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Abstract

Support vector regression (SVR) has been popular in the past decade, but it provides only an estimated target
value instead of predictive probability intervals. Many work have addressed this issue but sometimes the SVR formula
must be modified. This paper presents a rather simple and direct approach to construct such intervals. We assume that
the conditional distribution of the target value depends on its input only through the predicted value, and propose to
model this distribution by simple functions. Experiments show that the proposed approach gives predictive intervals
with competitive coverages with Bayesian SVR methods.

I. INTRODUCTION

In the past decade support vector regression (SVR) [15], [12] has been popular for regression problems. SVR
provides only an estimated target value; however, the statement that the future value falls in an interval with a
specified probability is more informative. This paper aims to construct predictive intervals for the future values.

For conventional linear regression, the prediction interval has been well developed; for example, see [16] for
Gaussian noise case and [3], [14] for non-Gaussian case. SVR differs from conventional regression in that it maps
input data into a high dimensional reproducing kernel Hilbert space and usemsensitive loss function. As a
result, SVR has a sparse representation of solutions, and hence is relatively fast in training/testing. However, due to
these differences, the existing methods for constructing prediction intervals can not be applied. Recently Bayesian
interpretations of SVR have been developed [6], [4], [2] along the ways of Bayesian techniques for Neural Networks
[8] and for SVM classification [13], [11]. Using a Bayesian framework, one can determine parameters in SVR by
maximizing an evidence function, and at the same time derive an error bar for prediction.

Some of these Bayesian approaches perform well, but in several situations they cannot be applied. For example,
they may modify the SVR formulation, so it is more difficult to use existing SVR software. In addition, some may

prefer using other methods (e.g., cross validation) for parameter selection. As the best parameters are not from



minimizing the Bayesian evidence function, the Bayesian error bar is not applicable. In this article, we propose a
rather simple approach to construct predictive intervals under given parameters. The key ideas are assuming that
the conditional distribution of the target value depends on its input only through the predicted value, and modeling
this distribution by some simple functions. To begin, we employ cross validation (CV) to obtain a set of out-of-
sample regression residuals from the training data. These residuals are supposed to provide information regarding
the distribution of prediction errors. Then, as the prediction errors are usually symmetric and concentrated around
zero, we fit the residuals with zero-mean Gaussian and Laplace families. The most powerful scale-invariant test is
conducted to select between Gaussian and Laplace families. After selecting the family, the final model is determined
by using the maximum likelihood estimate for the scale parameter.

The assumption that the distribution of the target value depends on its input only through the predicted value is
somewhat restricted. However, it often works well in practice or can provide a crude estimation for initial analysis.
For data whose distribution strongly depends on variables, we can cluster data into different groups and apply the
proposed technique on each group.

Though an error bar for prediction is a natural by-product under the Bayesian framework, the performance of
such an error bar estimation has not been fully investigated in the literature. In this paper, we evaluate the Bayesian
approach and our proposed by measuring the difference between the counted and the expected numbers of future
data points lying in the interval with pre-specified probabilities. This paper is organized as follows. $gction I
introduces the methods and justifies their validity. Sedtign I briefly reviews SVR and its Bayesian interpretation.
Experiments and analysis on real-world sets are in Sedftiohs I\ &nd V, respectively. $e¢tion VI gives concluding

remarks.

Il. THE PROPOSEDAPPROACH

In regression problems, we are given a set of training @ata {(x;,y;) | x; € R, y; € R,i = 1,....1}. We

suppose that the data are collected from the model:

yi = f(x4) + &5, 1)

where f(x) is the underlying function and; are independent and identically distributed random noises.

Given a test data, the distribution ofy givenx andD, P(y | x, D), allows one to draw probabilistic inferences
about y; for example, one can construct a predictive inter¥ak= Z(x) such thaty € Z with a pre-specified
probability. Denotingf as the estimated function based BPr(using SVR or other methods by training @, then
¢ =((x) =y — f(x) is the out-of-sample residual (or prediction error), and 7 is equivalent tal € 7 — f(x).
We propose to model the distribution ¢fbased on a set of out-of-sample residugfs}!_, using training data
D. The (;’s are generated by first conductingkafold cross validation to gefj, j=1,...,k, and then setting
G=y — fj(xi) for (x;,y;) in the jth fold. It is conceptually clear that the distribution ¢fs may resemble that
of the prediction error.

