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Abstract

Support vector regression (SVR) has been popular in the past decade, but it provides only an estimated target

value instead of predictive probability intervals. Many work have addressed this issue but sometimes the SVR formula

must be modified. This paper presents a rather simple and direct approach to construct such intervals. We assume that

the conditional distribution of the target value depends on its input only through the predicted value, and propose to

model this distribution by simple functions. Experiments show that the proposed approach gives predictive intervals

with competitive coverages with Bayesian SVR methods.

I. I NTRODUCTION

In the past decade support vector regression (SVR) [15], [12] has been popular for regression problems. SVR

provides only an estimated target value; however, the statement that the future value falls in an interval with a

specified probability is more informative. This paper aims to construct predictive intervals for the future values.

For conventional linear regression, the prediction interval has been well developed; for example, see [16] for

Gaussian noise case and [3], [14] for non-Gaussian case. SVR differs from conventional regression in that it maps

input data into a high dimensional reproducing kernel Hilbert space and uses anε-insensitive loss function. As a

result, SVR has a sparse representation of solutions, and hence is relatively fast in training/testing. However, due to

these differences, the existing methods for constructing prediction intervals can not be applied. Recently Bayesian

interpretations of SVR have been developed [6], [4], [2] along the ways of Bayesian techniques for Neural Networks

[8] and for SVM classification [13], [11]. Using a Bayesian framework, one can determine parameters in SVR by

maximizing an evidence function, and at the same time derive an error bar for prediction.

Some of these Bayesian approaches perform well, but in several situations they cannot be applied. For example,

they may modify the SVR formulation, so it is more difficult to use existing SVR software. In addition, some may

prefer using other methods (e.g., cross validation) for parameter selection. As the best parameters are not from
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minimizing the Bayesian evidence function, the Bayesian error bar is not applicable. In this article, we propose a

rather simple approach to construct predictive intervals under given parameters. The key ideas are assuming that

the conditional distribution of the target value depends on its input only through the predicted value, and modeling

this distribution by some simple functions. To begin, we employ cross validation (CV) to obtain a set of out-of-

sample regression residuals from the training data. These residuals are supposed to provide information regarding

the distribution of prediction errors. Then, as the prediction errors are usually symmetric and concentrated around

zero, we fit the residuals with zero-mean Gaussian and Laplace families. The most powerful scale-invariant test is

conducted to select between Gaussian and Laplace families. After selecting the family, the final model is determined

by using the maximum likelihood estimate for the scale parameter.

The assumption that the distribution of the target value depends on its input only through the predicted value is

somewhat restricted. However, it often works well in practice or can provide a crude estimation for initial analysis.

For data whose distribution strongly depends on variables, we can cluster data into different groups and apply the

proposed technique on each group.

Though an error bar for prediction is a natural by-product under the Bayesian framework, the performance of

such an error bar estimation has not been fully investigated in the literature. In this paper, we evaluate the Bayesian

approach and our proposed by measuring the difference between the counted and the expected numbers of future

data points lying in the interval with pre-specified probabilities. This paper is organized as follows. Section II

introduces the methods and justifies their validity. Section III briefly reviews SVR and its Bayesian interpretation.

Experiments and analysis on real-world sets are in Sections IV and V, respectively. Section VI gives concluding

remarks.

II. T HE PROPOSEDAPPROACH

In regression problems, we are given a set of training dataD = {(xi, yi) | xi ∈ Rn, yi ∈ R, i = 1, ..., l}. We

suppose that the data are collected from the model:

yi = f(xi) + δi, (1)

wheref(x) is the underlying function andδi are independent and identically distributed random noises.

Given a test datax, the distribution ofy givenx andD, P (y | x,D), allows one to draw probabilistic inferences

about y; for example, one can construct a predictive intervalI = I(x) such thaty ∈ I with a pre-specified

probability. Denotingf̂ as the estimated function based onD (using SVR or other methods by training onD), then

ζ = ζ(x) ≡ y − f̂(x) is the out-of-sample residual (or prediction error), andy ∈ I is equivalent toζ ∈ I − f̂(x).

We propose to model the distribution ofζ based on a set of out-of-sample residuals{ζi}l
i=1 using training data

D. The ζi’s are generated by first conducting ak-fold cross validation to get̂fj , j = 1, . . . , k, and then setting

ζi ≡ yi − f̂j(xi) for (xi, yi) in the jth fold. It is conceptually clear that the distribution ofζi’s may resemble that

of the prediction errorζ.

