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Abstract

In most e-commerce platforms, product title classification is a cru-
cial task. It can assist sellers listing an item in an appropriate category.
At first glance, product title classification is merely an instance of text
classification problems, which are well-studied in literature. However,
product titles possess some properties very different from general doc-
uments. A title is usually a very short description, and an incomplete
sentence. A product title classifier may need to be designed differ-
ently from a text classifier, although this issue has not been thoroughly
studied. In this work, using a large-scale real-world data set, we exam-
ine conventional text-classification procedures on product title data.
These procedures include word stemming, stop-word removal, feature
representation and multi-class classification. Our major findings in-
clude that stemming and stop-word removal are harmful, and bigrams
or degree-2 polynomial mappings are very effective. Further, if lin-
ear classifiers such as SVMs are applied, instance normalization does
not downgrade the performance and binary/TF-IDF representations
perform similarly. These results lead to a concrete guideline for prac-
titioners on product title classification.

1 Introduction

With many e-commerce platforms nowadays, product title classification be-
comes crucial to assist sellers listing an item in an appropriate category.
Although sellers may provide additional descriptions, some systems perform
classification right after obtaining titles because of using class-dependent
forms subsequently. At first sight, by considering a product title as a short
text, title classification is just a variant of the well-developed area of text
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classification. While many mature techniques have been proposed in each
phase of text classification from the initial preprocessing to the final cate-
gorization, they may not be suitable for product titles. Titles are different
from texts in several aspects such as the length of each instance (most ti-
tles are very short), the distribution of lengths (most product titles have
similar lengths), and the grammatical structure (most titles are incomplete
sentences).

Existing systems for text classification, such as WEKA [1] and NLTK [2],
often consider a bag-of-word approach so that each feature corresponds to
one or several words. The procedure begins with a preprocessing phase to
unify words in various morphological forms (stemming) and retain useful
lexicons (stop-word removal), followed by a conversion from texts to fea-
ture vectors (e.g., TF-IDF model). Then classification methods (e.g., linear
SVM and Naive Bayes) are applied on a labeled corpus to obtain a classi-
fier for categorizing new texts. If the performance is not satisfactory, more
features such as bigrams or trigrams may be added to provide additional
information. Currently, practitioners working on product title classification
face the situation of whether to apply these conventional steps or not. We
have witnessed that engineers painfully try many combinations. Our goal
in this paper is to identify key differences between product title classifica-
tion and general text classification. Then a guideline can be available for
practitioners.

Product title classification can be applied in various scenarios. Because
our aim is to identify general properties, we limit our scope by considering
the following settings.

1. We try not to touch application or data dependent issues. For example,
some data sets are very noisy and require data cleaning. We skip such
issues because they may not be general for all product title data.

2. We consider the situation of not having too many classes. In some places,
product titles are categorized into a complicated taxonomy of thousands
of classes. We focus on classifying level-1 meta-categories of the taxon-
omy, so the number of classes is less than 100. This simplified setting
is still useful in practice because many hierarchical classification meth-
ods handle the large number of classes by first considering a coarse-level
classification task (e.g., [3,4] for hierarchical text classification and [5] for
hierarchical title classification).

Our main contributions include

1. We identify properties of product title classification different from those
of text classification. For example, stemming and stop-word removal are
not needed, and bigrams or polynomial mappings are very effective. A
list of our findings are in Section 9.
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2. We demonstrate that because titles are short, the analysis of title classifi-
cation can be conducted on both “micro” (details of a wrongly predicted
title) and “macro” (the performance of a whole set) levels.

3. We extensively study how linear SVM is applied to large-scale multi-class
title classification.

Some works (e.g., [5]) have targeted at product title classification, al-
though ours differs from them by aiming at identifying general properties
of product titles. A related but broader area is short-text classification,
which already has rich literature. Examples include question classification
(e.g., [6,7]) and sentence classification (e.g., [8]). However, these data types
differ in some aspects; for example, titles are noun phrases but questions
are complete sentences. Throughout our discussion, we will mention results
in these existing works. For job title classification, [9] proposes a useful
approach different from the traditional bag-of-word model, but their titles
are shorter than ours. Recently for short-text classification, many works
(e.g., [10, 11]) enrich the features by using additional resources. This type
of approaches is beyond our scope here, because we solely consider title
texts. Product title classification is also related to the topic “product cat-
egorization” (e.g., [12, 13]), which often assumes more information such as
price.

The paper is organized as follows. We discuss conventional procedures
for general text classification in Section 2, followed by Section 3 describing
the data set and the baseline approach we use. By analyzing errors made
by the baseline, we design experiments in subsequent sections. Section 4
focuses on the effect of two preprocessing techniques, stemming and stop-
word removal. In Section 5, we examine various feature representations.
Different multi-class strategies are investigated in Section 6. In Section 7,
we further examine the effect of bigram and polynomial-mapping features.
Other issues are discussed in Section 8. Finally, we give conclusions and
future issues in Section 9.

2 Conventional Procedures of Text Classification

We introduce the following commonly used techniques for text classification.

2.1 Stemming and Stop-word Removal

To improve the performance and reduce the number of features, two com-
monly used pre-processing methods are stemming and stop-word removal.
Stemming unifies some different words with the same stem. For example, in
English, “check,” “checked,” and “checking” have the same stem “check.”
Many algorithms have been designed for stemming, e.g., Lovins Stemmer [14]
and Porter Stemmer [15].
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It is known that some words with very high frequencies are not very
helpful for text classification. For example, prepositions or pronouns like
“this” and “of” may not be very informative. Removing these “stop words”
can possibly improve the performance of text classification.

Stemming/stop-word removal have been shown to be useful (e.g., [16])
and not useful (e.g., [8]) in different scenarios. See more discussion in, for
example, [17].