To further illustrate this approach, in Figre 1 we investigate from a real data setcpusmall). Basically, a

discretized distribution like histogram can be used to model the data; however, it may be more complex because all



¢;’'s must be retained. On the contrary, distributions like Gaussian and Laplace, commonly used as noise models,
require only location and scale parameters. In Fi§ire 1 we plot the fitted curves using these two families and the
histogram of¢;’s. The figure shows that the distribution ¢fs seems symmetric about zero and that both Gaussian
and Laplace reasonably capture the shapg’ef Thus, we propose to modél by zero-mean Gaussian and Laplace,
or equivalently, model the conditional distribution gfgiven f(x) by Gaussian and Laplace with meﬁhx).

To obtain the fitted curves using Laplace and Gaussian distributions, we first express the density functions of

zero-mean Laplace and Gaussian with scale parameter

Laplace:p(z) = Qie*%; (2
g
and
. 1 —z2
Gaussianp(z) = ﬁe 207 (©)]

Next, assuming thaf; are independent, we can estimate the scale parameter by maximizing the likelihood. For

Laplace, the maximum likelihood estimate is

l
o % @)

and for Gaussian, 1
| 2
o i1 G

o = S ®)

Then we obtain the fitted curves by plugging these estimates[ihto (2] hnd (3), respectively. In the rests of the paper
we refer to the two methods as “Lap” and “Gau.” As we conduct CV to obfair{4) is essentially the mean
absolute error (MAE) of CV, and[5) the mean squared error (MSE).

In theory, the distribution of may depend on the inpwt, and accordingly the length of the predictive interval
for ¢ with a pre-specified coverage probability may vary from case to case, reflecting the fact that the prediction
variances vary with different input values. Though our interval fois free of x, and hence does not reflect
this property, it can be justified if we consider the probability to be taken over all possible input values. It also
worths noting that our modeling shares some similarities with that in [10]. In the context of classification, [10]
proposes to model the probability outpiit(y = 1 | f(x)), by a sigmoid function off. Both [10] and our approach
assume that the conditional distribution g@fgiven x depends orx only throughf(x). Both propose to model
this conditional distribution by simple parametric functions, and then estimate the corresponding parameters by the
maximum likelihood principle.

Regarding the selection of either Gaussian or Laplace, Figure 1 shows that Laplace seemingly outperforms
Gaussian for problerapusmall. Though a graph like Figufg 1 does provide information as to which family better
captures(;'s, such a visual detection is not efficient and can be subjective. In fact, one can select between Laplace
and Gaussian without even fitting the two models. The following theorem [7, chapter 6] gives the most powerful

test among all tests which are invariant under scale transformation.



Theorem 1:Suppose that, ..., Z; are a random sample from a distribution with density

1 21
p(—

2]
ol o

RE)

wherep(z) is either zero forz < 0 or symmetric about zero. The most powerful scale-invariant test for testing

Hy : p=po againstH; : p = p; rejectsHy when

0 -1
T T21) - p1(T2)dT
0 p1(T21) - pr(T21) S e

I tpo(T21) - po(T2)dr

Here “most powerful” means that wheH; is true, the test has the highest probability of rejectiiigg The
Gaussian versus Laplace [5] is a special case of the theorem.

Corollary 2: (Gaussian vs. Laplace) Fpi(z) = e~="/2//2r andp; (z) = e~ 12| /2, the test of Lemmp]1 reduces
to rejectingHy when /3" 72/ " | Z;| > c.

At significant levela, the constant satisfies
i
P()< c>c)=a (6)
> 1Zil

where P, is the probability undei; that is,c is determined so that the probability of rejectiffy is « when Hy

is actually true. Typically is chosen to be 0.05.

Now we briefly summarize the proposed procedure:

1) Generate predicted errofs, . . ., (; by cross-validation using training data.

2) Use Corollary P to test Gaussian against Laplace. Once the decision is made, we determine the scale parameter
o using the maximum likelihood estimaté|((4) o1 (5)).

One should notice that the above procedure may fit for other regression techniques as well, though this paper

mainly focuses on applying it to SVR.