To further illustrate this approach, in Figure 1 we investigateζi’s from a real data set (cpusmall). Basically, a

discretized distribution like histogram can be used to model the data; however, it may be more complex because all



3

ζi’s must be retained. On the contrary, distributions like Gaussian and Laplace, commonly used as noise models,

require only location and scale parameters. In Figure 1 we plot the fitted curves using these two families and the

histogram ofζi’s. The figure shows that the distribution ofζi’s seems symmetric about zero and that both Gaussian

and Laplace reasonably capture the shape ofζi’s. Thus, we propose to modelζi by zero-mean Gaussian and Laplace,

or equivalently, model the conditional distribution ofy given f̂(x) by Gaussian and Laplace with mean̂f(x).

To obtain the fitted curves using Laplace and Gaussian distributions, we first express the density functions of

zero-mean Laplace and Gaussian with scale parameterσ,

Laplace:p(z) =
1
2σ
e−

|z|
σ ; (2)

and

Gaussian:p(z) =
1√
2πσ

e
−z2

2σ2 . (3)

Next, assuming thatζi are independent, we can estimate the scale parameter by maximizing the likelihood. For

Laplace, the maximum likelihood estimate is

σ =
∑l

i=1 |ζi|
l

, (4)

and for Gaussian,

σ2 =
∑l

i=1 ζ
2
i

l
. (5)

Then we obtain the fitted curves by plugging these estimates into (2) and (3), respectively. In the rests of the paper

we refer to the two methods as “Lap” and “Gau.” As we conduct CV to obtainζi, (4) is essentially the mean

absolute error (MAE) of CV, and (5) the mean squared error (MSE).

In theory, the distribution ofζ may depend on the inputx, and accordingly the length of the predictive interval

for ζ with a pre-specified coverage probability may vary from case to case, reflecting the fact that the prediction

variances vary with different input values. Though our interval forζ is free of x, and hence does not reflect

this property, it can be justified if we consider the probability to be taken over all possible input values. It also

worths noting that our modeling shares some similarities with that in [10]. In the context of classification, [10]

proposes to model the probability output,P (y = 1 | f̂(x)), by a sigmoid function of̂f . Both [10] and our approach

assume that the conditional distribution ofy given x depends onx only through f̂(x). Both propose to model

this conditional distribution by simple parametric functions, and then estimate the corresponding parameters by the

maximum likelihood principle.

Regarding the selection of either Gaussian or Laplace, Figure 1 shows that Laplace seemingly outperforms

Gaussian for problemcpusmall. Though a graph like Figure 1 does provide information as to which family better

capturesζi’s, such a visual detection is not efficient and can be subjective. In fact, one can select between Laplace

and Gaussian without even fitting the two models. The following theorem [7, chapter 6] gives the most powerful

test among all tests which are invariant under scale transformation.
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Theorem 1:Suppose thatZ1, . . . , Zl are a random sample from a distribution with density

1
σl
p(
z1
σ

) · · · p(zl

σ
),

wherep(z) is either zero forz < 0 or symmetric about zero. The most powerful scale-invariant test for testing

H0 : p = p0 againstH1 : p = p1 rejectsH0 when∫∞
0
τ l−1p1(τz1) · · · p1(τzl)dτ∫∞

0
τ l−1p0(τz1) · · · p0(τzl)dτ

> c.

Here “most powerful” means that whenH1 is true, the test has the highest probability of rejectingH0. The

Gaussian versus Laplace [5] is a special case of the theorem.

Corollary 2: (Gaussian vs. Laplace) Forp0(z) = e−z2/2/
√

2π andp1(z) = e−|z|/2, the test of Lemma 1 reduces

to rejectingH0 when
√∑

Z2
i /

∑
|Zi| > c.

At significant levelα, the constantc satisfies

P0

(√∑
Z2

i∑
|Zi|

> c

)
= α, (6)

whereP0 is the probability underH0; that is,c is determined so that the probability of rejectingH0 is α whenH0

is actually true. Typicallyα is chosen to be 0.05.

Now we briefly summarize the proposed procedure:

1) Generate predicted errorsζ1, . . . , ζl by cross-validation using training data.

2) Use Corollary 2 to test Gaussian against Laplace. Once the decision is made, we determine the scale parameter

σ using the maximum likelihood estimate ((4) or (5)).