2.2 Feature Representation

In a bag-of-word representation, how to give each word a feature value is an
issue. The simplest method is a binary representation so that each feature
is 0 or 1 to indicate the appearance of a word. This setting can be easily
extended to term frequency (TF), which indicates the number of occurrences
of a word in a text. Some more sophisticated feature representations have
been proposed. TF-IDF [18] is a popular one defined as

xi,j = TFi,j × IDFj , (1)

where xij is the jth feature of the ith feature vector xi, TFi,j is the term
frequency, and IDFj is the inverse document frequency,

IDFj = log

(
#training instances

#training instances with word j

)
.

Because popular words may appear in the same document several times and
cause large TF values, IDF is used to avoid their dominance.

A common step after generating feature vectors is to normalize each
instance to a unit vector. That is,

xi ← xi/‖xi‖.

2.3 Multi-class Classification

Many classification methods have been applied to text classification. Be-
cause it is not possible to study many methods here, we focus on linear sup-
port vector machines (SVM) [19], which have been shown to be among the
best methods for text classification [20]. Besides, recent advances in large-
scale linear classification have created efficient implementations for huge text
document sets; see a survey in [21].

Given training feature vectors xi ∈ Rn and labels yi ∈ {−1, 1}, i =
1, . . . , l, SVM solves the following problem.

min
w

1

2
‖w‖2 + C

∑l

i=1
max(0, 1− yiwTxi), (2)
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where C > 0 is the regularization parameter. The second term in Eq. (2) in-
dicates the sum of training losses. Given a new test instance x, the predicted
label is sgn(wTx).

To extend two-class SVM to solve multi-class problems, the most used
approach is the one-versus-rest method [22]. For data in classes {1, . . . , k},
this method obtains k models, w1, . . . ,wk, each of which is from training
one class as positive and others as negative. Following the design in Eq. (2),
for an instance x with label y, ideally we should have

(wy)Tx ≥ 1 and (wm)Tx ≤ −1, ∀m 6= y. (3)

Therefore, the predicted label ȳ is

arg max
m=1,...,k

(wm)Tx.

We will discuss two other multi-class methods in Section 6.

2.4 Unigram, Bigram, and Other Features

In a bag-of-word model, if each feature corresponds to a word, then we
have unigram features. However, splitting a phrase into separate words may
lose some information. For example, “checking” and “account” may not be
useful to indicate the concept of “checking account.” In this case, the bigram
“checking account” should be considered as a feature. In text classification
and natural language processing, bigrams, n-grams (n consecutive words), or
item sets (n words co-occurred in a document) have been commonly added
as features (e.g., [23]). However, such features may not be always useful, as
indicated in the survey of bigrams [24] and the work of item-set features [25].
We will deeply study bigram features in Section 7.

3 Data, Baseline and Error Analysis

In this section, we begin with preparing some real-world data sets for ex-
periments. Then we devise a baseline setting. By analyzing errors made by
the baseline, we design subsequent experiments in this paper to investigate
the difference between product title classification and text classification.

3.1 Data

Our data set comes from a large Internet company. The training set is
obtained by the following steps.

1. We collect all sold items in a three-month period.

2. We remove few categories. Either their business is independently run or
they are very close to some others. In the end, we consider 29 classes of
data.
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Table 1: Data statistics. The number of classes is 29.

#instances #features
#non-zero

feature values

Training 10,000,001 603,840 104,536,500
Test 7,310,307 880,418 75,855,772

3. We subsample 10M instances by a stratified setting to keep the class
distribution.

For the test set, in a period after the three-month one for obtaining training
data, we collect about about 7M sold items.

The setting of using sold items is similar to [5] because labels of such
items are considered more accurate. An issue is whether we should also
include unsold items for training. We will discuss this issue in Section 8.1.

The statistics of training and test data are in Table 1. The reason why
we have 10M + 1 training instances is because one class contains very few
instances. Our code for stratified subsampling, after selecting 10M instances,
ensures that at least one instance per class is selected. Most other classes
are reasonably balanced, contributing about 1% to 10% of the training set.
Regarding the number of features, in Table 1, the 0.6M features correspond
to unique tokens appeared in the training set. The test set contains 0.28M
new tokens, so our feature ID is up to 0.88M (0.6M + 0.28M). In fact, our
training and test sets share only 0.33M tokens. From Table 1, we also notice
that on average each training/test instance includes around 10 tokens.

We run all experiments on a machine with Intel Xeon 3.07GHz CPU
(X5675), 12MB Cache, and 74GB RAM.

3.2 Baseline

We consider the following simple setting as the baseline.
• Conversion of all words into lower case.
• Simple tokenization by splitting titles on spaces, punctuations and num-

ber/alphabet transitions. For example, “aa:bb 70d” becomes four tokens
“aa,” “bb,” “70,” and “d.”
• No stemming; no stop-word removal.
• Binary unigram as feature values.
• One-versus-rest multi-class SVM for classification.

For SVM, we use a popular linear classification package LIBLINEAR [26].
The parameter C in (2) is selected by five-fold cross validation (CV) on
values C ∈ {2−4, 2−3, . . . , 20}. We briefly discuss how to decide the search
space of C. It is known [27] that for linear SVM, there is a value C∗ such
that

optimal solution w of Eq. (2) is the same after C ≥ C∗.
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Therefore, it is not needed to keep increasing C if CV rates have stabilized.
The longer training time of using a large C is another concern. See more
discussion in Section 5.

For evaluation, because of the request of the data provider, we are not
able to present the absolute error rates. Instead, we report the relative error
rate to the baseline.

REbaseline ≡
error(ȳ)

error(ȳbaseline)
× 100%,

where ȳ is the result for evaluation and ȳbaseline is the prediction by the
baseline on the test set. Therefore, the baseline’s REbaseline is 100% and we
hope to develop approaches having as small REbaseline as possible.

