + ωksssk

We now discuss the complexity of the whole procedure.
From (6) the cost per outer iteration is roughly

O(nl)× (#CG steps + 2) + cost of deciding the step size, (9)

where O(nl) is the cost associated with each evaluation of
function, gradient or Hessian-vector product. If X is sparse,
the term O(nl) above might be replaced by the number of
non-zero elements (#nnz) in matrix X . In most optimization
methods the cost of deciding the step size is relatively smaller,
so the complexity is proportional to the total number of CG
steps. In fact, it has been shown in Section 2.1 of [9] (see
also Section A.3 of the supplementary) that Armijo requires
O(l) operations for each new ω. This means that the cost of
deciding the step size is not the computational bottleneck.

IV. GLOBAL AND LOCAL CONVERGENCE OF TNCG

In this section we relax f to be any f ∈ LC1, rather than
the particular form in (1). Assumptions needed on f will be
clarified in each theorem statement.

A. Global Convergence by Treating TNCG as a Common-
Directions Algorithm

At the current iteration k, a common-directions algo-
rithm computes sssk by combining m different directions
{ddd1k, . . . , dddmk } to minimize the quadratic approximation of f . In
the field of empirical risk minimization, in [4] they developed
a framework that provides global and local convergence results
for common-directions methods that satisfy Assumption 1.
Here we will show for the first time that even the TNCG
method can be seen as a special common-directions algorithm.

Assumption 1. At each iteration k a common-directions
algorithm computes a direction sssk such that

min
αααk

gggk
Tsssk +

1

2
sssTkBksssk s.t. sssk = Pkαααk, (10)

where Pk := [ddd1k| . . . |dddmk] ∈ Rn×m and gggk ∈ {ddd1k, . . . , dddmk }.
The iterate update is wwwk+1 = wwwk + ωksssk, where ωk is the
step-size computed by Armijo (8). In addition, Bk is a positive
definite matrix and is bounded, i.e. there exist two constants
M1,M2 > 0 such that M1 ≥ ‖Bk‖ ≥M2 ∀k.

Note that their result is rather general since Bk does not
need to be the Hessian, but can be any bounded positive
definite matrix. To obtain the global convergence result, the
gradient must be one of the common-directions. In Theorem
3.2 and Corollary 3.1 of [4] they show the following theorem.

Theorem 1. Let f ∈ LC1 with a positive Lipschitz constant
and {wwwk} be generated by a method that satisfies Assumption
1. Assume that the following level set

L1 := {www ∈ Rn : f(www) ≤ f(www1)} (11)

is compact. Then the minimum of the norm of gradients of
the iterates vanishes at an O(1/ε) rate, i.e. min

0≤j≤k
‖gggj‖ =

O(1/
√
k + 1) and

limk→∞ ‖gggk‖ = 0. (12)

In addition, if f is strongly convex the function values lin-
early converge, i.e. it takes O(log(1/ε)) to get an ε-accurate
solution satisfying f(wwwk)− f(www∗) ≤ ε.

Note that the framework from [4] assumes that m is fixed,
but all their results are still valid for any bounded m (see the
supplementary for a discussion). Since CG method terminates
in a number of steps bounded by the dimensionality of the
linear system (4), the choice of the termination criteria (7)
will not affect results contained in this subsection.

Now, to show that Algorithm 1 satisfies Assumption 1 we
first need to recall that the CG method is designed to minimize
a strictly convex quadratic function, as in (10). In particular,
this is obtained by combining a set of directions {ddd1k, . . . , dddmk }
that are conjugate with respect to Bk, i.e. for any dddik, ddd

j
k we

have dddik
T
Bkddd

j
k = 0 (see Lemma II of the supplementary and

[15]). Once sssk is obtained, Algorithm 1 is then employing an
Armijo line search along sssk. Now to satisfy the rest of the
assumptions on f and Bk we refer to f as defined in (1).
• In [4], they assume f to have a globally Lipschitz gradient,

as in the case of f defined in (1). For f ∈ LC1, this
assumption is not needed if we have assumed that the level
set (11) is compact. In this case, ∇f is globally Lipschitz on
L1. In [4] they also assume that f is bounded from below.
We have this from a compact L1.

• Since in Algorithm 1 we approximately solve (4) employing
the Hessian (or the generalized one) from (5), for the two
losses in (2), we have that Hk is bounded (see Lemma I
of the supplementary). This also implies that the minimum
and maximum eigenvalue of Hk (respectively λmin(Hk) and

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 4

λmax(Hk)) are bounded. In particular, from (5) we have that
there exist two constants, M1,M2 > 0, such that

M2 = 1 ≤ λmin(Hk) ≤ λmax(Hk)

≤ 1 + Cλmax(XTDX) = M1.
(13)

• From CG method’s details we have that ddd1k = −gggk.
• f in (1) is strongly convex by definition. Further, with the

regularization term wwwTwww and ξ(·) ∈ LC1, f in (1) is in LC1

with a positive Lipschitz constant.
Thus, Assumption 1 and the assumptions of Theorem 1 are
satisfied, which means that Algorithm 1 is globally convergent
and the sequence {f(wwwk)} is linear convergent to f(www∗).

Global convergence of Algorithm 1 can also be proved
by following a more classical way (see Proposition III and
Theorem IV from the supplementary). First we need to prove
that CG method obtains a direction sssk for which there exist
two constants a1 > 0 and a2 > 0 such that

gggk
Tsssk ≤ −a1‖gggk‖2 and ‖sssk‖ ≤ a2‖gggk‖. (14)

Then, from Armijo line search properties [15] we obtain (12).

B. Q-Superlinear Local Convergence

Since ∇f is locally Lipschitz, from Rademacher’s theorem
it is differentiable almost everywhere [7]. We indicate by D∇f
the set of points in which ∇f is differentiable. For any www
we define the B-subdifferential of ∇f at www as the nonempty
compact set

∂B∇f(www) := {H ∈ Rn×n : H = lim
wwwj→www
wwwj∈D∇f

∇2f(wwwj)}.

Then the Clarke generalized differential ∂∇f (or equivalently
the generalized Hessian) at www is the convex hull of ∂B∇f .
We say that ∇f is semismooth at www if the limit

lim
sssj→sss,tj→0+

Hjsssj exists ∀Hj ∈ ∂∇f(www + tjsssj).

If ∇f is semismooth it can be proved that the above limit
is equal to the directional derivative of ∇f at www in the
direction sss. Semismooth functions are a particular class of
locally Lipschitz continuous function for which generalized
differentials define a legitimate Newton approximation scheme
(see Chapter 7 of [16]). The class of semismooth functions is
very broad, in particular ∇f is semismooth for both losses
defined in (2) because they both have piece-wise smooth
gradients. In addition, we say that ∇f is BD-regular at www
if all elements in ∂∇f(www) are nonsingular. Note that strong
convexity implies BD-regularity.

In this subsection, we study local convergence by assuming
that the ratio employed in the stopping rule (7) is

ratio =
‖gggk +Hksss

j
k‖

‖gggk‖
=
‖rrr‖
‖gggk‖

,where rrr := −gggk −Hksss
j
k

(15)

is the residual maintained though the CG procedure (indices j
and k omitted) and Hk ∈ ∂∇f(wwwk) is the generalized Hessian
considered in Algorithm 1. This condition of checking the ratio
between the residual and the right-hand side of the Newton
equation is probably the most commonly used inner stopping

criterion [15]. In Section V we will show all the other criteria
and how to obtain the same local results.

Now to obtain Q-SL local convergence, we first need to
prove that for the sequence {wwwk +sssk} we have the following
limit (17) (see Theorem 3 of [11]).