IIl. SVR AND ITS BAYESIAN INTERPRETATION A REVIEW

The classical SVR considers thénsensitive loss function

—0—€ if 6 < —¢,
Le(0) =10 if &€[—¢,¢, (7)
§—e ifd>e

and solves

l
. 1 7 .
Al VWO 6
subjectto  y; — f(x;) <e+&, (8)
f(xi)_yi SG""_&;F’

fia&k 20,221,7l
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Fig. 1. Histogram of¢;'s from the problemcpusmall (using parameter$C, -, ¢) listed in the last row of TabIE]II(a)). The x-axis &
using five-fold CV and the y-axis is the normalized number of data in each bin of width 1. The Laplace distriphtion (4) uses the parameter
o = 2.7948, which is the cross-validation mean absolute error. The Gaussian distritfition (5) uses the pardmeti9.4106, which is the
cross-validation mean squared error. Note that there are four g tfi® exceeding 20, with the maximum 51.5, but the x-axis is cut-260

for visual concern.

Here f(x;) = wl¢(x;) + b and data are mapped to a higher dimensional space by the fungtiSimilar to

support vector classification, a may be a huge vector variable, we solve the dual problem:

!
1
min i(afa*)TK(afa*)JreZ(aiJraf)

oot i=1
l
+ Z yi(al —Q; )
=1
l
subjectto Y (a; —aj) =0, 9)
=1

0<aq;,af <C,i=1,...,1,
whereK is the kernel matrix withK;; = K (x;,x;) = ¢(x;)T ¢(x;). For example, the RBF kernel takes the form
K (xi,x;) = exp(—7[xi = x;]%). (10)

In the literature of Bayesian SVR,= [f(x1), ..., f(x;)]T is regarded as a random vector whose prior is assumed
to be a zero mean Gaussian process with covariance natrénd the likelihood of the data givehis assumed

to be l
p(DIf) =TI_,p(5;) o exp(—C - Y £(5:)), (12)

i=1

whered; = y; — f(x;), C is a positive parameter, arid-) is the loss function. The parameters in the prior and

the likelihood are callechyperparameters, denoted a®, which can be optimized by maximizing the evidence



function
p(D9) = / p(DIf, 0)p(£[6) df.

If we take¥;; = K; ; as in ) and as thee-insensitive loss function, then the hyperparametet 4s (v, C, ¢),
where~ comes from the prior of and (C, ¢) from the likelihood of the data givefi
[4] gives a Bayesian interpretation to the classical SVR formulation but without the presence of the constant

term b in the underlying functioryf. Then they derive an approximation to the logarithm of the evidence function:

Inp(D|§) ~ —(optimal objective value off9))

1 C
C
In , 12
2 "o+ afliC — o+ ) ¢

i€F

wherea, a* is the optimal solution of the dual SVRR](9) under a givenF' is the set of their free components:
F={i|0<a;<Cor0<a; <C}, and (13)

K r is the sub-matrix of the kernel matrix correspondingtto
Suppose that a test casgeis given for which the target valug corrupted with noise& is unknown. Applying

the e-insensitive loss t[ (11), one has the density) of

) = gy e—CE(d). (14

from which we see thai has mean zero and variance
52 2 n €2(eC + 3)
§7 02T 3(eC+1)
[4] shows that the conditional probability distribution ¢ifx) given D is

\/EU eXp(— (f(X) 2_0;;()()) >7 (16)

(15)

p(f(x)[D) =

where

o} = K(x,x) — Kir K5 5w Krx

with K being the vector containing all'(x;,x),7 € F', and

f(x) = (ar —ap)" Kpx

is the decision function. Consequently, the prediction variance is

var(y — f(x)) = of + a7,
which is the square of the so called “error bar for prediction.”
The main advantages of Bayesian approaches are

1) parameter and feature selection can be done simultaneously by maximizing the evidence function, and

2) the error bar for prediction can be formulated.