3.3 Error Analysis

The result of running the baseline is reasonably good. An investigation
shows there are three types of test errors.

1. The instance is wrongly labeled. This situation is common in real-world
applications. For example, in our data set, an item “southwest colors sun-
rise cascade necklace & earring set” is considered as a “sporting goods,”
but classifying it in the “jewelry & watches” class is more appropriate.
We can design some methods to correct wrongly labeled data, although
this topic is beyond the scope of this paper. Here we simply accept their
existence and do not attempt to correct their labels.

2. The instance can be considered in more than one class. For example,
“sport watch” can be put either in “jewelry & watches” or “sporting
goods.” To handle this type of data, we need a multi-label rather than a
multi-class method. This topic is beyond the scope of the paper, so we
do not particularly handle such data here.

3. The instance is wrongly classified. For example, “new deadfish link fishing
earrings set dead bone fish” is clearly a “sporting goods,” but wrongly
classified as in “jewelry & watches.” This type of instances is what we
are interested in. We hope to know why they are wrongly classified under
a typical text classification setting and what possible remedies are.

We identify some wrongly classified data and check the corresponding weight
values in the model vectors. Two examples are shown in Table 2 with the
following information.
• Tokens of the title.
• wy

j , where y is the true class and j is the index of a token.

• wȳ
j , where ȳ is the predicted class.

• Number of token j’s appearances in the whole training set, in class y, and
in class ȳ.
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Table 2: Analysis of wrongly predicted instances by the baseline.

(a) tokenized title: “rubber d ring 5 bit”

(wy)Tx = −0.891101, (wȳ)Tx = 0.582337

Tokens wy wȳ Number of appearances
training class y class ȳ

d -0.1391 -0.0929 219,129 6,298 10,320
5 -0.0072 -0.1018 662,933 48,549 91,888
ring -0.5869 1.6495 147,793 2,407 129,080
rubber -0.2889 -0.0419 44,021 2,588 5,386
bit 0.1309 -0.8306 9,397 1,136 120

(b) tokenized title: “3 stainless steel split rings pack of 25”

(wy)Tx = −0.37592, (wȳ)Tx = −0.279519

Tokens wy wȳ Number of appearances
training class y class ȳ

3 -0.0686 -0.1421 980,520 47,991 59,113
25 -0.0310 -0.1570 103,606 6,498 13,070
of -0.1786 -0.0589 504,914 14,511 28,665
pack 0.0763 -0.7400 99,808 9,235 551
rings -0.1308 1.3139 27,069 2,563 17,285
stainless -0.2404 0.2306 46,674 3,595 26,855
steel 0.0366 0.1712 69,034 10,804 31,839
split 0.1605 -0.8973 4,745 950 540
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We have the following observations from Table 2.

1. Some words dominate the prediction of the instance. For example, in
Table 2(a), the word “ring” causes the title to be classified as a “jewelry
& watches” item. We have

wjewelry & watches
ring � 0 but wsporting goods

ring < 0.

Based on the fact that 129,080 of 147,793 training instances containing
the token “ring” are in the “jewelry & watches” class, the one-versus-rest
classifier correctly identifies that “ring” is an important word for this
class.

2. In Table 2(b), we have that the number of appearances of “pack” in the
class “sporting goods” is 16.7x more than that in the class “jewelry &
watches.” Thus, we would hope that “pack” is a useful word to dis-
tinguish these two classes. However, the number of appearances in the
class “sporting goods” is not large enough to make “pack” an important
feature in training “sporting goods” versus “non-sporting goods.” We
suspect that because the one-versus-rest method independently consid-
ers k two-class problems, for any two classes y1 and y2, and a feature j,
the relation between wy1

j and wy2
j may not be well adjusted. It will be

interesting to check if other multi-class methods perform better or not.

3. In Table 2(a), we see neither “5” nor “bit” can be useful to distinguish
“sporting goods” and “jewelry & watches.” However, a further check
shows that “5” and “bit” only co-occur in “sporting goods” rather than
“jewelry & watches.” Using a bigram feature such as “5 bit” may be
useful in this situation.

We call the investigation in Table 2 a micro-level analysis because details of
an instance are presented. This is in contrast to the setting of checking the
global performance, which we call a macro-level analysis. Note that we can
easily conduct micro-level analyses because titles are short.

In subsequent experiments, we will check observations made from the
above error analysis.

4 Effect of Stemming and Stop-word Removal

We consider Porter Stemming [15] and a stop-word list provided in SenseClus-
ters.1 In Table 3, we present results after applying stemming or/and stop-
word removal. By “Both” in the table, we apply stemming on both data and
the stop-word list first, and then perform stop-word removal. From Table 3,
clearly, both stemming and stop-word removal deteriorate the performance.

1http://www.d.umn.edu/~tpederse/senseclusters.html
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Table 3: A comparison of stemming and removing stop words. REbaseline:
lower is better.

REbaseline

Baseline 100.00%
Stop-word Removal 102.53%
Stemming 105.93%
Both 108.91%

This result might not be too surprising because we have mentioned in Section
2.1 that stemming/stop-word removal are not always helpful. For short-text
classification, although earlier works such as [5] and [8] have suspected or
observed that stemming/stop-word removal are harmful, Table 3 may be the
first to quantitatively show that the difference is significant.

To gain more insights, in Table 4, we give some examples that are origi-
nally correctly predicted by the baseline, but become wrong after stemming
and stop-word removal. Similar to Table 2, we present wy and wȳ, where
y and ȳ are true and predicted classes, respectively. The example in Ta-
ble 4(a) is in the class “consumer electronics.” After stemming, the word
“recorder” becomes “record,” so it is then predicted to the class “music.”
For the example in Table 4(b), it is correctly predicted to “home & garden”
by the baseline because in the training set there are similar titles such as
“barbie all dolled up lunch dinner plates 8 new.” After stemming, the word
“dolled” becomes “doll.” Because wdolls & bears

doll � 0, the instance becomes
wrongly predicted.