Lemma 1. Let ∇f be semismooth and BD-regular. Let {wwwk}
be a generic sequence convergent to a critical point www∗.
Further at each wwwk we generate a sssk by solving the Newton
linear equation (4) to satisfy the condition (7) where the ratio
employed is (15). Then there exist δ > 0,M > 0 such that for
any wwwk ∈ N(www∗, δ) we have

‖wwwk + sssk −www∗‖ ≤ o(‖wwwk −www∗‖) +Mηk‖wwwk −www∗‖. (16)

Further if ηk → 0 in generating sssk, then we have

lim
k→∞

‖wwwk + sssk −www∗‖
‖wwwk −www∗‖

= 0. (17)

Once we prove this, we can exploit a very general result
for semismooth functions (see Theorem 3.2 of [17]). It ensures
that any line search based algorithm will eventually accept the
initial step-size ωk = 1 if the limit (17) can be proved for the
direction sssk.

Theorem 2. Let f be strongly convex and ∇f be semismooth.
Let L1 defined in (11) be compact. Let {wwwk} be generated by
Algorithm 1 with γ ∈ (0, 12) and ηk → 0. Then:
(1) there exists k̂ such that (8) is satisfied with ωk = 1∀k ≥ k̂.
(2) {wwwk} is Q-SL convergent to a critical point www∗.

Proofs of theorems in this section are in Section I.3 of
the supplementary. This is the place where it is possible to
notice the differences (e.g. local Lipschitz gradient) between
our theory and that of [12].

V. TRUNCATION CRITERIA IN TNCG
Truncation (or CG inner stopping) criteria as (7) are ex-

plored here. In this paper, for the first time on linear classifi-
cation problems, a study on truncation criteria is performed.

A. The Importance of Truncation Criteria

By a simple example of checking the settings in some
popular software, we point out that without a careful choice
of the inner stopping criterion, the convergence of the TNCG
method can be very slow. In Figure 1 we show the total
number of CG steps needed to solve the training problem
(1) on the dataset kdd2010b. Note that as showed in (9)
the running time is always proportional to the total number
of CG steps. On the y axis we report the relative reduction
of the function value, computed by f(wwwk)−f(www∗)

f(www∗) , where www∗

is the optimal solution of (1). The hyper-parameter C used is
equal to 100CBest, where CBest is the value that yields the best
accuracy on the validation set (see Section VII for details). In
Figure 1 we compare
• Scikit: This is the TNCG method implemented in the

package Scikit-learn [18], version 0.22. The CG truncation
criterion is a l1-norm variant of (15) with

ratio =
‖gggk +Hksss

j
k‖1

‖gggk‖1
(18)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 5

0 2 4 6 8
CG steps 1e4

10 5

10 4

10 3

10 2

10 1

100

101

(f

f*
)/f
*

Scikit
ScikitArmijo
Standard
Standard09

Fig. 1: A comparison of truncation criteria used in some
popular software on the convergence of TNCG methods for
logistic regression. The dataset kdd2010b is considered with
C = 100 × CBest. The y-axis is the relative reduction of
function value in log-scale. The x-axis is the cumulative
number of CG steps. We give a mark for every five Newton
iterations. See the explanation of horizontal lines in (19).

where Hk ∈ ∂∇f(wwwk) and ηk = min{0.5; ‖gggk‖0.51 }. They
require Armijo and Wolfe conditions.

• ScikitArmijo: Same implementation as Scikit above, but
using only the Armijo condition.

• Standard: This is the TNCG method implemented in the
package LIBLINEAR [19]. They consider the TR technique,
but we replace it with an Armijo line search. The criterion
used there is (15) with ηk = 0.1.

• Standard09: Even for the simple Standard setting above, it
is unclear what the threshold ηk should be. We arbitrary
change it from 0.1 to 0.9 and see if the TNCG method
performs similarly or not.
The four horizontal lines in Figure 1 indicate places where

the following stopping condition is met respectively with ε =
{10−1, 10−2, 10−3, 10−4}1

‖gggk‖ ≤ ε
min{#pos,#neg}

l
· ‖ggg1‖, (19)

where #pos, #neg are the numbers of positive- and negative-
labeled instances respectively, and ε > 0 is the thresholding
constant that controls the precision of the training procedure.
Note that (19) with ε = 10−2 is the outer stopping condition
employed in LIBLINEAR. Thus the behavior before 10−1 and
after 10−4 is not crucial, since the training would be stopped
too early or too late. From Figure 1 we can observe:
• By changing only the inner stopping criterion, the overall

convergence can be dramatically different. We see that
Scikit and Standard require more than four times many CG
steps as Standard09 to reach the third horizontal line, while
ScikitArmijo does not even reach it.

• From Standard to Standard09, we see that even just the
simple change of a constant in the truncation criteria might
yield remarkable improvements in the convergence speed.

• In Figure 1, every mark indicates 5 outer Newton iterations.
Besides Standard09, all others waste many CG steps in each

1In Figure 1 the fourth line is hidden by the y-axis lower limit.

early iteration. Apparently, the inner stopping criteria may
be too strict in the early stage of the optimization process.

We conclude that without a careful choice of the inner stopping
criterion, the TNCG method may converge slowly.

B. Details on Truncation Criteria

We investigate truncation criteria by combining various
ratios and forcing sequences. We check three different ratio:
• residual: this is the ratio used in (15), which evaluates

the norm of the residual of equation (4) w.r.t. the norm of
the gradient. The setting of comparing with the norm of
the gradient ‖gggk‖ addresses a well-known issue of Newton
methods: in early iterations the quadratic model is not a
good local approximation of the function, so the Newton
direction might not be consistently better than a simpler
gradient-based direction. For this reason, over-solving (4)
to better approximate the Newton direction might result in
a waste of resources. Because ‖gggk‖ is not close to zero at
early iterations, the relative setting in (15) avoids a too large
ratio. Then the CG procedure can stop without accurately
solving the Newton equation.

• residuall1: the choice employed in Scikit-learn; see (18).
• quadratic: in [20] it was first introduced

ratio =
(Qj −Qj−1)

Qj/j
, (20)

where Qj := Q(sssjk) and Qj−1 := Q(sssj−1k), and Q(·) is
defined in (3). In (20) the reduction in the quadratic model
at the current CG step (Qj − Qj−1) is compared with the
average reduction per CG step (Qj/j). The rationale of
using (20) rather than (15) is that Qj reflects what we are
minimizing in applying a CG method. Note in addition that
computing the quadratic ratio does not require any expensive
extra computations, since from (15) it can be computed by

Q(sssjk) = −1

2
sssjk
T

(rrr − gggk) =
1

2
sssjk
T
Hksss

j
k + sssjk

T
gggk (21)

that just requires one subtraction and one inner product
between vectors. Thus, its cost is roughly O(n), while the
bottleneck in each CG step is still O(nl) required by each
Hessian-vector product.
Regarding ηk, many different families of forcing sequences

have been proposed [6], [21], [22], [23], [24]. In this work we
mainly investigate the following three rules:

• constant: ηk = c0 with c0 ∈ (0, 1). (22)

This is the ηk employed in LIBLINEAR in [9] with
c0 = 0.1. Selecting a suitable constant c0 is never easy
as indicated from the example in Section V-A.

• adaptive: to improve the constant setting (22), the following
adaptive one was proposed in [6],

ηk = min{c1; c2‖gggk‖c3}, (23)

where c1 ∈ (0, 1), c2 > 0, c3 ∈ (0, 1]. The rationale behind
this adaptive setting is to distinguish global and local phases.
As discussed above, at the beginning of the TN method, the
iterate might be quite far from the solution, thus c1 would
be the minimum in (23). This value should stop the CG

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 6

ratio
ηk (23) (24) (22)

(15) Q-SL Q-SL F-L
(18) Q-SL Q-SL F-L
(20) Q-SL Q-SL F-L

TABLE I: Local convergence results of different truncation
rules. Q-SL= Q-SuperLinear. F-L = Linear convergence of the
Function values.

procedure early enough to avoid over-solving (4), since it is
also likely that in this stage the quadratic model might not
be a good approximation of the function. On the other side,
when iterates are approaching the solution, the minimum in
(23) will select c2‖gggk‖c3 and lead the CG procedure to solve
(4) till a good approximation of the Newton direction.