One should notice that the above procedure may fit for other regression techniques as well, though this paper

mainly focuses on applying it to SVR.

III. SVR AND ITS BAYESIAN INTERPRETATION: A REVIEW

The classical SVR considers theε-insensitive loss function

`ε(δ) =


−δ − ε if δ < −ε,

0 if δ ∈ [−ε, ε],

δ − ε if δ > ε,

(7)

and solves

min
w,b,ξ,ξ∗

1
2
wT w + C

l∑
i=1

(ξi + ξ∗i )

subject to yi − f(xi) ≤ ε+ ξi, (8)

f(xi)− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l.
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Fig. 1. Histogram ofζi’s from the problemcpusmall (using parameters(C, γ, ε) listed in the last row of Table II(a)). The x-axis isζi

using five-fold CV and the y-axis is the normalized number of data in each bin of width 1. The Laplace distribution (4) uses the parameter

σ = 2.7948, which is the cross-validation mean absolute error. The Gaussian distribution (5) uses the parameterσ2 = 19.4106, which is the

cross-validation mean squared error. Note that there are four of the|ζi|’s exceeding 20, with the maximum 51.5, but the x-axis is cut at±20

for visual concern.

Here f(xi) = wTφ(xi) + b and data are mapped to a higher dimensional space by the functionφ. Similar to

support vector classification, asw may be a huge vector variable, we solve the dual problem:

min
α,α∗

1
2
(α−α∗)TK(α−α∗) + ε

l∑
i=1

(αi + α∗i )

+
l∑

i=1

yi(αi − α∗i )

subject to
l∑

i=1

(αi − α∗i ) = 0, (9)

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l,

whereK is the kernel matrix withKij = K(xi,xj) = φ(xi)Tφ(xj). For example, the RBF kernel takes the form

K(xi,xj) = exp(−γ‖xi − xj‖2). (10)

In the literature of Bayesian SVR,f = [f(x1), . . . , f(xl)]T is regarded as a random vector whose prior is assumed

to be a zero mean Gaussian process with covariance matrixΣ, and the likelihood of the data givenf is assumed

to be

p(D|f) = Πl
i=1p(δi) ∝ exp(−C ·

l∑
i=1

`(δi)), (11)

whereδi = yi − f(xi), C is a positive parameter, and̀(·) is the loss function. The parameters in the prior and

the likelihood are calledhyperparameters, denoted asθ, which can be optimized by maximizing the evidence
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function

p(D|θ) =
∫
p(D|f , θ)p(f |θ)df .

If we takeΣij = Ki,j as in (10) and̀ as theε-insensitive loss function, then the hyperparameter isθ = (γ, C, ε),

whereγ comes from the prior off and (C, ε) from the likelihood of the data givenf .

[4] gives a Bayesian interpretation to the classical SVR formulation but without the presence of the constant

term b in the underlying functionf . Then they derive an approximation to the logarithm of the evidence function:

lnp(D|θ) ≈ −(optimal objective value of(9))

−1
2

ln det(2πKF,F ) + lln
C

2(εC + 1)∑
i∈F

ln
C

|αi + α∗i |(C − |αi + α∗i |)
, (12)

whereα, α∗ is the optimal solution of the dual SVR (9) under a givenθ, F is the set of their free components:

F ≡ {i | 0 < αi < C or 0 < α∗i < C}, and (13)

KF,F is the sub-matrix of the kernel matrix corresponding toF .

Suppose that a test casex is given for which the target valuey corrupted with noiseδ is unknown. Applying

the ε-insensitive loss to (11), one has the density ofδ,

p(δ) =
C

2(εC + 1)
exp(−C`ε(δ)), (14)

from which we see thatδ has mean zero and variance

σ2
δ =

2
C2

+
ε2(εC + 3)
3(εC + 1)

. (15)

[4] shows that the conditional probability distribution off(x) givenD is

p(f(x)|D) =
1√

2πσt

exp

(
− (f(x)− f̂(x))2

2σ2
t

)
, (16)

where

σ2
t = K(x,x)−KT

F,xK
−1
F,FKF,x

with KF,x being the vector containing allK(xi,x), i ∈ F , and

f̂(x) = (αF −α∗
F )T ·KF,x

is the decision function. Consequently, the prediction variance is

var(y − f̂(x)) = σ2
δ + σ2

t ,

which is the square of the so called “error bar for prediction.”