Examples in Table 4 show that stemming may remove some words special
for a class. Because product titles are short, this operation seems to be
harmful rather than beneficial. Further, various stemming approaches are
available; they range from grouping only some words to grouping many [16].
The approach we take is a more conservative one. Therefore, we suspect
that if a more aggressive stemming method is applied, the performance will
be even worse.

However, applying stemming and removing stop words do not always
mean worse results. In some examples not shown here, after stemming,
a more appropriate weight is assigned. This observation shows that for
any modeling technique, it can be helpful in some aspects, but harmful in
some others. The decision relies on its overall impact. In Table 5, we illus-
trate this point by showing numbers of correctly/wrongly predicted instances
by the baseline and the approach of applying stemming and stop-word re-
moval. Following the same reason explained earlier, we can not present
numbers here. Instead, we let η be the number of instances wrongly pre-
dicted by the baseline, but correctly predicted after stemming/stop-word
removal. We then present other values as the ratios to η. From Table
5, applying stemming/stop-word removal improves η instances, but ruins
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Table 4: Sample test instances correctly predicted by baseline but wrongly
predicted after stemming/stop-word removal.

(a) tokenized title: “sony cd radio cassette recorder”

true(y): “consumer electronics” predicted(ȳ): “music”
baseline wy wȳ both wy wȳ

cd -0.2998 2.4577 cd -0.3980 2.4974
radio 0.9950 -0.0059 radio 1.1012 -0.0327
sony 0.0185 -0.8003 soni -0.0065 -0.9148
recorder 0.7471 -2.5978 record 0.3280 1.0750
cassette 0.2412 1.1197 cassett 0.2900 1.0628

(b) tokenized title: “barbie all dolled up birthday party jointed banner”

true(y): “home & garden” predicted(ȳ): “dolls & bears”
baseline wy wȳ both wy wȳ

all -0.0976 -0.1373 doll -1.8254 2.2961
up -0.1247 -0.1807 parti 0.8412 -0.3423
party 0.7907 -0.3652 barbi -2.1698 3.0364
barbie -2.1829 2.9152 birthdai 0.8397 -0.5943
birthday 0.8413 -0.5609 joint 0.1312 0.8592
banner 0.1339 -1.3000 banner 0.1876 -1.2433
jointed -0.0750 0.9290
dolled 1.0000 -2.0000
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Table 5: The numbers of wrongly predicted items. η is the number of items
which are wrongly predicted by the baseline but correctly predicted after
stemming and stop-word removal.

Stemming/stop-word removal
correct wrong

correct — 1.77η

B
as

el
in

e

wrong η 7.65η

Table 6: A comparison of various feature-representation methods.
REbaseline: lower is better.

REbaseline Training (s) Test (s)

Baseline (binary) 100.00% 1,550.98 20.77
Binary + unit-length 99.93% 1,012.29 20.92
TF-IDF + unit-length 99.74% 1,449.30 21.40

1.77η instances. Therefore, overall stemming and stop-word removal are not
beneficial.

5 Effect of Various Feature Representations

Following the discussion in Section 2.2, we compare three feature represen-
tations.

1. Baseline: each feature is binary (i.e., 0 or 1) to indicate the occurrence
of a word.

2. Binary + unit-length: it is the same as baseline, but each instance is
normalized to have unit length.

3. TF-IDF: see Eq. (1), but we use binary (0/1) values as TF. Each instance
is normalized to have unit length.

A crucial difference from general text classification is that in a product
title of around 10 words, usually words are unique. This is why for TF-
IDF we simply use 0/1 values as TF. In [6] for question classification, the
authors have pointed out this property and used binary rather than TF
representations.

For the second and the third representations, because data have been
normalized, we slightly shift the search space of the SVM penalty parameter
C to {2−2, 2−1, . . . , 22}. See explanation later in this section.

In Table 6, we present both relative error rates to the baseline and train-
ing/test time. Clearly, the error rates of the three representations are similar.
However, the training time of binary representation after normalization is
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Figure 1: The histogram of the number of tokens in training instances.

shorter. We give the following explanation. It is well known that for certain
SVM solvers including what we have used here, a larger penalty parameter
C causes longer running time.2 A simple derivation in the Appendix shows
that

SVM on data xi, ∀i with the parameter C

≡ SVM on data ∆xi,∀i with the parameter C/(∆2),
(4)

where ∆ is any non-zero constant. For example, if ‖xi‖ = 10,∀i, then
baseline with C = 1 is equivalent to training normalized data with C = 100.
Therefore, if data is not normalized, easily the parameter C tried is too large
and causes lengthy training time. We have observed in our experiments that
if the search space of C includes large values, then the training time rapidly
increases. The relationship in Eq. (4) also explains why for normalized data,
we shift the search space of C to include larger values.

The above analysis implies that if ‖xi‖, ∀i are similar, then binary rep-
resentation with and without normalization gives similar performance (as-
suming suitable parameter selection such as CV has been conducted). This
property generally holds for product titles because of similar lengths. In
Figure 1, we draw the histogram of the number of tokens in training in-
stances. Clearly, for most instances, the number of tokens is between 4 and

2See, for example, Section 5 of the practical guide in [26]’s appendix.

13



12. In contrast, for text classification, the length of articles may significantly
vary, so normalization reduces the training time under the risk of obtaining
different test accuracy. Based on the discussion, normalization is always
applied in subsequent experiments.