TABLE |

DATA SET STATISTICS FOR space_ga, abalone, add10, AND cpusmall, RANDOM SUBSETS OF1,000INSTANCES ARE USED

Problem #data  #features
pyrim 74 27
triazines 186 60
bodyfat 252 14
mpg 392 7
housing 506 13
add10 1000 10
cpusmall 1000 12
space_ga | 1000

abalone 1000

The performance depends on the quality of the evidence function. To evaluate the performance of this error bar
estimation, the distribution of = y — f(x) is required. By decomposing into two independent components,
y—f0) = (y = f(x)) + (f(x) = f(x)), (17)

we can obtain the distribution a@f by convolution of the two densities ([14) arjd (16).
[2] thinks that the lack of smoothness of thénsensitive loss function may cause inaccuracy in the approximation
of the evaluation function, and hence the inference abBoitus, they propose a soft insensitive loss function by

solving a modified SVR:

min gwhw ciwo@«) +(E)
subject to  y; — wlp(x;) < (1 — B)e + &, (18)
WIo(x) — i < (1= Be+ &,
6,6 >0i=1,...,1,

where

o) = if € [0,20¢),
m— fBe if € [20€ 00).

They derive an approximation to the logarithm of the evidence function:
Inp(D|#) ~ —(optimal objective value off18))
c
Kpr)

2Be
~1nZ,, (19)

1
—éln det(f +



TABLE I
DETAILED INFORMATION REGARDING FIVE TRAINING/TESTING SPLITS oFcpusmall. THE EXPECTED NUMBER OF COVERAGE I$# TEST

SET) X (80%)=160. HE METHOD LAP* IS PROPOSED AND DESCRIBED INSECTION[[V]

C,v,e Gau Lap Lap BSVR1

64.0,0.25,0.500 178 174 170 23
64.0,0.25,0.500 176 170 164 24
64.0,0.25,0.004 178 166 161 1
64.0,0.25,0.500 167 159 158 17
64.0,0.25,0.250 181 169 166 12

(a) Best parameters based on CV and the numbers
of test instances covered.

C,v,e Gau Lap Lap BSVR1

0.5,0.06,0.500 193 187 169 81
0.5,0.06,0.500 195 183 168 89
0.5,0.06,0.500 193 181 167 84
0.5,0.06,0.500 188 178 161 90
0.5,0.06,0.500 191 180 160 1

(b) Best parameters based on maximizipg] (12)
and the numbers of test instances covered.

C,k,ko,kp, ¢ Gau Lap Lap BSVR2

0.50,0.68,335.9,102.2,0.057 175 167 162 164
0.43,0.66,338.2,102.0,0.055 181 170 168 165
0.49,0.70,329.7,102.2,0.057 178 164 162 177
0.45,0.68,274.0,103.0,0.056 174 168 167 162
0.54,0.67,314.3,101.6,0.054 182 165 163 171

(c) Best parameters based on maximizifig] (19) and the
numbers of test instances covered.

where[ is the identity matrix,F’ has the same form as (13) but with a* replaced by the optimal solution of the
dual of [18), and

Zs=2(1-p)e+2 7TFﬂeerf(\/C’ﬂe) + %67Cﬁ6

with

erf(z) = %/@ e dt.

Their conditional distribution off (x) given data has the same form fs](16), but with

2 _
()’t2 :K(X,X)—K};x(%f—I—KF’F) 1KF,x- (20)



TABLE

DETAILED INFORMATION REGARDING FIVE TRAINING/TESTING SPLITS OFhousing. THE EXPECTED NUMBER OF COVERAGE I1$# TEST

SET)x(80%)=81.

C,v,e Gau Lap Lap BSVR1
32.0,0.12,0.031 87 81 78 50
8.0,0.25,0.062 90 86 84 97
4.0,0.25,0.062 93 91 87 100
64.0,0.25,0.125 84 80 79 78
8.0,0.25,0.062 93 88 86 100

(a) Best parameters based on CV and the numbers

of test instances covered.

C,v,e Gau Lap Lap BSVR1
32.0,0.50,0.004 87 82 80 70
32.0,0.50,0.008 88 86 86 74
16.0,0.50,0.016 92 90 90 86
32.0,0.50,0.004 91 89 89 71
16.0,0.50,0.004 86 82 82 90

(b) Best parameters based on maximizfnd (12) and
the numbers of test instances covered.