The main advantages of Bayesian approaches are

1) parameter and feature selection can be done simultaneously by maximizing the evidence function, and

2) the error bar for prediction can be formulated.



7

TABLE I

DATA SET STATISTICS: FOR space ga, abalone, add10, AND cpusmall, RANDOM SUBSETS OF1,000INSTANCES ARE USED.

Problem #data #features

pyrim 74 27

triazines 186 60

bodyfat 252 14

mpg 392 7

housing 506 13

add10 1000 10

cpusmall 1000 12

space ga 1000 6

abalone 1000 8

The performance depends on the quality of the evidence function. To evaluate the performance of this error bar

estimation, the distribution ofζ = y − f̂(x) is required. By decomposingζ into two independent components,

y − f̂(x) = (y − f(x)) + (f(x)− f̂(x)), (17)

we can obtain the distribution ofζ by convolution of the two densities (14) and (16).

[2] thinks that the lack of smoothness of theε-insensitive loss function may cause inaccuracy in the approximation

of the evaluation function, and hence the inference aboutθ. Thus, they propose a soft insensitive loss function by

solving a modified SVR:

min
w,ξ,ξ∗

1
2
wT w + C

l∑
i=1

(ψ(ξi) + ψ(ξ∗i ))

subject to yi −wTφ(xi) ≤ (1− β)ε+ ξi, (18)

wTφ(xi)− yi ≤ (1− β)ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l,

where

ψ(π) =


π2

4βε if π ∈ [0, 2βε),

π − βε if π ∈ [2βε,∞).

They derive an approximation to the logarithm of the evidence function:

lnp(D|θ) ≈ −(optimal objective value of(18))

−1
2

ln det
(
I +

C

2βε
KF,F

)
−l lnZs, (19)
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TABLE II

DETAILED INFORMATION REGARDING FIVE TRAINING/TESTING SPLITS OFcpusmall. THE EXPECTED NUMBER OF COVERAGE IS(# TEST

SET)×(80%)=160. THE METHOD LAP∗ IS PROPOSED AND DESCRIBED INSECTION IV.

C, γ, ε Gau Lap Lap∗ BSVR1

64.0,0.25,0.500 178 174 170 23

64.0,0.25,0.500 176 170 164 24

64.0,0.25,0.004 178 166 161 1

64.0,0.25,0.500 167 159 158 17

64.0,0.25,0.250 181 169 166 12

(a) Best parameters based on CV and the numbers

of test instances covered.

C, γ, ε Gau Lap Lap∗ BSVR1

0.5,0.06,0.500 193 187 169 81

0.5,0.06,0.500 195 183 168 89

0.5,0.06,0.500 193 181 167 84

0.5,0.06,0.500 188 178 161 90

0.5,0.06,0.500 191 180 160 77

(b) Best parameters based on maximizing (12)

and the numbers of test instances covered.

C, κ, κ0, κb, ε Gau Lap Lap∗ BSVR2

0.50,0.68,335.9,102.2,0.057 175 167 162 164

0.43,0.66,338.2,102.0,0.055 181 170 168 165

0.49,0.70,329.7,102.2,0.057 178 164 162 177

0.45,0.68,274.0,103.0,0.056 174 168 167 162

0.54,0.67,314.3,101.6,0.054 182 165 163 171

(c) Best parameters based on maximizing (19) and the

numbers of test instances covered.

whereI is the identity matrix,F has the same form as (13) but withα,α∗ replaced by the optimal solution of the

dual of (18), and

Zs = 2(1− β)ε+ 2

√
πβε

C
erf(

√
Cβε) +

2
C
e−Cβε

with

erf(z) =
2√
π

∫ z

0

e−t2dt.

Their conditional distribution off(x) given data has the same form as (16), but with

σ2
t = K(x,x)−KT

F,x

(2βε
C
I +KF,F

)−1
KF,x. (20)
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TABLE III

DETAILED INFORMATION REGARDING FIVE TRAINING/TESTING SPLITS OFhousing. THE EXPECTED NUMBER OF COVERAGE IS(# TEST

SET)×(80%)=81.

C, γ, ε Gau Lap Lap∗ BSVR1

32.0,0.12,0.031 87 81 78 50

8.0,0.25,0.062 90 86 84 97

4.0,0.25,0.062 93 91 87 100

64.0,0.25,0.125 84 80 79 78

8.0,0.25,0.062 93 88 86 100

(a) Best parameters based on CV and the numbers

of test instances covered.