• adaptivel1: ηk = min{c1; c2‖gggk‖c31 }, (24)

where c1 ∈ (0, 1), c2 > 0, c3 ∈ (0, 1]. This is the ηk
employed in Scikit-learn with c1 = 0.5, c2 = 1, c3 = 0.5. It
differs from (23) only in the use of the l1-norm.

Beyond the above rules, more complex forcing sequences like
those proposed in [21], [23], [24] are available for general
optimization problems. However, from some preliminary re-
sults we conduct, they are not performing consistently better
than the adaptive families (23) and (24). The reason may
be that the adaptive setting in (23), as it was designed, has
distinguished well the global phase (i.e. early iterations) from
the local phase (i.e. final iterations). Because (1) is convex, a
good distinction between the two phases is often enough to
achieve an efficient TNCG implementation. Moreover some
of the proposed choices from the literature are very highly
parametrized and/or might often lead to over-solve (4).

C. Theoretical Properties

In Table I we present the local convergence results of inner
stopping criteria discussed in Section V-B. The first 2 × 2
square is pretty easy to fill, since (23) and (24) imply ηk → 0
and Theorem 2 then leads to the Q-SL convergence. For
criteria involving l1-norm we need

‖Hksss
j
k + gggk‖2 ≤ ‖Hksss

j
k + gggk‖1

≤ ηk‖gggk‖1 ≤
√
nηk‖gggk‖2,

(25)

where Hk ∈ ∂∇f(wwwk).
If the quadratic ratio (20) is considered, filling the first two

entries of the last row in Table I is instead not straightforward.
From some private communication with the author of [25], the
result may have been given there, but that technical report is
no longer available. Many steps of the proof may be found in
[26], but not some of the most crucial ones. With the help of
Dr. Nash we are able to prove Theorem 3, whose details are
in the Appendix.

Theorem 3. If we employ (20) as the truncation criteria of the
CG procedure to solve Hk sss = gggk, with Hk a symmetric pos-
itive definite matrix, then we get ‖Hksss

j
k+gggk‖ ≤ Nk

√
ηk‖gggk‖,

where Nk =

√
Kk‖Hk‖·‖H−1

k ‖
1−Kk

, Kk =
(
λmax(Hk)−λmin(Hk)
λmax(Hk)+λmin(Hk)

)2
.

Note that in our case Hk ∈ ∂∇f(wwwk) and since f is strongly
convex Hk is symmetric positive definite. Moreover, from (13)

and the fact that Hk is bounded we get that also Nk, ∀k is
bounded. Thus if ηk → 0 by (23) or (24), then Nk

√
ηk → 0

and the Q-SL convergence follows from Theorem 2.
For filling the last column of Table I we note that Q-L

convergence is not proved in Section IV-B. First, when (17) is
not satisfied (e.g., when ηk is a generic constant as in (22)),
Theorem 3.2 of [17] cannot be applied. This is actually a
crucial step for the proof of Theorem 2 (see Section I.3 of
the supplementary). Second, the intermediate result (16) does
not ensure Q-L convergence for any η < 1, but it only proves
that there exists a η < 1 for which this is obtained. In fact, in
[11] they provide a counterexample in which a Q-L sequence
does not converge when (15) is applied with a generic ηk < 1.
To the best of our knowledge, if no additional modifications
on Algorithm 1 are added and ηk is a generic constant (less
than 1), Q-L convergence of TNCG for linear classification
is still an open question. On the other hand, from the newly
discovered connection between TNCG and the framework in
[4] we get from Theorem 1 the local linear convergence of the
function value (F-L).

VI. PRECONDITIONING IN TNCG

Algorithm 2: PCG for solving (26). Assume M has
not been factorized to EET .
Input: ε > 0, ηk > 0, M ∈ Rn×n.

1 Let s = 0, r = −gk,d = z = M−1r, γ = rTz
2 for j = 1, 2, . . . do
3 v ← Hkd

4 α← rTz/(dTv)
5 s← s + αd
6 r ← r − αv
7 z ←M−1r
8 if (7) holds with ratio = (27) then
9 return sk = s

10 γnew ← rTz
11 β ← γnew/γ
12 d← z + βd
13 γ ← γnew

To reduce the total amount of inner CG steps needed to
solve the system (4) we can apply a preconditioner matrix
and solve instead the equivalent system

E−1HkE
−T ŝssk = −E−1gggk, (26)

where E is a symmetric nonsingular matrix. Once the precon-
ditioned solution ŝssk is obtained, we can get the original sssk by
employing sssk = E−T ŝssk. The idea behind the preconditioning
techniques [27] is that of considering a matrix M = EET ≈
Hk to obtain a condition number of E−1HkE

−T to be as
closer as possible to 1 and/or to cluster its eigenvalues [28].
When the approximation is good, this technique would lead to
a new system (26) that is easier to be solved than the original
non-preconditioned one (4).

To solve (26) one could either use the original CG procedure
(see Algorithm III of the supplementary) on it or, as shown

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 7

in [29], avoid the factorization of M = EET and use instead
Algorithm 2, which has iterates sssjk instead of ŝssjk. Note that
Algorithm 2 is still solving the preconditioned system (26)
even if it operates mostly with non-preconditioned variables. In
[5] it is has been shown that when the factorization is actually
available, Algorithm 2 is still preferable, because, even if the
two algorithms have basically the same cost, Algorithm 2
may be numerically more stable. For sake of simplicity in
Algorithm 2 and in this section, we will not use the iteration
counter j and k will only be reported on Hk and gggk. Now,
from the properties of the CG procedures (see Section III of
the supplementary) we have that r̂rr := E−1rrr, ĝggk := E−1gggk
and z := M−1r. Thus

‖r̂rr‖2 = ‖rrr‖M−1 =
√
rrrTM−1rrr =

√
rrrTzzz,

‖ĝggk‖2 = ‖gggk‖M−1 =
√
gggTkM

−1gggk,

where given a vector aaa and a matrix A we have ‖aaa‖A :=√
aaaTAaaa. Then the classical ratio (15) employed in the stop-

ping criterion of Algorithm 2 becomes

‖r̂‖
‖ĝggk‖

=
‖r‖M−1

‖gggk‖M−1

=

√
rTM−1r√
gggTkM

−1gggk

=

√
rTz√

gggTkM
−1gggk

. (27)

Note that also the other ratios introduced in Section V-B can
be employed in the preconditioned case. In particular, the
quadratic ratio (20) can be computed in the same way by (21)
for both the preconditioned and non-preconditioned cases. In
fact, since Algorithm 2 is working with non-preconditioned
variables like sss,rrr and gggk, we still have rrr = −Hksss− gggk.

A. The Preconditioning by [5]

In this work we will apply the preconditioning proposed
in [5]. We first recall that a diagonal preconditioner can be
obtained by extracting all the diagonal elements in the Hessian

M̄ = diag(Hk),where M̄ij =

{
(Hk)ij , if i = j,

0, otherwise.

Once the above diagonal preconditioner is built, the original
idea from [5] was that of solving in parallel the preconditioned
system and the original one at each Newton iteration, and
use the direction sss of the procedure that terminated first. As
they extensively studied both theoretically and numerically, a
robust single thread alternative was instead that of combining
the above diagonal preconditioner M̄ with the identity matrix

M = α× M̄ + (1− α)× I, (28)

where α ∈ (0, 1) is the scalar that weights the combination.
We will now show that the cost of using a diagonal pre-

conditioner at each Newton iteration is irrelevant if compared
with (9). From (5) we get that

(Hk)jj = 1 + C
∑

i
DiiX

2
ij , (29)

which means that constructing the above diagonal precondi-
tioner costs O(nl). From Algorithm 2 we can see that at each
CG step we additionally need to compute M−1r, which cost
O(n). Thus, the extra cost of using the diagonal preconditioner
is simply O(n)× (# CG steps) +O(nl).