C,Kk,ko,kp, e Gau Lap Lap BSVR2
13.91,0.72,0.2,73.2,0.050 91 83 78
11.03,0.54,0.2,81.7,0.045 92 89 85
14.08,0.48,0.2,60.1,0.077 92 90 88
10.76,0.41,0.2,81.4,0.041 93 86 79
13.73,0.43,0.2,66.5,0.058 95 86 83

88
91
92
88
85

(c) Best parameters based on maximizipg] (19) and the

numbers of test instances covered.

In contrast to[([7), the loss function becomes

43e
les(0) =140

43e

—d—e¢ if € ((1+0B)e,00).

—0—c¢ if € (—o0,—(14 B)e)

U9 if 5 ¢ [—(1+ B)e, —(1 — B)e]
if 6 € (—(1- B (1-7pe)
=059 if 5 [(1 - B)e, (1 + B)e]

(21)



AVERAGE ABSOLUTE DIFFERENCE ON NUMBER OF COVERAGESJSING CV FOR PARAMETER SELECTION

TABLE IV

Problem #80% Gau Lap Lap Hist BSVR1

pyrim 11.8 14 1.2 1.8 2.0 2.8
triazines 29.8 2.7 2.1 2.1 15 5.2
bodyfat 40.3 93 7.9 3.7 2.0 9.1
mpg 62.7 43 24 2.8 2.3 145
housing 81.0 84 46 3.7 5.0 175
add10 160.0 78 6.6 6.6 6.8 121.2
cpusmall | 160.0 16.0 8.0 4.6 5.8 144.6
space_ga | 160.0 6.0 6.8 6.8 5.8 43.4
abalone 160.0 132 6.4 7.2 8.2 135.6

(a) Pre-specified probability = 80%.

Problem #95% Gau Lap Lap Hist BSVR1

pyrim 141 0.7 05 0.7 0.7 0.7
triazines 35.3 11 09 0.9 0.9 2.2
bodyfat 47.9 1.7 13 0.9 11 1.7
mpg 74.5 0.7 0.6 0.6 0.7 3.7
housing 96.1 2.2 2.2 2.2 2.2 7.8
add10 190.0 36 7.8 7.8 3.8 138.8
cpusmall 190.0 40 34 2.8 1.0 168.4
space_ga | 190.0 3.4 3.2 3.2 3.2 40.6
abalone 190.0 38 26 2.8 4.2 157.8

Thus the density function of is

(b) Pre-specified probability = 95%.

p(6) =

L exp(—Ct. 5(0)),
Zp

whereZp = [ exp(—Cl, (6))dé. Using [I1) and[(Z1)e? is

28
C

e(1-p)*

2

2 ((1-p)3% e
25{3 Tyl
4(1 - B)se?
+——5 + (
L2e0bp) 2

and the prediction variance s + o7.

02

An important difference in [2] is the use of the kernel

C

=) eXp(—Cﬁe)}

+ (1 — B)%e?)erf(r/Cpe)

K
K(xi,%x;) = ko eXP(—§||Xz‘ = %|*) + k.

10

(22)

(23)

(24)
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TABLE V

AVERAGE ABSOLUTE DIFFERENCE ON NUMBER OF COVERAGESMAXIMIZING BSVR1EVIDENCE FUNCTION FOR PARAMETER SELECTION

Problem #80% Gau Lap Lap Hist BSVR1

pyrim 11.8 1.4 0.6 0.8 1.0 2.4
triazines 29.8 1.8 15 15 17 1.7
bodyfat 40.3 6.1 3.7 2.4 29 8.9
mpg 62.7 5.9 3.7 4.3 4.5 5.0
housing 81.0 7.8 4.8 4.8 5.4 8.2
add10 160.0 9.0 8.8 8.8 9.6 13.6
cpusmall 160.0 32.0 218 5.0 8.4 75.8
space_ga | 160.0 7.6 4.6 4.6 54 17.4
abalone 160.0 144 7.0 5.8 5.8 10.4

(a) Pre-specified probability = 80%.