C, γ, ε Gau Lap Lap∗ BSVR1

32.0,0.50,0.004 87 82 80 70

32.0,0.50,0.008 88 86 86 74

16.0,0.50,0.016 92 90 90 86

32.0,0.50,0.004 91 89 89 71

16.0,0.50,0.004 86 82 82 90

(b) Best parameters based on maximizing (12) and

the numbers of test instances covered.

C, κ, κ0, κb, ε Gau Lap Lap∗ BSVR2

13.91,0.72,0.2,73.2,0.050 91 83 78 88

11.03,0.54,0.2,81.7,0.045 92 89 85 91

14.08,0.48,0.2,60.1,0.077 92 90 88 92

10.76,0.41,0.2,81.4,0.041 93 86 79 88

13.73,0.43,0.2,66.5,0.058 95 86 83 85

(c) Best parameters based on maximizing (19) and the

numbers of test instances covered.

In contrast to (7), the loss function becomes

lε,β(δ) =



−δ − ε if δ ∈ (−∞,−(1 + β)ε)

(δ+(1−β)ε)2

4βε if δ ∈ [−(1 + β)ε,−(1− β)ε]

0 if δ ∈ (−(1− β)ε, (1− β)ε)

(δ−(1−β)ε)2

4βε if δ ∈ [(1− β)ε, (1 + β)ε]

−δ − ε if δ ∈ ((1 + β)ε,∞).

(21)
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TABLE IV

AVERAGE ABSOLUTE DIFFERENCE ON NUMBER OF COVERAGES: USING CV FOR PARAMETER SELECTION.

Problem #80% Gau Lap Lap∗ Hist BSVR1

pyrim 11.8 1.4 1.2 1.8 2.0 2.8

triazines 29.8 2.7 2.1 2.1 1.5 5.2

bodyfat 40.3 9.3 7.9 3.7 2.0 9.1

mpg 62.7 4.3 2.4 2.8 2.3 14.5

housing 81.0 8.4 4.6 3.7 5.0 17.5

add10 160.0 7.8 6.6 6.6 6.8 121.2

cpusmall 160.0 16.0 8.0 4.6 5.8 144.6

space ga 160.0 6.0 6.8 6.8 5.8 43.4

abalone 160.0 13.2 6.4 7.2 8.2 135.6

(a) Pre-specified probability = 80%.

Problem #95% Gau Lap Lap∗ Hist BSVR1

pyrim 14.1 0.7 0.5 0.7 0.7 0.7

triazines 35.3 1.1 0.9 0.9 0.9 2.2

bodyfat 47.9 1.7 1.3 0.9 1.1 1.7

mpg 74.5 0.7 0.6 0.6 0.7 3.7

housing 96.1 2.2 2.2 2.2 2.2 7.8

add10 190.0 3.6 7.8 7.8 3.8 138.8

cpusmall 190.0 4.0 3.4 2.8 1.0 168.4

space ga 190.0 3.4 3.2 3.2 3.2 40.6

abalone 190.0 3.8 2.6 2.8 4.2 157.8

(b) Pre-specified probability = 95%.

Thus the density function ofδ is

p(δ) =
1
ZD

exp(−C`ε,β(δ)), (22)

whereZD =
∫

exp(−C`ε,β(δ))dδ. Using (11) and (21),σ2
δ is

2
Zs

{
(1− β)3ε3

3
+

√
πβε

C

(2βε
C

+ (1− β)2ε2
)
erf(

√
Cβε)

+
4(1− β)βε2

C
+

(ε2(1− β)2

C

+
2ε(1 + β)

C2
+

2
C3

)
exp(−Cβε)

}
(23)

and the prediction variance isσ2
δ + σ2

t .

An important difference in [2] is the use of the kernel

K(xi,xj) = κ0 exp
(
−κ

2
‖xi − xj‖2

)
+ κb. (24)
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TABLE V

AVERAGE ABSOLUTE DIFFERENCE ON NUMBER OF COVERAGES: MAXIMIZING BSVR1 EVIDENCE FUNCTION FOR PARAMETER SELECTION.