B. Global and Local Convergence in the Preconditioned Case

In this section we assume that the minimum and the
maximum eigenvalue of M−1 (respectively λmin(M−1) and
λmax(M−1)) are bounded. This means that also λmin(M) and
λmax(M) are bounded. In addition we remind that given a
vector aaa and a matrix A we have

λmin(A)‖aaa‖2 ≤ ‖aaa‖A ≤ λmax(A)‖aaa‖2. (30)

Note that the factorization M = EET is only required for the
convergence analysis in this section, but never in practice.

We first point out that the global convergence result is still
valid even if in Algorithm 1 instead of solving the original
Newton equation (4) we solve the preconditioned one (26).
In fact, the two systems are equivalent, e.g. ŝss is the solution
of (26) if and only if sss = E−1ŝss is the solution of (4). In
particular, applying Algorithm 2 is equivalent to employing
Algorithm III of the supplementary and then obtaining sss from
sss = E−1ŝss (see Section III of the supplementary or [29]). This
means that we can apply Proposition III of the supplementary
on the preconditioned system (26) and obtain

ĝggTk ŝss ≤ −a1‖ĝggk‖2 and ‖ŝss‖ ≤ a2‖ĝggk‖. (31)

From (31), (30), and with definitions of ĝggk and ŝss, we get both

gggTk sss = ĝggTk ŝss ≤ −a1‖ĝggk‖2 = −a1gggTkM−1gggk
= −a1‖gggk‖2M−1 ≤ −a1λmin(M−1)‖gggk‖22,

(32)

λmin(M)‖sss‖2 ≤ ‖sss‖M = ‖ŝss‖2 ≤ a2‖ĝggk‖2
= a2‖gggk‖M−1 ≤ a2λmax(M−1)‖gggk‖2.

(33)

Now, from the fact that λmin(M), λmax(M), λmin(M−1) and
λmin(M−1) are bounded and together with (32) and (33) we
get that there exist two new positive constants â1, â2 such that

gggTk sss ≤ −â1‖gggk‖2 and ‖sss‖ ≤ â2‖gggk‖.

This means that we can apply Theorem IV of the supplemen-
tary to prove global convergence.

Next we discuss local convergence results. Note that even
if Algorithm 2 is employing non-preconditioned variables like
sss and rrr, the ratio (27) is focusing on the norm of the residual
of the preconditioned system r̂rr and on the norm of ĝggk. For
this reason, to ensure that local Q-SL convergence results are
not harmed by the application of the preconditioning, we must
connect the ratio (27) to the one in (15). From (30) we have

λmin(M−1)‖rrr‖2 ≤ ‖rrr‖M−1 ≤ λmax(M−1)‖rrr‖2
λmin(M−1)‖gggk‖2 ≤ ‖gggk‖M−1 ≤ λmax(M−1)‖gggk‖2,

(34)

from which we get that

‖rrr‖2 ≤
1

λmin(M−1)
‖rrr‖M−1 ≤ ηk

λmin(M−1)
‖gggk‖M−1

≤ ηk
λmax(M−1)

λmin(M−1)
‖gggk‖2.

(35)

Thus, from (35), boundness of λmin(M−1) and λmin(M−1)
and the norm equivalence results (34) and (25), one could
either use (15), (18) or (27) in combination with (23) or (24)
and still obtain Q-SL convergence.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 8

Now, to prove that Q-SL convergence can be ensured also
if the quadratic ratio (20) is employed, we need to notice that

Q̂k(ŝss) := (E−1gggk)T ŝss+
1

2
ŝssT (E−1HkE

−T)ŝss

= gggk
Tsss+

1

2
sssTHksss = Qk(sss).

This means that we can repeat the same proof of Theorem 3
for the system (26) and obtain

‖rrr‖M−1 ≤ √ηkN̂k‖gggk‖M−1 , (36)

where N̂k =

√
K̂k‖Ĥk‖·‖Ĥ−1

k ‖
1−K̂k

, K̂k =
(
λ̂max−λ̂min

λ̂max+λ̂min

)2
, and

λ̂max and λ̂min are respectively the highest and lowest eigen-
values of Ĥk = E−1HkE

−T . Note that thanks to the fact that
λmin(M−1) and λmax(M−1) are bounded, we also get that
λ̂min and λ̂max are bounded. Together with (36) and (35) this
ensures that if we use (20) in combination with (23) or (24) we
can still obtain Q-SL convergence. Finally, in our case we can
ensure that λmin(M−1) and λmax(M−1) are bounded thanks
to the preconditioner defined in (28) and (29).

VII. NUMERICAL ANALYSIS ON TRUNCATION CRITERIA

We conduct experiments to analyze different inner stopping
conditions. We focus on applying logistic regression on the
three sets kdd2010a, kdd2010b and yahookr, while we
leave data statistics, detailed settings and complete results
including those of l2-loss linear SVM in Section IV of the
supplementary. For a fair evaluation, all different settings are
implemented based on the LIBLINEAR package. To simulate
the practical use we conduct a five-fold cross-validation to
select the regularization parameter CBest that achieves the
best validation accuracy. See the selected values in Table
I of the supplementary. Then in experiments we consider
C = CBest×{1, 100}. All other settings are the same as those
used in Section V-A.

A. Selection of the Forcing Sequence in Truncation Criteria

In this section, we will first focus on the effect of us-
ing various forcing sequences on both the residual and the
quadratic ratio. We propose a comparison between various
constant thresholds in the forcing sequence (22) and the
adaptive one (23). In fact, in Figure 1 we showed that even
changing one single constant in the truncation rule might
have a great impact on the speed of convergence. Moreover,
we want to evaluate the effect of employing the adaptive
forcing sequence instead of the constant one. Unless differently
specified, the parameter setting used for both (23) and (24) is
(c1 = 0.5, c2 = 1, c3 = 0.5), since this is the one used in
Scikit-learn and suggested also in [15]2. Note that we will
use the standard l2-norm, but in the next section we will
analyze the effect of changing the norm. In Sections IV.1-
IV.3 of the supplementary is reported the isolated analysis on

2Experiments with many other settings of c1, c2 and c3 have been carried
out, but there is no evidence of configurations that work consistently better
than the standard one (c1 = 0.5, c2 = 1, c3 = 0.5).

0.0 0.2 0.4 0.6 0.8
CG steps 1e3

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

rescons
rescons09
resada
rescons05
quadada
quadcons05

(a) yahookr, CBest

0.0 0.5 1.0 1.5 2.0
CG steps 1e4

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

rescons
rescons09
resada
rescons05
quadada
quadcons05

(b) yahookr, 100CBest

0.0 0.5 1.0 1.5 2.0
CG steps 1e3

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

rescons
rescons09
resada
rescons05
quadada
quadcons05

(c) kdd2010a, CBest

0 1 2 3 4
CG steps 1e4

10−6

10−5
10−4
10−3
10−2

10−1
100

(f
−

f*
)/f

*

rescons
rescons09
resada
rescons05
quadada
quadcons05

(d) kdd2010a, 100CBest

0 1 2 3 4
CG steps 1e3

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

(f
−

f*
)/f

*
rescons
rescons09
resada
rescons05
quadada
quadcons05

(e) kdd2010b, CBest

0 1 2 3 4 5
CG steps 1e4

10−5

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

rescons
rescons09
resada
rescons05
quadada
quadcons05

(f) kdd2010b, 100CBest

Fig. 2: A comparison of various forcing sequences in the inner
stopping condition. We show the convergence of a truncated
Newton method for logistic regression. See Figure 1 for an
explanation of information in each sub-figure.

each different aspect (e.g. constant forcing sequence against
adaptive one).