We observe that TF-IDF gives a similar error rate. The reason is likely
because TF values are usually 0 or 1 (indeed we directly use 0/1 values as
explained earlier). In this situation, TF-IDF essentially feature-wisely scales
training instances so the following problem is solved.

min
w

1

2
‖w‖2 + C

∑l

i=1
max(0, 1− yiwTDxi),

where D is a diagonal matrix. If the regularization term ‖w‖2/2 is not
considered and D is invertible,3 then

min
w

C
∑l

i=1
max(0, 1− yiwTDxi) (5)

≡ min
w̄

C
∑l

i=1
max(0, 1− yiw̄Txi), (6)

where Eq. (5) and Eq. (6) correspond to optimization problems of using
TF-IDF and binary, respectively. Their optimal solutions w∗ and w̄∗ satisfy
w̄∗ = Dw∗. For any new x, its TF-IDF representation is Dx, so

(w∗)TDx = (w̄∗)Tx

implies the same decision value. This derivation shows that because TF of
product titles is generally 0 or 1, if linear classifiers such as SVM or logistic
regression are applied, the performance of the TF-IDF representation should
be similar to that of the binary representation.

6 Effect of Different Multi-class Classifiers

In Section 3.3, from some experimental results, we suspect that in some
situations one-versus-rest may not obtain appropriate weights because k
binary models are independently trained. Therefore, we experiment with
two other common multi-class linear SVM methods.

1. One-versus-one multi-class method [28]. For k classes of data, this method
generates k(k − 1)/2 models, each of which involves only two classes of
training data. For testing, although there are many approaches, voting
is a simple and commonly used strategy. If the model of class i versus
class j predicts i, then the counter for class i is increased by one. In the
end, the class with the highest number of votes is predicted. The main

3D is invertible if IDFj > 0 for all j. A title set can rarely have IDFj = 0 because it
means word j appears in all instances.
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difficulty of applying the one-versus-one approach here is that it needs
O(k2n) storage to store O(k2) models. Because of this reason, in the re-
cent survey for large-scale linear classification [21], the authors conclude
that the one-versus-one approach is less practical. Further, LIBLINEAR
does not support this multi-class method. We create an implementation
by storing k(k−1)/2 models in a sparse form. Some technical details will
be discussed in Section 8.3.

2. Multi-class SVM by solving one single optimization problem. Existing
approaches of this type include [29–31], but here we mainly consider the
approach by Crammer and Singer [30]. It solves the following problem.

min
w1,...,wk

1

2

∑k

m=1
‖wm‖2+

C
∑l

i=1
max

m:m 6=yi
max(0, 1− (wyi −wm)Txi).

The loss term max
m:m6=yi

(· · · ) indicates that ideally we have

(wyi)Txi − (wm)Txi ≥ 1, ∀m 6= yi.

This concept is very similar to Eq. (3) for one-versus-rest. However,
the main difference is that all k models are obtained together from one
optimization problem.

In addition to the performance, we are interested in training/test time. Ta-
ble 7 gives the comparison results. The error rates of the three methods
are similar, although one-versus-one and Crammer and Singer are slightly
better. Unfortunately, we find that it is harder to analyze the three meth-
ods here. In Sections 4 and 5, we solve the same optimization problem, but
train different data. In contrast, we now solve different optimization prob-
lems using the same data. Further, we have inconsistent results because
later in Section 7, with more features in the data, one-versus-rest becomes
competitive. After some preliminary analysis, we cannot conclude which
method is better in terms of error rates and decide to leave this issue for
future investigation.

For training time, Crammer and Singer SVM is clearly the fastest. This
finding is interesting. In the paper [32] introducing LIBLINEAR’s imple-
mentation for Crammer and Singer’s SVM, the authors compare with one-
versus-rest on test accuracy only. LIBLINEAR applies coordinate-descent
methods for all three multi-class approaches compared here. We particu-
larly check one-versus-rest and Crammer and Singer because their concepts
are very similar. We find that the timing difference is not because of dif-
ferent numbers of operations. Instead, memory access is the reason. For
one-versus-rest, the number of training-data accesses is

k × l ×#iterations, (7)
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Table 7: A comparison of multi-class SVM methods. REbaseline: lower is
better.

REbaseline Training (s) Test (s)

One-versus-rest 99.93% 1,012.29 20.92
One-versus-one 95.28% 732.38 82.63
Crammer & Singer 97.30% 175.77 20.82

where #iterations is the average number of iterations taken by the k two-
class problems and each iteration is a cycle of l coordinate descent steps to
go through all training instances. In contrast, for Crammer and Singer, the
number is only

l ×#iterations. (8)

The reason is that each time when an instance is accessed, it is used for
simultaneously updating k models. In our experiment, on average each two-
class training of one-versus-rest needs 90 iterations, while Crammer and
Singer’s SVM needs 60. However, the running time of one-versus-rest is five
times rather 1.5 times more than that of Crammer and Singer. The reason
is because of the different numbers of data accesses shown in Eqs. (7) and
(8).

For test time, because of k(k − 1)/2 inner products, one-versus-one is
slower than the other two even though we have sped up its test using a
sparse storage of the model.

The conclusion of this section is that because of similar performance but
faster training, Crammer and Singer SVM is preferred.

7 Effect of Bigram and Polynomial Mappings

We conjectured in Section 3.3 that for product title classification some pairs
of words may provide useful information. In Table 8, we compare the fol-
lowing two methods to generate more features.

1. Bigram + unigram.

2. Degree-2 polynomial mapping (poly2). A unigram feature vector x ∈ Rn

is expanded to

[1, x1, . . . , xn, x
2
1, . . . , x

2
n, x1x2, . . . , xn−1xn]. (9)

The method poly2 is related to item-set features (n words co-occurred in
a document) used in text classification (e.g., [25] and [33]). The number
of features in Eq. (9) can be up to n(n + 1)/2, which is 1011 in our case.
Fortunately, some features never have non-zero values in the training set. To
efficiently remove unnecessary features, we implement a Hashing technique
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Table 8: A comparison of different methods to generate more features.
REbaseline: lower is better.