Problem #80% Gau Lap Lap∗ Hist BSVR1

pyrim 11.8 1.4 0.6 0.8 1.0 2.4

triazines 29.8 1.8 1.5 1.5 1.7 1.7

bodyfat 40.3 6.1 3.7 2.4 2.9 8.9

mpg 62.7 5.9 3.7 4.3 4.5 5.0

housing 81.0 7.8 4.8 4.8 5.4 8.2

add10 160.0 9.0 8.8 8.8 9.6 13.6

cpusmall 160.0 32.0 21.8 5.0 8.4 75.8

space ga 160.0 7.6 4.6 4.6 5.4 17.4

abalone 160.0 14.4 7.0 5.8 5.8 10.4

(a) Pre-specified probability = 80%.

Problem #95% Gau Lap Lap∗ Hist BSVR1

pyrim 14.1 0.8 0.8 0.7 0.5 0.5

triazines 35.3 1.8 1.6 1.6 2.4 2.5

bodyfat 47.9 1.9 1.3 1.9 2.7 2.1

mpg 74.5 1.4 1.2 0.8 1.4 4.3

housing 96.1 2.4 2.6 2.2 1.0 5.8

add10 190.0 4.6 8.0 8.0 5.8 4.8

cpusmall 190.0 4.4 2.8 4.0 2.6 44.8

space ga 190.0 2.8 3.2 3.2 3.2 5.0

abalone 190.0 3.4 3.4 3.6 3.2 1.4

(b) Pre-specified probability = 95%.

Thus, instead of one parameterγ in the RBF kernel, here three have to be decided, and the hyperparameter is

θ = (κ0, κ, κb, C, ε).

In the rest of this paper we refer to the Bayesian methods in [4] and [2] as BSVR1 and BSVR2, respectively.

IV. EXPERIMENTS

We compare the proposed approach with the two Bayesian methods reviewed in Section III. Several regression

problems are considered: Problemshousing, abalone, mpg, pyrim, and triazines are from the Statlog collection

[9]; bodyfat and space ga are from StatLib (http://lib.stat.cmu.edu/datasets ); Problemsadd10

and cpusmall are from the Delve archive (http://www.cs.toronto.edu/˜delve ). For these problems,

some data entries have missing attributes so we remove them before conducting experiments. Note that the attribute

values of these problems are scaled to[−1,+1], but target values are kept the same. To save the computational

time, for problems with more than 1,000 instances, only a random subset of 1,000 points are used. The numbers

http://lib.stat.cmu.edu/datasets
http://www.cs.toronto.edu/~delve
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TABLE VI

ERROR ON COVERAGE: MAXIMIZING BSVR2 EVIDENCE FUNCTION FOR PARAMETER SELECTION.

Problem #80% Gau Lap Lap∗ Hist BSVR2

pyrim 11.8 2.2 2.0 1.6 2.2 1.6

triazines 29.8 3.3 2.3 2.3 1.9 2.3

bodyfat 40.3 9.1 7.7 3.2 3.0 9.1

mpg 62.7 5.5 3.3 2.7 2.3 3.7

housing 81.0 11.6 5.8 3.5 2.7 7.8

add10 160.0 12.6 9.6 9.6 9.6 10.6

cpusmall 160.0 18.0 6.8 4.4 2.6 7.8

space ga 160.0 9.0 5.4 4.8 4.8 4.8

abalone 160.0 13.6 5.0 4.0 9.2 11.4

(a) Difference to 80% coverage.

Problem #95% Gau Lap Lap∗ Hist BSVR2

pyrim 14.1 0.7 0.6 0.5 1.0 0.7

triazines 35.3 1.0 1.0 1.0 1.4 1.3

bodyfat 47.9 1.7 1.3 0.9 0.9 1.5

mpg 74.5 0.7 0.6 0.6 1.4 1.8

housing 96.1 1.4 1.0 1.6 2.0 1.5

add10 190.0 4.0 3.6 3.6 4.6 5.0

cpusmall 190.0 3.6 2.8 3.0 2.2 2.4

space ga 190.0 3.4 2.8 2.2 2.0 2.8

abalone 190.0 2.8 2.8 3.2 2.0 3.8

(b) Difference to 95% coverage.

of data instances and features are reported in Table I.

In the experiment, each data set is separated to five folds and sequentially one fold is used for testing and the

remaining are for training. To have a good model, parameter selection is conducted on the training set. We consider

the following methods:

1) Cross validation:(C, γ, ε) = [2−1, 20, . . . , 26]× [2−8, 2−7, . . . , 21]× [2−8, 2−7, . . . , 21] are tried and the one

with the highest five-fold CV accuracy is used to train the model for testing. For this setting, BSVR2 is not

compared as its implementation uses (24), a kernel with more parameters.