In Figure 2 we compare
• rescons: ratio= (15), ηk= (22), c0 = 0.1 (in Figure 1 it was

called Standard);
• rescons05: ratio= (15), ηk= (22), c0 = 0.5;
• rescons09: ratio= (15), ηk= (22), c0 = 0.9 (in Figure 1 it

was called Standard09);
• resada: ratio= (15), ηk= (23);
• quadcons05: ratio= (20), ηk= (22), c0 = 0.5;
• quadada: ratio= (20), ηk= (23).
From Figure 2 we can make the following observations:
• The setting rescons09 is faster than rescons in the large

majority of the cases (the same can be observed also for
the quadratic ratio; see Section IV.2 of the supplementary).
This result seems to indicate that over-solving the Newton
equation (4) by a small constant threshold has often a
negative effect on the speed of convergence.

• The setting rescons09 is generally faster than rescons05
and rescons. However, in the case of yahookr with C =
100CBest, rescons09 is slower than rescons05 apparently due
to under-solving the Newton equation (4). Further, for l2-
loss SVM we observe that rescons09 is inferior on some

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 9

datasets; see Section IV.12 from the supplementary. All these
confirm again the sensitivity of the constant threshold c0. On
the other hand, if the quadratic ratio is considered, quad-
cons09 is not improving results w.r.t. the setting quadcons05
(see Section IV.2 of the supplementary). This is probably
caused by the fact that the quadratic ratio was originally
designed to fight over-solving, being often smaller than the
residual one. From the more detailed comparison in Section
IV.2 of the supplementary, the quadratic ratio seems to be
less influenced by changes in the constant threshold c0.

• The settings resada and quadada are respectively identical
to rescons05 and quadcons05 in the large majority of the
cases (see Section IV.3 of the supplementary). This means
that the initial threshold c1 = 0.5 is (almost) always smaller
than c2‖∇f(wwwk)‖c3 .

• The setting quadada is overall performing better than resada
(see the supplementary). The difference is remarkable in the
case C = 100CBest. In fact if we check the third horizontal
line, quadada is always four times faster than resada. This
gives another evidence of the fact that the quadratic ratio
is well suited for fighting over-solving.

• Next we compare the two best settings rescons09 and
quadada. By checking the third horizontal line we see that
in the configuration C = 100CBest, on both yahookr
and kdd2010a, quadada is more than two times faster
than rescons09. The opposite situation is instead happening
when C = CBest, on yahookr and kdd2010b, although
rescons09 is no more than two times faster.

While our experiments with/without the adaptive forcing se-
quence are in most of the case identical, we decided to
maintain the use for the following reasons. First, an adaptive
forcing sequence is a safeguard for avoiding possible under-
solving issues in the later stage of the optimization procedure.
Second, from the theoretical properties in Section IV-B, local
Q-SL convergence is ensured.

Finally, because the configuration of C = 100CBest leads to
a more difficult optimization problem with the total amount
of CG steps 10 times more than that of C = CBest, it seems
that quadada is overall a more effective choice.

B. Comparison Between l2-Norm and l1-Norm and with TR
In Figure 3 we now address the effect of switching between

l2-norm and l1-norm on resada. The setting quadada should
be very little influenced by this modification since the ratio
remains the same and for the forcing sequence we have ‖vvv‖2 ≤
‖vvv‖1 ∀vvv and, as showed above, c1 = 0.5 is already (almost)
always smaller than c2‖∇f(wwwk)‖c32 . Moreover we will also
check the TR implementation of LIBLINEAR. In Figure 3 we
compare
• resada l1: ratio= (18), ηk= (24). This setting is exacly the

same as the approach ScikitArmijo in Section V-A. It is
a simplification of the setting used in Scikit-learn without
considering the Wolfe condition;

• resada: ratio= (15), ηk= (23);
• quadada l1: ratio= (20), ηk= (24);
• quadada: ratio= (20), ηk= (23);
• tr rescons: LIBLINEAR employs a TR globalization

method (instead of the line search); see [9].

0.0 0.2 0.4 0.6 0.8
CG steps 1e3

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

resada_l1
resada
quadada
quadada_l1
tr_rescons

(a) yahookr, CBest

0.0 0.2 0.4 0.6 0.8 1.0
CG steps 1e4

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

resada_l1
resada
quadada
quadada_l1
tr_rescons

(b) yahookr,100CBest

0.0 0.5 1.0 1.5 2.0
CG steps 1e3

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

resada_l1
resada
quadada
quadada_l1
tr_rescons

(c) kdd2010a, CBest

0.0 0.5 1.0 1.5 2.0
CG steps 1e4

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

resada_l1
resada
quadada
quadada_l1
tr_rescons

(d) kdd2010a, 100CBest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
CG steps 1e3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*
resada_l1
resada
quadada
quadada_l1
tr_rescons

(e) kdd2010b, CBest

0 1 2 3 4
CG steps 1e4

10−5

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

resada_l1
resada
quadada
quadada_l1
tr_rescons

(f) kdd2010b, 100CBest

Fig. 3: A comparison between l2-norm and l1-norm and with
the trust-region approach. We show the convergence of a
truncated Newton method for logistic regression. See Figure
1 for an explanation of information in each sub-figure.

From Figure 3 we can make the following observations:

• The setting resada is overall performing better than re-
sada l1 (see the supplementary). This finding naturally
suggests to question why in the software Scikit-learn [18]
it is used the l1-norm instead of the l2-norm. On the other
side, as we have seen in Section VII-A, resada is slower
than quadada in most cases.

• As expected, quadada l1 and quadada have exactly the same
speed of convergence in the large majority of the cases. In
contrast, we observe that the speed of resada l1 and resada
are sometimes significantly different.

• The setting quadada is generally slightly faster than
tr rescons, even if their speed of convergence is similar.
In fact they both exploit the information obtained from the
quadratic model. The setting tr rescons uses the information
to adjust the size of the trust region, while quadada uses it to
terminate the CG procedure. What we have achieved here is
that with a suitable inner stopping criterion, the simpler line
search setting becomes comparable or even faster than the
more complicated TR approach. On the other hand, resada
and resada l1 do not use the information from the quadratic
model, and their convergence is slower.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 10

We conclude that the truncation criteria that exploit a quadratic
model are faster than those that do not use such information.

C. Analysis via Conditions for Global Convergence

In Section IV.5 of the supplementary we conduct a detailed
analysis that combines theoretical and numerical aspects. Here
we sum up the contribution by reporting the main discovery.
When the regularization parameter C is large, the two condi-
tions (14) (whose combination is called angle condition) are
more difficult to be numerically satisfied by the resulting TN
direction sssk. Figures ix and x of the supplementary confirm
that Algorithm 1 is facing some slow convergence issues when
sssk has some more difficulties satisfying the angle condition.

VIII. NUMERICAL ANALYSIS ON PRECONDITIONING AND
TRUNCATION CRITERIA

In this section we combine the study on truncation criteria
with that of preconditioning. We focus on applying logistic re-
gression on the four sets yahookr, kdd2010a, kdd2010b
and news20 while complete results, including those of l2-loss
linear SVM, can be found in Sections IV.6, IV.7 and IV.13 of
the supplementary. The experimental settings are the same as
those in Section VII.

As explained at the end of Section VII-A, for some
approaches in the experiment we decided to maintain the
use of the adaptive forcing sequence, even if also in the
preconditioned case (see Section IV.8 of the supplementary)
this setting is (almost) always overlapping with the constant
one with c0 = 0.5.