Problem #95% Gau Lap Lap Hist BSVR1

pyrim 14.1 0.8 0.8 0.7 0.5 0.5
triazines 35.3 1.8 1.6 1.6 2.4 2.5
bodyfat 47.9 1.9 1.3 1.9 2.7 2.1
mpg 74.5 1.4 1.2 0.8 1.4 4.3
housing 96.1 24 26 2.2 1.0 5.8
add10 190.0 46 80 80 538 4.8
cpusmall 190.0 44 2.8 4.0 2.6 44.8
space_ga | 190.0 2.8 3.2 3.2 3.2 5.0
abalone 190.0 34 34 3.6 3.2 14

(b) Pre-specified probability = 95%.

Thus, instead of one parameterin the RBF kernel, here three have to be decided, and the hyperparameter is
0 = (Ko, Kk, kb, C, €).

In the rest of this paper we refer to the Bayesian methods in [4] and [2] as BSVR1 and BSVR2, respectively.

IV. EXPERIMENTS

We compare the proposed approach with the two Bayesian methods reviewed in Section Ill. Several regression
problems are considered: Problehwusing, abalone, mpg, pyrim, andtriazines are from the Statlog collection
[9]; bodyfat and space_ga are from StatLib [fttp://lib.stat.cmu.edu/datasets ); Problemsadd10
and cpusmall are from the Delve archivehftp://www.cs.toronto.edu/ delve ). For these problems,
some data entries have missing attributes so we remove them before conducting experiments. Note that the attribute
values of these problems are scaled+d, +1], but target values are kept the same. To save the computational

time, for problems with more than 1,000 instances, only a random subset of 1,000 points are used. The numbers
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TABLE VI

ERROR ON COVERAGE MAXIMIZING BSVR2EVIDENCE FUNCTION FOR PARAMETER SELECTION

Problem #80% Gau Lap Lap Hist BSVR2

pyrim 11.8 2.2 2.0 1.6 2.2 1.6
triazines 29.8 3.3 2.3 2.3 1.9 2.3
bodyfat 40.3 9.1 7.7 3.2 3.0 9.1
mpg 62.7 55 3.3 2.7 2.3 3.7
housing 81.0 116 5.8 35 2.7 7.8
add10 160.0 126 9.6 9.6 9.6 10.6
cpusmall 160.0 18.0 6.8 4.4 2.6 7.8
space_ga | 160.0 9.0 54 4.8 4.8 4.8
abalone 160.0 136 50 4.0 9.2 11.4

(a) Difference to 80% coverage.

Problem #95% Gau Lap Lap Hist BSVR2

pyrim 141 07 06 05 1.0 0.7
triazines 35.3 1.0 1.0 1.0 1.4 1.3
bodyfat 47.9 1.7 1.3 0.9 0.9 15
mpg 74.5 0.7 0.6 0.6 1.4 1.8
housing 96.1 1.4 1.0 1.6 2.0 15
add10 1900 40 36 36 46 5.0
cpusmall 190.0 3.6 2.8 3.0 2.2 2.4
space_ga | 190.0 3.4 2.8 2.2 2.0 2.8
abalone 1900 28 28 3.2 2.0 3.8

(b) Difference to 95% coverage.

of data instances and features are reported in Table I.

In the experiment, each data set is separated to five folds and sequentially one fold is used for testing and the
remaining are for training. To have a good model, parameter selection is conducted on the training set. We consider
the following methods:

1) Cross validation(C,~v,e) = [271,20,...,26] x [278,277 ... 21] x [278 277 ... 21] are tried and the one

with the highest five-fold CV accuracy is used to train the model for testing. For this setting, BSVR2 is not
compared as its implementation usgs| (24), a kernel with more parameters.

2) Maximization of the evidence functio(D | 0) of BSVR1: We search the same space(6f~,¢) used

in[@) and choose the one which gives the maximal value of the evidence function. Similar to using CV for
parameter selection, BSVR2 is not compared.

3) Maximization of the evidence functioR(D | ) of BSVR2: Now there are five parametets, kg, k5, and
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e. P(D | 0) is maximized by a gradient-based implementation used in [2]. For this setting we did not compare
BSVRL1 as its kernel implementation must be changed. On the contrary, it is still easy to use the proposed
approaches as their implementations are independent of parameters.

Implementation details and experimental results are given in the following subsections.