Bigram + Unigram (#Features = 11,799,345)
REbaseline Training (s) Test (s)

One-versus-rest 71.54% 1,559.37 74.43
One-versus-one 75.26% 1,090.76 148.11
Crammer & Singer 75.14% 615.34 73.93

Poly2 (#Features = 41,689,205)
REbaseline Training (s) Test (s)

One-versus-rest 70.13% 3,983.46 280.17
One-versus-one 74.13% 2,812.21 535.19
Crammer & Singer 71.21% 1,531.79 271.38

proposed in Section 5 of [34]. The numbers of features, shown in Table 8,
are rather large: 11M for bigrams and 41M for poly2. We normalize each
instance to have unit length. The search space for the SVM parameter C is
{2−2, 2−1, . . . , 22}. Because the three multi-class strategies perform similarly
in Section 6, we run all of them here.

Table 8 shows that these two types of features give much better results
than those in Table 7 by unigrams. We have also checked the error rate of
each class and found that results are consistently better (details not shown
here). Further, for all three multi-class strategies, poly2 is slightly better
than bigram + unigram. For the best result, the number of errors is reduced
to only 70% of the baseline.

To investigate the usefulness of our newly added features, we analyze
the same two titles used in Section 3.3. By the same setting to show
wsporting goods and wjewelry & watches, and the number of word occurrences
in the training set, we present results in Table 9. Both titles were wrongly
predicted to “jewelry & watches,” but with bigram features, they are now
correctly predicted as in “sporting goods.” From Table 9(a), “d ring” and
“5 bit” occur more often in “sporting goods,” so they help to remedy the
issue caused by “ring,” which mainly appears in the “jewelry & watches”
class. Similarly, in Table 9(b), “split rings” and “steel split” contribute to
the correct prediction of the instance.

We then identify some titles which are wrongly predicted by bigram +
unigram, but correctly predicted by poly2. In an example shown in Table
10, among all the token combinations, “sydney olympics” is a useful feature
for the prediction to the correct class “sports mem, cards & fan shop.”
However, this feature is not a bigram because “sydney” and “olympics” are
separated in the title “sydney 2000 olympics ...” Therefore, the classifier of
using bigrams wrongly predicts the instance to the “dvds & movies” class
because of the high weights of “opera” and “house” in wdvds & movies. This
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Table 9: Predicting the two titles in Table 2 by bigrams.

(a) tokenized title: “rubber d ring 5 bit”

y: “sporting goods” ȳ: “jewelry & watches”
(wy)Tx = 2.87354, (wȳ)Tx = 0.827066

Tokens wy wȳ Number of appearances
training class y class ȳ

d -0.0514 -0.0522 219,129 6,298 10,320
5 0.2466 0.0368 662,933 48,549 91,888
ring 0.0757 2.8543 147,793 2,407 129,080
rubber 0.3394 0.2492 44,021 2,588 5,386
bit 1.3889 -0.7510 9,397 1,136 120
ring 5 -0.1316 0.1958 580 6 538
d ring 0.5881 -1.3797 244 63 16
5 bit 0.4179 -0.3260 22 11 0
rubber d 0.0000 0.0000 7 0 0

(b) tokenized title: “3 stainless steel split rings pack of 25”

y: “sporting goods” ȳ: “jewelry & watches”
(wy)Tx = 5.92099, (wȳ)Tx = 1.47078

Tokens wy wȳ Number of appearances
training class y class ȳ

3 0.1066 -0.0185 980,520 47,991 59,113
25 0.1004 0.0207 103,606 6,498 13,070
of -0.1525 0.0157 504,914 14,511 28,665
pack 0.5651 -0.3614 99,808 9,235 551
rings 0.5100 2.4874 27,069 2,563 17,285
pack of 0.1497 -0.0455 5,891 535 101
stainless 0.9438 1.0372 46,674 3,595 26,855
steel 0.5115 0.4972 69,034 10,804 31,839
stainless steel -0.3909 -0.0373 37,551 2,483 23,468
split 0.2342 -0.0098 4,745 950 540
split rings 1.4936 -0.5728 403 211 175
of 25 0.2679 0.0262 2,369 150 274
steel split 1.9943 -1.4904 67 65 2
rings pack -0.1293 -0.0000 13 0 0
3 stainless -0.2833 -0.0781 66 8 16
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Table 10: An example which is wrongly predicted by bigram but correctly
predicted by poly2.

tokenized title: “sydney 2000 olympics parthenon opera house”
true(y): “sports mem, cards & fan shop” predicted(ȳ): “dvds & movies”

Degree-2 Polynomial Mapping

Features wy wȳ Number of appearances
training class y class ȳ

constant “1” in Eq. (9) -0.63 0.53 10,000,001 523,911 240,493
sydney 0.33 0.20 707 58 31
2000 0.57 0.01 41,511 5,064 3,033
olympics 1.21 0.17 2,113 463 26
parthenon -0.22 -0.00 37 2 1
opera -0.65 0.20 2,255 7 242
house -0.11 0.36 21,993 339 1,628
sydney sydney 0.33 0.20 707 58 31
2000 2000 0.57 0.01 41,511 5,064 3,033
olympics olympics 1.21 0.17 2,113 463 26
parthenon parthenon -0.22 -0.00 37 2 1
opera opera -0.65 0.20 2,255 7 242
house house -0.11 0.36 21,993 339 1,628
sydney 2000 0.19 0.23 95 43 2
sydney olympics 0.42 0.00 32 12 0
sydney opera 0.10 -0.01 27 3 3
sydney house 0.10 0.00 25 3 3
olympics 2000 0.40 0.00 39 14 0
2000 opera 0.10 0.00 6 3 0
2000 house 0.09 -0.08 65 6 12
olympics opera 0.09 0.00 1 1 0
olympics house 0.06 -0.02 8 1 0
opera house 0.02 -0.05 77 3 12

Unigram + Bigram

Features wy wȳ Number of appearances
training class y class ȳ

house -0.17 0.54 21,993 339 1,628
opera -1.01 0.39 2,255 7 242
2000 0.61 0.14 41,511 5,064 3,033
olympics 1.89 0.45 2,113 463 26
sydney 0.69 0.51 707 58 31
parthenon -0.55 0.13 37 2 1
sydney 2000 0.33 0.52 46 24 1
opera house 0.34 -0.12 76 3 12
2000 olympics 0.23 0.00 10 3 0
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example shows that “long distance relationship” of words may be helpful.
We can use and present such information only because titles are short.