A. Effect of Preconditioning on Residual and Quadratic Ratios

Our first comparison is to check both quadada and rescons
by applying the preconditioner from [5]. Recall that slow
convergence occurred for rescons in Figure 1 (there called
Standard) so subsequently we developed quadada. It is es-
sential to check the situation after preconditioning. Note that
rescons is the truncation rule employed in LIBLINEAR, even
if in LIBLINEAR they employ a TR technique instead of a
line search. In Figure 4 we compare
• rescons: ratio= (15), ηk= (22) c0 = 0.1;
• rescons p: ratio= (15), ηk= (22) c0 = 0.1, preconditioned;
• quadada: ratio= (20), ηk= (23);
• quadada p: ratio= (20), ηk= (23), preconditioned.
From Figure 4 we can make the following observations:
• The settings rescons p and quadada p are respectively faster

than rescons and quadada in the large majority of the
cases (see the supplementary). This result confirms that the
preconditioner suggested in [5] is improving the speed of
convergence for most of the ill-conditioned linear systems.

• On news20 with C = 100CBest the non-preconditioned
versions are slightly faster than the preconditioned ones. In
fact, as detailed in [5], designing a preconditioner matrix
that improves convergence in every case is very difficult.
Nonetheless, the difference is not remarkable and this is one
of the very few cases in which this situation is encountered.

• The setting quadada p is generally faster than rescons p
(see the supplementary). This result seems to show that even

0.0 0.2 0.4 0.6 0.8
CG steps 1e3

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

rescons
rescons_p
quadada
quadada_p

(a) yahookr, CBest

0 1 2 3 4
CG steps 1e3

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

rescons
rescons_p
quadada
quadada_p

(b) yahookr,100CBest

0.0 0.5 1.0 1.5
CG steps 1e3

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

rescons
rescons_p
quadada
quadada_p

(c) kdd2010a, CBest

0 1 2 3 4
CG steps 1e4

10−6

10−5
10−4
10−3
10−2

10−1
100

(f
−

f*
)/f

*

rescons
rescons_p
quadada
quadada_p

(d) kdd2010a, 100CBest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
CG steps 1e3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*
rescons
rescons_p
quadada
quadada_p

(e) kdd2010b, CBest

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CG steps 1e4

10−5

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

rescons
rescons_p
quadada
quadada_p

(f) kdd2010b, 100CBest

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CG steps 1e2

10−6

10−5

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

rescons
rescons_p
quadada
quadada_p

(g) news20, CBest

0 2 4 6 8
CG steps 1e2

10−3

10−2

10−1

100

101

102

(f
−

f*
)/f

*

rescons
rescons_p
quadada
quadada_p

(h) news20, 100CBest

Fig. 4: A comparison between adaptive and constant forcing
sequences in the preconditioned case. We show the conver-
gence of a truncated Newton method for ξLR loss. See Figure
1 for an explanation of information in each sub-figure.

in the preconditioned case the quadratic termination rule is
obtaining better performances.

B. Comparison with Trust Region and Other Rules

We now apply the preconditioning on resada, the l2-norm
version of the truncation rule implemented in the package
Scikit-learn. Alternatively, as resada is almost identical to
rescons with c0 = 0.5 (see Section IV.8 of the supplementary),
we essentially extend the comparison in Section VIII-A by
using a different constant forcing sequence. Moreover we will
also check the TR implementation of LIBLINEAR. In Figure
5 we compare

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 11

0.0 0.2 0.4 0.6 0.8
CG steps 1e3

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

resada
resada_p
quadada_p
tr_rescons_p

(a) yahookr, CBest

0 1 2 3 4
CG steps 1e3

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

resada
resada_p
quadada_p
tr_rescons_p

(b) yahookr,100CBest

0.0 0.5 1.0 1.5 2.0
CG steps 1e3

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

resada
resada_p
quadada_p
tr_rescons_p

(c) kdd2010a, CBest

0.0 0.5 1.0 1.5
CG steps 1e4

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

resada
resada_p
quadada_p
tr_rescons_p

(d) kdd2010a, 100CBest

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
CG steps 1e3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

resada
resada_p
quadada_p
tr_rescons_p

(e) kdd2010b, CBest

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CG steps 1e4

10−5

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

resada
resada_p
quadada_p
tr_rescons_p

(f) kdd2010b, 100CBest

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CG steps 1e2

10−6

10−5

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

resada
resada_p
quadada_p
tr_rescons_p

(g) news20, CBest

0 2 4 6 8
CG steps 1e2

10−3

10−2

10−1

100

101

102

(f
−

f*
)/f

*

resada
resada_p
quadada_p
tr_rescons_p

(h) news20, 100CBest

Fig. 5: A comparison between adaptive rules and the trust
region approach in the preconditioned case. We show the
convergence of a truncated Newton method for ξLR loss. See
Figure 1 for an explanation of information in each sub-figure.

• resada: ratio= (15), ηk= (23);
• resada p: ratio= (15), ηk= (23), preconditioned;
• quadada p: ratio= (20), ηk= (23), preconditioned;
• tr rescons p: ratio= (15), ηk= (22), c0 = 0.1, precondi-

tioned; LIBLINEAR employs a TR globalization method
(instead of the line search); see [5]. This is the latest
LIBLINEAR verision 2.30.

From Figures 4 and Figure 5 we can observe:
• Exactly as in Figure 4, also in Figure 5 the preconditioned

version (resada p) is faster than the non-preconditioned
one (resada) in the large majority of the cases (see the
supplementary).

• In Figure 5 by checking news20 with C = 100CBest we can

see that resada is remarkably faster than resada p. Instead,
by comparing quadada and quadada p in Figure 4, the
convergence speed is very similar until the third horizontal
line, and even after that quadada p is not much slower than
quadada.

• The settings quadada p and resada p often have a very simi-
lar convergence speed (see the supplementary). Nonetheless,
there are still some differences, especially when C =
100CBest. In fact, if we check the second and the third
horizontal line on news20, quadada p is around three time
faster than resada p. On yahookr, we can instead check
the fourth horizontal line to see that quadada p is more than
twice faster than resada p.

• The setting quadada p is generally faster than tr rescons p.
In fact, on news20 we can already see a detachment
between the two curves starting from the second horizontal
line, while on kdd2010a it starts from the third line.

From Figure 4 and Figure 5 we conclude that the slow conver-
gence issues pointed out in Figure 1 for both LIBLINEAR and
Scikit-learn can either be solved by employing the quadratic
termination rule (as resulting from the analysis of Section VII)
or by applying the preconditioner designed in [5]. Moreover,
the combination of the two modifications is more efficient and
robust than each of the two alone. Finally, the line search
version quadada is also generally faster than tr rescons p
implemented in the latest LIBLINEAR 2.30.

Apart from the numerical pieces of evidence just showed,
we also prefer quadada p instead of tr rescons p because the
line search is conceptually simpler than the TR. In fact, while
the TR is both deciding the step size and the direction by
solving a constrained quadratic problem, all the line search
based algorithms first determine the direction and then the
step size. Such a separation of concern is a desirable feature,
because once the direction is obtained, the line search sim-
ply needs to address a one-dimension problem to choose a
scalar value. This means that if we implement a backtracking
line search (e.g. Armijo as in quadada), whenever a failure
is encountered (i.e. the sufficient decrease condition is not
satisfied), we only need to try a new step size, while the
direction remains untouched. On the contrary in the case of
TR algorithms, whenever a failure is encountered (i.e. there
is not a good agreement between the actual and the predicted
reduction), the TR radius needs to be updated and, thus, the
resulting direction might be different from the previous one.
In addition, the TR update is generally more complicated
than the step size update. Finally, even if the procedure for
computing the direction is the same in both versions of the
TNCG algorithm (i.e. an internal CG procedure like Algorithm
2), in the case of the TR there is also the need of addressing
the situation in which the norm of the direction is reaching
the TR boundary.

As a final remark we want to point out that in the precondi-
tioned case the choice of the truncation rule does not cause the
same dramatic difference in the speed of convergence as in the
non-preconditioned case. Nonetheless, as showed in Figures 4
and 5 (see also the supplementary) quadada p is generally
more robust and effective than the other truncation rules.
Moreover, the quadratic ratio has an additional advantage

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 12

on the residual-based ratios: it does not rely on norms. As
showed in Section VI, this makes it norm- and preconditioner-
independent.