A. Implementation Details

Given a pre-specified probability — 2s, the performance of various approaches is evaluated by comparing the
number of testing data lying in their prediction intervals with the expected nurfibef2s) x (# test se}. For each
(x,y) in the test set, the prediction interval foris (f(x) — ps, f(x) + ps), Wherep, is the uppersth percentile
of the corresponding probability distribution of= y — f’(x)). Therefore, we simply count the number @fn the
test set lying in[—ps, ps], and compare this number with its expected value.

For a zero-mean symmetric variabfewith densityp(z), ps can be determined by solving

/Ps p(2)dz=1—s.

— 00

For example, a Gaussian witl{z) defined in[() hag, = o~ '®~!(1—s), whered(z) = [*__ ﬁe‘zzmdz, and

hence the prediction interval faris
(—o7' e (1 —s), 07 071 — 5)); (25)
a Laplace withp(z) as in [2) hap, = —oIn(2s), and the resulting interval is
(oln(2s), —oln(2s)). (26)
For the variable] in (I7) under the BSVR1 setting, we dengteas the density of and write

ps
1—-s = / pe(2)dz

0 rps—f
= [ [ sedsmonar

wherep(d) andp(d)dopsp(f) are as in) an6). Since the integral(14) over a certain range can be derived
explicitly, the convolution here is reduced to a one-dimensional integration. Then this percentile problem is resolved
by numerical integration. Similar treatment can be applied to BSVR2, (ithin ) replaced b2). Note that
for Bayesian approach the distribution @tlepends on the input value and so doeg,. Therefore, the numerical
integration needs be carried out for each test instance.

For non-symmetric distributions like the discretized histogram, we simply¢ssrinto the form¢;) < 2y <
-+ < (), and then set thél — 25)100% prediction interval for¢ as ((,.(x test set C(1—s)-(# test sep)- Below we
refer to this method as “Hist,” which will be compared with other approaches as well.

Here are more implementation details. For searching the best parameters by CV and then calculating the coverages,
we use the software LIBSVM [1], which solves the standard SMR (9). As BSVR1 uses the formulation without
the bias ternb, we modify LIBSVM for such a form and use it to evaluate the evidence function. For BSVR2, the

implementation from [2] is adopted.
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TABLE VI

COMPARISON BETWEENCV AND BAYES FOR PARAMETER SELECTIONMSE AND AVERAGE NUMBER OF SUPPORT VECTORS

Ccv BSVR1 BSVR2
Problem MSE #SV MSE #SV MSE #SV
pyrim 0.0467 44.2 0.0864 58.6| 0.0490 38.0
triazines 0.1395 83.4 0.1734 147.0/ 0.1291 99.0
bodyfat 0.0027 62.6 0.0087 174.2| 0.0029 82.0
mpg 0.0196 149.4 0.0237 300.0f 0.0193 204.0
housing 0.0214 2126 0.0239 382.0f 0.0230 272.0
add10 1.9466 634.8 8.0780 743.0f 2.8555 782.0
cpusmall | 16.5119 722.2| 180.0748 755.0| 15.9123 786.0
space_ga 0.0131  465.8 0.0128 623.6| 0.0149 614.0
abalone 5.3678 684.2 7.8067 757.2| 5.5827 779.0

B. Results and a New Method “L&p

We first use the datasepusmall to describe some experimental findings. Table Il reports the results of parameter
selection and the number of test instances lying in the predictive intervals for each of the five training/testing splits.
Here the parameters are selected by the different strategies described earlier. In this experiment, the test size is
200 for each split and is set as 0.1, so the coverage probability is 0.8 and the expected number of instances
being covered is 160. Recall the description under Figlre 1 that there are a couple of extreme valises of
with the maximum as large as 51.5. Consequently, the estimate of the scale paranseguite large and the
resulting prediction interval [((25) of (£6)) is too wide. This justifies why “Gau” and “Lap” tend to over-cover the
test instances. Therefore, we propose to re-estimate the scale parameter by discarding the “very €drdiaeed
(;'s are called “very extreme” if they exceeth x (standard deviation of distribution). The resulting coverages are
then shown in the fourth column, entitled as “Ca@pWe study another problerhousing in Table[lll. Results are
similar.