2) Maximization of the evidence functionP (D | θ) of BSVR1: We search the same space of(C, γ, ε) used

in 1) and choose the one which gives the maximal value of the evidence function. Similar to using CV for

parameter selection, BSVR2 is not compared.

3) Maximization of the evidence functionP (D | θ) of BSVR2: Now there are five parametersC, κ, κ0, κb, and



13

ε. P (D | θ) is maximized by a gradient-based implementation used in [2]. For this setting we did not compare

BSVR1 as its kernel implementation must be changed. On the contrary, it is still easy to use the proposed

approaches as their implementations are independent of parameters.

Implementation details and experimental results are given in the following subsections.

A. Implementation Details

Given a pre-specified probability1 − 2s, the performance of various approaches is evaluated by comparing the

number of testing data lying in their prediction intervals with the expected number,(1−2s)×(# test set). For each

(x, y) in the test set, the prediction interval fory is (f̂(x) − ps, f̂(x) + ps), whereps is the uppersth percentile

of the corresponding probability distribution ofζ(= y− f̂(x)). Therefore, we simply count the number ofζ in the

test set lying in[−ps, ps], and compare this number with its expected value.

For a zero-mean symmetric variableZ with densityp(z), ps can be determined by solving∫ ps

−∞
p(z)dz = 1− s.

For example, a Gaussian withp(z) defined in (3) hasps = σ−1Φ−1(1− s), whereΦ(x) ≡
∫ x

−∞
1√
2π
e−z2/2dz, and

hence the prediction interval forζ is

(−σ−1Φ−1(1− s), σ−1Φ−1(1− s)); (25)

a Laplace withp(z) as in (2) hasps = −σln(2s), and the resulting interval is

(σln(2s),−σln(2s)). (26)

For the variableζ in (17) under the BSVR1 setting, we denotepζ as the density ofζ and write

1− s =
∫ ps

−∞
pζ(z)dz

=
∫ ∞

−∞

∫ ps−f

−∞
p(δ)dδpf |D(f)df,

wherep(δ) andp(δ)dδpf |D(f) are as in (14) and (16). Since the integral of (14) over a certain range can be derived

explicitly, the convolution here is reduced to a one-dimensional integration. Then this percentile problem is resolved

by numerical integration. Similar treatment can be applied to BSVR2, withp(δ) in (14) replaced by (22). Note that

for Bayesian approach the distribution ofζ depends on the input valuex, and so doesps. Therefore, the numerical

integration needs be carried out for each test instance.

For non-symmetric distributions like the discretized histogram, we simply sortζi’s into the formζ(1) < ζ(2) <

· · · < ζ(l), and then set the(1− 2s)100% prediction interval forζ as(ζs·(# test set), ζ(1−s)·(# test set)). Below we

refer to this method as “Hist,” which will be compared with other approaches as well.

Here are more implementation details. For searching the best parameters by CV and then calculating the coverages,

we use the software LIBSVM [1], which solves the standard SVR (9). As BSVR1 uses the formulation without

the bias termb, we modify LIBSVM for such a form and use it to evaluate the evidence function. For BSVR2, the

implementation from [2] is adopted.
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TABLE VII

COMPARISON BETWEENCV AND BAYES FOR PARAMETER SELECTION: MSE AND AVERAGE NUMBER OF SUPPORT VECTORS.

CV BSVR1 BSVR2

Problem MSE #SV MSE #SV MSE #SV

pyrim 0.0467 44.2 0.0864 58.6 0.0490 38.0

triazines 0.1395 83.4 0.1734 147.0 0.1291 99.0

bodyfat 0.0027 62.6 0.0087 174.2 0.0029 82.0

mpg 0.0196 149.4 0.0237 300.0 0.0193 204.0

housing 0.0214 212.6 0.0239 382.0 0.0230 272.0

add10 1.9466 634.8 8.0780 743.0 2.8555 782.0

cpusmall 16.5119 722.2 180.0748 755.0 15.9123 786.0

space ga 0.0131 465.8 0.0128 623.6 0.0149 614.0

abalone 5.3678 684.2 7.8067 757.2 5.5827 779.0

B. Results and a New Method “Lap∗”

We first use the datasetcpusmall to describe some experimental findings. Table II reports the results of parameter

selection and the number of test instances lying in the predictive intervals for each of the five training/testing splits.