IX. COMPARISON WITH OTHER STATE-OF-THE-ART
METHODS

Finally in this section we show a comparison between the
proposed version of the TNCG and two other state-of-the-
art methods: SAG [30] and SAGA [31]. In particular, SAG
and SAGA are both first-order approaches that implement a
variant of the stochastic gradient method. Performances in this
case have been measured in terms of the computational time
(instead of the CG steps). The rest of the experimental settings
is the same as that in Section VII, while details about the
external software used for SAG and SAGA and about the
timing measurements can be found in Section IV.14 of the
supplementary. In Figure 6 we compare quadada p (ratio=
(20), ηk= (23), preconditioned), SAG and SAGA. From Figure
6 we can observe:
• The time required by each SAG or SAGA iteration is much

more regular if compared with that required by each CG
procedure. In fact, while the difficulty of computing a TN
direction changes along with the optimization procedure,
the time needed in each SAG or SAGA iteration is almost
always the same from the beginning till the end.

• When C = CBest, by looking at the general picture (see
the supplementary) quadada p is not generally slower than
SAG and SAGA since it obtains the best time on various
datasets (news20, w8a, covtype, rcv1, real-sim and
kddb till the third horizontal line) and the worst on others
(url, yahookr, webspam and criteo). On these latest
datasets, quadada p is sometimes more than twice slower
than SAG (e.g. the second horizontal line on yahookr)
and it thus requires a few minutes more than the best.

• When C = 100CBest, quadada p is overall performing much
faster than the others. In fact, in the majority of the datasets
quadada p is twice or even three times faster than the best
of the two methods. This is for instance happening at the
second horizontal line on kddb, where quadada p is saving
more than one hour of computation w.r.t. SAG. Moreover,
in the majority of the cases the advantage of quadada p is
getting more and more remarkable as the solution gets finer.
This is an expected behavior for first-order methods since
they lack the second-order information needed to maintain
fast performances on ill-conditioned problems.

We conclude that the TNCG in the setting quadada p is
generally as fast as the two state-of-the-art methods SAG and
SAGA. Moreover, in the case of ill-conditioned problems, the
proposed method is outperforming first-order approaches.

X. CONCLUSIONS

In this paper we focused on both theoretical and numerical
convergence of TNCG for linear classification. We first proved
global and local convergence, finding out that literature was
surprisingly wanting or unclear, especially in the case of not
twice differentiable losses. We filled some gaps, enlightened

0 50 100 150 200 250 300 350

Training time (sec)

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

quadada_p
sag
saga

(a) yahookr, CBest

0 1000 2000 3000 4000 5000 6000 7000 8000

Training time (sec)

10−4

10−3

10−2

10−1

100

101

(f
−

f*
)/f

*

quadada_p
sag
saga

(b) yahookr,100CBest

0 100 200 300 400 500 600 700 800 900

Training time (sec)

10−6

10−5

10−4

10−3

10−2

10−1

(f
−

f*
)/f

*

quadada_p
sag
saga

(c) kdd2010a, CBest

0 2500 5000 7500 10000 12500 15000 17500 20000

Training time (sec)
10−6

10−5

10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

quadada_p
sag
saga

(d) kdd2010a, 100CBest

0 1000 2000 3000 4000 5000 6000 7000

Training time (sec)
10−7

10−6

10−5

10−4

10−3

10−2

10−1
(f
−

f*
)/f

*
quadada_p
sag
saga

(e) kdd2010b, CBest

0 20000 40000 60000 80000

Training time (sec)
10−4

10−3

10−2

10−1

100

(f
−

f*
)/f

*

quadada_p
sag
saga

(f) kdd2010b, 100CBest

Fig. 6: A comparison between the proposed implementation of
the TNCG and the two first-order methods SAG and SAGA.
The x-axis is the cumulative time in seconds, while the rest
of the information are the same as those of Figure 1.

some open questions and discovered a new connection be-
tween TNCG and common-directions algorithms. From the
algorithmic and numerical point of view, for the first time
in the field of linear classification, we show the importance
of selecting an appropriate truncation rule. We found out
that various machine learning software are affected by slow
convergence issues and we identify the circumstances that
are causing them. We propose a truncation rule based on
the quadratic model that is able to avoid these circumstances
and demonstrate its effectiveness and robustness for linear
classification.

Finally we combined the study on truncation rules with that
on preconditioning. We first discussed how to obtain the same
global and local convergence results also in the preconditioned
case. Second, we integrated our investigation on truncation
rules with the use of preconditioning. Thus we proposed a
new preconditioned TNCG algorithm that is able to improve
the state of the art in the field of linear classification.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 13

APPENDIX A
PROOF OF THEOREM 3

Before giving the proof of Theorem 3 we need to remember
that thanks to CG method properties, we have that Qj is
monotonically decreasing and

Q1 = −1

2

gggTk gggk
gggTkHkgggk

< 0.

Thus, we have that (Qj − Qj−1) < 0 and Qj < 0 for every
j ≥ 1. For this reason (20) is equivalent to

Qj−1 −Qj ≤ ηk ·
−Qj
j

. (37)

We now recall two technical lemmas. In particular, the follow-
ing result can be found in Lemma 4.3.1 of [25].

Lemma 2. If H is symmetric and positive-definite then

yyyTH2yyy ≤ ‖H‖yyyTHyyy. (38)

Proof. We have

yyyTH2yyy = (H
1
2yyy)TH(H

1
2yyy)

≤ λmax(H) · (H 1
2yyy)T (H

1
2yyy)

= ‖H‖yyyTHyyy.

The following result can be found in Theorem 4.3.3 of [25].

Lemma 3. Let sss∗ be the point that minimizes Q(sss). Then, for
any sss we have

‖Hksss+ gggk‖2 ≤ 2‖Hk‖ · (Q(sss)−Q(sss∗)) (39)

Proof. From Lemma 2 and gggk = −Hksss
∗ we have

‖Hksss+ gggk‖2 = (Hksss+ gggk)T (Hksss+ gggk)

= (Hksss−Hksss
∗)T (Hksss−Hksss

∗)

= (sss− sss∗)TH2
k(sss− sss∗)

≤ ‖Hk‖(sssTHksss− 2sss∗THksss+ sss∗THksss
∗)

= ‖Hk‖
(

(sssTHksss+ 2sssTgggk)

− (sss∗THksss
∗ + 2sss∗Tgggk)

)
= 2‖Hk‖(Q(sss)−Q(sss∗)).

Proof of Theorem 3. From (6.18) of [3] we get that

Kk(Q(sssjk)−Q(sss∗k)) ≥ Q(sssj+1
k)−Q(sss∗k),

where sss∗k is the point minimizing Q(sss). Thus, moving
KkQ(sss∗k) on the right side and subtracting KkQ(sssj+1

k) from
both sides of the above inequality we get

KkQ(sssjk)−KkQ(sssj+1
k) ≥

−KkQ(sssj+1
k) +KkQ(sss∗k) +Q(sssj+1

k)−Q(sss∗k) =

(1−Kk)
(
Q(sssj+1

k)−Q(sss∗k)
)
,

which means that

Q(sssj+1
k)−Q(sss∗k) ≤ Kk

1−Kk

(
Q(sssjk)−Q(sssj+1

k)
)
. (40)

Now since Q(sssjk) is monotonically decreasing as j increases
we get that

−Q(sss∗k) ≥ −Q(sssjk) ∀j. (41)

At the solution sss∗k, from sss∗k = −H−1k gggk, we have

Q(sss∗k) = sss∗k
Tgggk +

1

2
sss∗k
THksss

∗
k = −1

2
gggk
TH−1k gggk.