Tableq TVEV] present the results for all the datasets using different parameter selection strategies. Here we simply

report the average absolute difference over the five splits. For each split, the absolute difference is

|# of ¢ in [—ps,ps] — (1 — 2s) x (# test se}|

with s = 0.1 and 0.025, corresponding to coverage probabilities2s = 80% and 95%. For example, the absolute
differences forcpusmall using CV and “Lap.” are 14, 10, 6, 1, and 9, as given in Table Ii(a), and hence the averaged
value is 8.0. A by-product of this experiment is the comparison between standard SVR and the two Bayesian SVRs.

Table[VT] presents the averages of MSEs and the numbers of support vectors over the five training/testing splits.
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V. ANALYSIS

We first consider the results apusmall in Table[1l. Tablg j(a) shows that, with the model parameters selected
by CV, BSVRL1 severely under-covers the test instances (the expected number is 160). This phenomenon can be

explained by the influence of the parametersagnin (I5). The paramete(C,e) = (64,0.5) leads too? =
4.8 x 1074 + 8 x 102, which is rather small and causes the prediction interval to be too narrow to cover most
test instances. For the third training/testing sy, €) = (64,0.004) results in an even smaller?, and hence an

even worse coverage. Though the situation has been substantially improved when choosing the model parameter as
the maximizer of the Bayesian evidence functipn| (12), the results are still way below the expected value 160. This
result indicates that the evidence function of BSVRL1 is not accurate. MSE shown in[Table VII further confirms
such a conclusion. On the other hand, BSVR2 gives good results in[Thble Ii(c). Its MSE irff Thble VI is competitive
with that by CV for parameter selection. The performance of BSVR2 indicates that its Bayesian evidence function
(19) is accurate, and the use of a more general kernel function may also help. Regarding proposed methods, “Gau,”
“Lap,” and “Lap*” all produced reasonable coverages no matter using which method for parameter selection. In
general, “Lap” improves upon “Lap,” and for all the five training/testing splits “Lap” outperforms “Gau.” The
results in Tabl¢ Tl can be explained similarly.

For other datasets using CV as the parameter selection strategy] Table IV shows that, like the previous two tables,
BSVRL1 is worse than others. The overall performance of “Lap” is better than that of “Gau.” Indeed the results of
the most powerful tesf6) are in favor of Laplace for all the nine datasets. This seems to indicate that, for these
problems,y — f(x) is more like a Laplace rather than a Gaussian. The results of “Lap” and”laap satisfactory.

The advantage of using “Lapover “Lap” is apparent on dataseb®dyfat andcpusmall in Table[V|(a), where the
averaged absolute errors have been cut to nearly half. The “Hist” produces nice results as well. The main reason is
that “Hist” directly makes use of information frogy’s, instead of assuming a symmetric model with zero. However,

as mentioned in Sectidn| I, it is more complex as@®$ must be retained.

Tableq VY andl VI report results with model parameters maximizing the Bayesian evidence furictjons ({2] and (19),
respectively. For BSVR1, the coverages are much better than those in[ Table IV; however, in general it is still the
worst among all. Again, like Table]ll(b), this can be explained by the choice of the parameter set and its effect on
o2. For the proposed methods, as before, “Lap” outperforms “Gau” in almost all cases;” ‘luather improves
“Lap,” and “Hist” is quite competitive.

In summary, the experimental results indicate that the Bayesian error depends on different Bayesian evidence
functions. As our proposed methods are not related to parameters, they are quite stable for different parameter
selection methods.

Regarding the MSEs of CV and two Bayesian methods, Table VII shows that CV and BSVR2 are better. This
result is consistent with those in previous tables. Better target value prediction also leads to better probability

intervals.
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VI. CONCLUSIONS

In this paper, we propose a simple approach for probabilistic prediction suitable for the standard SVR. Our
approach starts with generating out-of-sample residuals by cross validation, and then fits the residuals by simple
parametric models like Gaussian and Laplace. The most powerful scale-invariant test is applied to effectively test
Gaussian against Laplace. We then compare it with the Bayesian SVR methods by evaluating the performance of
the prediction intervals. The experiments on real-world problems show that our easy approach works fairly well and
is robust to parameter selection strategies. Moreover, in certain cases we can further improve upon our approach
by re-estimate the scale parameter of the Laplace family. In summary, though we assume that the distribution of
the target value depends on its input only through the predicted value, the proposed approach easily provides some

useful probability information for SVR analysis.
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