The improvement made by bigrams or poly2 in Table 8 seems to be
more significant than what reported earlier for text classification. In Table
1 of [21], for five text sets, the accuracy of using linear SVM is almost the
same as nonlinear SVM using a Gaussian kernel. Past studies [34] have in-
dicated that the performance of using degree-2 polynomial mappings tends
to be somewhere in between. Therefore, although we have not conducted
experiments, for the five document sets used in [21], neither bigram nor
degree-2 polynomial mappings may significantly improve the performance.
The average document length of these five sets is at least 50. Therefore,
because tokens of a longer document may have given rich enough informa-
tion, word pairs do not provide additional information. In fact, in an earlier
survey on bigrams [24], the authors conclude that “for an unrestricted text
categorization task one would probably not expect dramatic effects of using
bigrams.” In contrast, because of short title lengths, bigram or degree-2
polynomial features are very useful for title classification.

However, we must point out that in [6, 7] for question classification, the
authors show no improvements using n-grams. Because both questions and
titles are short texts, we may expect a similar conclusion in their and our
works. However, data and many settings are different, so more detailed
investigations are needed.

8 Other Issues

We discuss some issues related to our design of experiments and our imple-
mentations.

8.1 Training/test Data Preparation

In Section 3.1, we generated data using sold items because their class labels
are considered more reliable. However, unsold items may provide additional
information (e.g., some rare words) for training. We prepare another train-
ing set of 10M instances by subsampling from all listed items rather than
sold items. We then train a model to predict the same test set of sold items
used in earlier experiments. The test accuracy is slightly lower. This re-
sult shows that if the evaluation is on sold items, using also sold items for
training is better because of closer data distributions.

8.2 More Data or More Features

In data classification, a possible way to improve the performance is by col-
lecting more training data. In this paper, up to now we consider 10M train-
ing instances subsampled from all sold items, and investigate various mod-
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Table 11: A comparison: more data versus more features. REbaseline: lower
is better.

#instnaces #features REbaseline Training (s) Test (s)

More data 87,650,897 1,696,802 92.13% 3,655.29 24.93
More features 10,000,001 11,799,345 75.14% 615.34 73.93

eling issues. It is interesting to see the performance gain by increasing the
training size.

In Table 11, we compare the following two settings.

1. We consider a larger training set of 87M sold items. We use binary
representation and normalize each instance to a unit vector.

2. We consider the 10M training set used in earlier experiments and apply
bigram + unigram features.

For both settings, we train Crammer and Singer multi-class SVM. Table
11 indicates that the improvement by increasing training size is not that
significant. Therefore, for product title classification, investigating various
modeling issues may be a more effective way to improve the performance.

8.3 Implementation of One-versus-one Multi-class SVM

We discussed in Section 6 that for a k-class data, the one-versus-one method
has a disadvantage of requiring O(k2n) space to store k(k − 1)/2 model
vectors, which is much larger than O(kn) of the other two methods. For
training 41M degree-2 polynomial features in Section 7, storing the model
(assuming double precision) needs 41M× 29× 28/2× 8 = 129GB, which is
beyond the capacity of our machine.

To reduce the memory consumption, we observe that many elements in
model vectors are zeros and need not be stored. This situation occurs be-
cause some features of rare tokens are always zero in a pair of two classes.
Actually, the model vectors for the one-versus-one method shown in Ta-
ble 8 with poly2 features only have 350M non-zero elements, which can be
stored in a sparse form. Then the memory for storing the model is reduced
from 129G to less than 5G. This implementation makes the one-versus-one
method possible for training large product title sets. Indeed, ours may be
the largest one-versus-one SVM ever solved.

9 Conclusions and Future Issues

In this paper, we check the difference between product title classification and
general text classification. It is observed that some conventional thoughts
on text classification still apply to product title classification. For example,
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data normalization is essential for faster SVM training. However, we find
some interesting differences.

1. Stemming and stop-word removal should not be applied in product title
classification. In contrast, for text classification, these procedures are
sometimes beneficial.

2. Because product title lengths are similar, our analysis in Section 5 shows
that if SVM is applied, data normalization does not downgrade the per-
formance. Further, because words in a title are generally different, our
derivation indicates that binary and TF-IDF representations perform
similarly.

3. Because titles are often short, our analysis in Section 7 shows that bi-
gram or degree-2 polynomial mappings are more effective than the case
in general text classification.

In addition, we have a useful conclusion for general text classification. For
optimization methods used in Section 6 to train one-versus-rest and Cram-
mer and Singer SVM, if their numbers of iterations are similar, Crammer
and Singer SVM is faster because of less frequent data accesses.

We believe these conclusions will be very useful for practitioners.
While we have conducted extensive experiments and analyses, this work

is far from a complete study on product title classification. We list the
following future issues.