Thus, together with (41), we get

−Q(sssjk) ≤ −Q(sss∗k) ≤ 1

2
‖H−1k ‖ · ‖gggk‖

2. (42)

Finally from Lemma 3, (40), (37), (42) we get

‖Hksss
j
k + gggk‖2 ≤ 2‖Hk‖ · (Q(sssjk)−Q(sss∗k))

≤ 2Kk‖Hk‖
1−Kk

(
Q(sssj−1k)−Q(sssjk)

)
≤ ηk ·

2Kk‖Hk‖
1−Kk

·
−Q(sssjk)

j

≤ ηk ·
Kk‖Hk‖ · ‖H−1k ‖

1−Kk
· ‖gggk‖2

= ηk ·N2
k · ‖gggk‖2,

where N2
k =

Kk‖Hk‖·‖H−1
k ‖

1−Kk
and the last inequality follows

from the fact that j ≥ 1.

ACKNOWLEDGMENT

This work was partially supported by MOST of Taiwan
grant 107-2221-E-002-167-MY3.

REFERENCES

[1] S. S. Keerthi and D. DeCoste, “A modified finite Newton method for
fast solution of large scale linear SVMs,” Journal of Machine Learning
Research, vol. 6, pp. 341–361, 2005.

[2] C.-J. Lin, R. C. Weng, and S. S. Keerthi, “Trust region Newton method
for large-scale logistic regression,” Journal of Machine Learning
Research, vol. 9, pp. 627–650, 2008.

[3] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of Research of the National Bureau of
Standards, vol. 49, no. 1, pp. 409–436, 1952.

[4] C.-P. Lee, P.-W. Wang, W. Chen, and C.-J. Lin, “Limited-memory
common-directions method for distributed optimization and its
application on empirical risk minimization,” in Proceedings of SIAM
International Conference on Data Mining (SDM), 2017.

[5] C.-Y. Hsia, W.-L. Chiang, and C.-J. Lin, “Preconditioned conjugate
gradient methods in truncated Newton frameworks for large-scale linear
classification,” in Proceedings of the Asian Conference on Machine
Learning (ACML), 2018.

[6] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact Newton
methods,” SIAM Journal on Numerical Analysis, vol. 19, pp. 400–408,
1982.

[7] F. H. Clarke, Optimization and Nonsmooth Analysis. New York: Wiley,
1983.

[8] B.-Y. Chu, C.-H. Ho, C.-H. Tsai, C.-Y. Lin, and C.-J. Lin, “Warm start
for parameter selection of linear classifiers,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2015.

[9] C.-Y. Hsia, Y. Zhu, and C.-J. Lin, “A study on trust region update rules
in Newton methods for large-scale linear classification,” in Proceedings
of the Asian Conference on Machine Learning (ACML), 2017.

[10] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “Recent advances of large-scale
linear classification,” Proceedings of the IEEE, vol. 100, no. 9, pp.
2584–2603, 2012.

[11] J. M. Martı́nez and L. Qi, “Inexact newton methods for solving nons-
mooth equations,” Journal of Computational and Applied Mathematics,
vol. 60, no. 1-2, pp. 127–145, 1995.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 14

[12] H. Qi and D. Sun, “A quadratically convergent Newton method for
computing the nearest correlation matrix,” SIAM Journal on Matrix
Analysis and Applications, vol. 28, no. 2, pp. 360–385, 2006.

[13] J. Yin and Q. Li, “A semismooth Newton method for support vector
classification and regression,” Computational Optimization and Appli-
cations, vol. 73, no. 2, pp. 477–508, 2019.

[14] L. Qi and J. Sun, “A nonsmooth version of Newton’s method,” Mathe-
matical programming, vol. 58, no. 1-3, pp. 353–367, 1993.

[15] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY:
Springer-Verlag, 1999.

[16] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities
and complementarity problems. Springer, 2003.

[17] F. Facchinei, “Minimization of SC1 functions and the Maratos effect,”
Operations Research Letters, vol. 17, no. 3, pp. 131–138, 1995.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: a library for large linear classification,” Journal of
Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

[20] S. G. Nash and A. Sofer, “Assessing a search direction within a
truncated-Newton method,” Operations Research Letters, vol. 9, no. 4,
pp. 219–221, 1990.

[21] S. C. Eisenstat and H. F. Walker, “Choosing the forcing terms in an
inexact Newton method,” SIAM Journal on Scientific Computing, vol. 17,
no. 1, pp. 16–32, 1996.

[22] S. G. Nash, “A survey of truncated-Newton methods,” Journal of
Computational and Applied Mathematics, vol. 124, no. 1–2, pp. 45–59,
2000.

[23] H.-B. An, Z.-Y. Mo, and X.-P. Liu, “A choice of forcing terms in inexact
Newton method,” Journal of Computational and Applied Mathematics,
vol. 200, no. 1, pp. 47–60, 2007.

[24] L. Botti, “A choice of forcing terms in inexact Newton iterations with
application to pseudo-transient continuation for incompressible fluid
flow computations,” Applied Mathematics and Computation, vol. 266,
pp. 713–737, 2015.

[25] S. G. Nash, “Truncated-Newton methods,” Department of Computer
Science, Stanford University, Tech. Rep. STAN-CS-82-906, 1982.

[26] ——, “Preconditioning of truncated-Newton methods,” Report 371.
Mathematical Sciences Dept., The Johns Hopkins University, Tech. Rep.,
1982.

[27] P. Concus, G. H. Golub, and D. P. OĹeary, “A generalized conjugate
gradient method for the numerical solution of elliptic partial differential
equations,” Tech. Rep. STAN-CS-76-533, 1976.

[28] I. Griva, S. G. Nash, and A. Sofer, Linear and nonlinear optimization,
2nd ed. SIAM, 2009.

[29] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. The
Johns Hopkins University Press, 1989.

[30] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with
the stochastic average gradient,” Mathematical Programming, vol. 162,
no. 1-2, pp. 83–112, 2017.

[31] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives,” in Advances in Neural Information Processing Systems, 2014, pp.
1646–1654.

Leonardo Galli is currently a postdoc at the Depart-
ment of Mathematics, Rheinisch-Westfälische Tech-
nische Hochschule (RWTH) Aachen. He obtained
his B.S., M.S. and Ph.D. degrees from University of
Florence respectively in 2013, 2016 and 2020. His
major research areas include optimization methods,
machine learning and operational research. In par-
ticular, together with his tutors Marco Sciandrone
and Fabio Schoen, he deeply explored the fields of
nonmonotone techniques and prescriptive analytics.
During his studies, he had various international

collaborations. In 2015, he spent a research period at University of Würzburg
where he worked on generalized Nash equilibrium problems together with
professor Christian Kanzow. Starting from 2018, he collaborated with pro-
fessor Chih-Jen Lin on truncated Newton methods for linear classification.
In particular, they aimed at updating LIBLINEAR, one of the most widely
used and cited linear classification packages. Thanks to this project, he could
visit professor Lin for a research period at University of California Los
Angeles (UCLA) in 2019 and at National Taiwan University in 2020. The
project has ended in 2020, when a faster release of the LIBLINEAR software
was released. More information about him and his work can be found at
https://webgol.dinfo.unifi.it/leonardo-galli/.

Chih-Jen Lin is currently a distinguished profes-
sor at the Department of Computer Science and
Information Engineering, National Taiwan Univer-
sity. He obtained his B.S. degree from National
Taiwan University in 1993 and Ph.D. degree from
University of Michigan in 1998. His major research
areas include machine learning, data mining, and
numerical optimization. He is best known for his
work on support vector machines (SVM) for data
classification. His software LIBSVM is one of the
most widely used and cited SVM packages. He has

received many awards for his research works including ACM KDD 2010,
ACM RecSys 2013, ACML 2018 best paper awards. He is an IEEE fellow,
a AAAI fellow, and an ACM fellow for his contribution to SVM algorithms
and software design. More information about him and his software tools can
be found at http://www.csie.ntu.edu.tw/∼cjlin.