1. Because titles are short and different sellers may submit similar items,
a product title data set may contain duplicated instances. Then SVM
problem (2) can be interpreted in a different way. If we identify unique
instances {x1, . . . ,xl̄}, then the optimization problem can be written as

min
w

1

2
‖w‖2 +

∑l̄

i=1
Ci max(0, 1− yiwTxi), (10)

where Ci = C × (#occurrences of xi). Therefore, for an instance ap-
pearing in the training set several times, Ci is larger and the classifier
attempts to classify it correctly. It is interesting to check the perfor-
mance without giving duplicated instances larger Ci values. That is, Ci

in Eq. (10) is replaced by C. Evaluation is another issue because the test
set may also contain duplicated instances.

A related issue is data imbalance, although our data set is rather bal-
anced (20 of 29 classes contain 1%–10% of training data). This issue is
often application oriented, so suitable modeling techniques and evalua-
tion criteria should be developed according to the business goal.

2. In our investigations in Sections 4–7, we sequentially apply settings con-
cluded from earlier sections. For example, after Section 4, stemming is
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not applied in all subsequent experiments. Therefore, we do not know, for
example, if adding bigram features remedies the problem of stemming or
not. Of course it is not possible to experiment with all settings. However,
more future experiments help to make this study more complete.

3. Although we have considered only one large real-world set, we hope that
our conclusions hold for other product title sets. We will experiment with
other sets to confirm our findings. We mentioned in Section 6 that more
investigations on the three multi-class strategies are needed. Obtaining
results of other data sets can definitely help the analysis.

4. From Tables 8 and 11, on a single computer, our multi-class SVM code
can train

10M instances, 41M features in 25 minutes, and
87M instances, 1.6M features in 60 minutes.

This speed is quite remarkable. However, a direct use of LIBLINEAR fails
on such large data because in most places it uses 32-bit integers to access
data. We must modify some places to use 64-bit integers. How to extend
LIBLINEAR or other text classification software to a truly 64-bit setting
is a very important future direction.

Part of our experimental code, in particular, the extension of LIBLINEAR
for one-versus-one multi-class SVM, will be publicly available.

References

[1] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: An update,” SIGKDD
Explorations, vol. 11, 2009.

[2] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python: Analyzing Text with the Natural Language Toolkit. O’Reilly,
2009.

[3] S. T. Dumais and H. Chen, “Hierarchical classification of Web content,”
in SIGIR, 2000, pp. 256–263.

[4] D. Koller and M. Sahami, “Hierarchically classifying documents using
very few words,” in ICML, 1997.

[5] D. Shen, J. D. Ruvini, M. Somaiya, and N. Sundaresan, “Item catego-
rization in the e-commerce domain,” in CIKM, 2011, pp. 1921–1924.

[6] D. Zhang and W. S. Lee, “Question classification using support vector
machines,” in SIGIR, 2003, pp. 26–32.

23



[7] B. Qu, G. Cong, C. Li, A. Sun, and H. Chen, “An evaluation of classifi-
cation models for question topic categorization,” Journal of the Amer-
ican Society for Information Science and Technology, vol. 63, pp. 889–
903, 2012.

[8] A. Khoo, Y. Marom, and D. Albrecht, “Experiments with sentence
classification,” in Australasian Language Technology Workshop, 2006.

[9] R. Bekkerman and M. Gavish, “High-precision phrase-based document
classification on a modern scale,” in KDD, 2011.

[10] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi, “Learning to classify
short and sparse text & web with hidden topics from large-scale data
collections,” in WWW, 2008, pp. 91–100.

[11] M. Chen, X. Jin, and D. Shen, “Short text classification improved by
learning multi-granularity topics,” in IJCAI, 2011, pp. 1776–1781.

[12] B. Wolin, “Automatic classification in product catalogs,” in SIGIR,
2002, pp. 351–352.

[13] E. Cortez, M. Rojas Herrera, A. S. da Silva, E. S. de Moura, and
M. Neubert, “Lightweight methods for large-scale product categoriza-
tion,” JASIST, vol. 62, pp. 1839–1848, 2011.

[14] J. B. Lovins, “Development of a stemming algorithm,” Mechanical
Translation and Computational Linguistics, vol. 11, pp. 22–31, 1968.

[15] M. Porter, “An algorithm for suffix stripping,” in Readings in informa-
tion retrieval, 1997, pp. 313–316.

[16] D. A. Hull, “Stemming algorithms – a case study for detailed evalua-
tion,” JASIS, vol. 47, pp. 70–84, 1996.

[17] E. Riloff, “Little words can make a big difference for text classification,”
in SIGIR, 1995, pp. 130–136.

[18] K. S. Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of Documentation, vol. 28, no. 1, pp.
11–20, 1972.

[19] B. E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifiers,” in COLT, 1992.

[20] T. Joachims, “Text categorization with support vector machines: learn-
ing with many relevant features,” in ECML, 1998, pp. 137–142.

[21] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “Recent advances of large-scale
linear classification,” Proceedings of IEEE, 2012, to appear.

[22] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. Le-
Cun, U. Muller, E. Sackinger, P. Simard, and V. Vapnik, “Comparison
of classifier methods: a case study in handwriting digit recognition,” in
ICPR, 1994, pp. 77–87.

24



[23] D. D. Lewis, “An evaluation of phrasal and clustered representations
on a text categorization task,” in SIGIR, 1992.

[24] R. Bekkerman and J. Allan, “Using bigrams in text categorization,”
UMass Amherst, Tech. Rep. IR-408, 2004.
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Appendix

The proof is straightforward by reformulating the optimization problem to
have a new variable w̄ = w/∆.

min
w

1

2
‖w‖2 + C

∑l

i=1
max(1− yiwTxi, 0)

≡min
w

∆2 1

2
‖w

∆
‖2 + C

∑l

i=1
max(1− yi(

w

∆
)T (∆xi), 0)

≡∆2
(

min
w̄

1

2
‖w̄‖2 +

C

∆2

∑l

i=1
max(1− yiw̄T (∆xi), 0)

)
.
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