Here the parameters are selected by the different strategies described earlier. In this experiment, the test size is

200 for each split ands is set as 0.1, so the coverage probability is 0.8 and the expected number of instances

being covered is 160. Recall the description under Figure 1 that there are a couple of extreme values ofζi’s,

with the maximum as large as 51.5. Consequently, the estimate of the scale parameterσ is quite large and the

resulting prediction interval ((25) or (26)) is too wide. This justifies why “Gau” and “Lap” tend to over-cover the

test instances. Therefore, we propose to re-estimate the scale parameter by discarding the “very extreme”ζi’s. Here

ζi’s are called “very extreme” if they exceed±5× (standard deviation of distribution). The resulting coverages are

then shown in the fourth column, entitled as “Lap∗.” We study another problemhousing in Table III. Results are

similar.

Tables IV-VI present the results for all the datasets using different parameter selection strategies. Here we simply

report the average absolute difference over the five splits. For each split, the absolute difference is

|# of ζ in [−ps, ps]− (1− 2s)× (# test set)|

with s = 0.1 and 0.025, corresponding to coverage probabilities1−2s = 80% and 95%. For example, the absolute

differences forcpusmall using CV and “Lap.” are 14, 10, 6, 1, and 9, as given in Table II(a), and hence the averaged

value is 8.0. A by-product of this experiment is the comparison between standard SVR and the two Bayesian SVRs.

Table VII presents the averages of MSEs and the numbers of support vectors over the five training/testing splits.
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V. A NALYSIS

We first consider the results ofcpusmall in Table II. Table II(a) shows that, with the model parameters selected

by CV, BSVR1 severely under-covers the test instances (the expected number is 160). This phenomenon can be

explained by the influence of the parameters onσ2
δ in (15). The parameter(C, ε) = (64, 0.5) leads toσ2

δ =

4.8 × 10−4 + 8 × 10−2, which is rather small and causes the prediction interval to be too narrow to cover most

test instances. For the third training/testing split,(C, ε) = (64, 0.004) results in an even smallerσ2
δ , and hence an

even worse coverage. Though the situation has been substantially improved when choosing the model parameter as

the maximizer of the Bayesian evidence function (12), the results are still way below the expected value 160. This

result indicates that the evidence function of BSVR1 is not accurate. MSE shown in Table VII further confirms

such a conclusion. On the other hand, BSVR2 gives good results in Table II(c). Its MSE in Table VI is competitive

with that by CV for parameter selection. The performance of BSVR2 indicates that its Bayesian evidence function

(19) is accurate, and the use of a more general kernel function may also help. Regarding proposed methods, “Gau,”

“Lap,” and “Lap∗” all produced reasonable coverages no matter using which method for parameter selection. In

general, “Lap∗” improves upon “Lap,” and for all the five training/testing splits “Lap” outperforms “Gau.” The

results in Table III can be explained similarly.

For other datasets using CV as the parameter selection strategy, Table IV shows that, like the previous two tables,

BSVR1 is worse than others. The overall performance of “Lap” is better than that of “Gau.” Indeed the results of

the most powerful test (6) are in favor of Laplace for all the nine datasets. This seems to indicate that, for these

problems,y− f̂(x) is more like a Laplace rather than a Gaussian. The results of “Lap” and “Lap∗” are satisfactory.

The advantage of using “Lap∗” over “Lap” is apparent on datasetsbodyfat andcpusmall in Table IV(a), where the

averaged absolute errors have been cut to nearly half. The “Hist” produces nice results as well. The main reason is

that “Hist” directly makes use of information fromζi’s, instead of assuming a symmetric model with zero. However,

as mentioned in Section II, it is more complex as allζi’s must be retained.

Tables V and VI report results with model parameters maximizing the Bayesian evidence functions (12) and (19),

respectively. For BSVR1, the coverages are much better than those in Table IV; however, in general it is still the

worst among all. Again, like Table II(b), this can be explained by the choice of the parameter set and its effect on

σ2
δ . For the proposed methods, as before, “Lap” outperforms “Gau” in almost all cases, “Lap∗” further improves

“Lap,” and “Hist” is quite competitive.

In summary, the experimental results indicate that the Bayesian error depends on different Bayesian evidence

functions. As our proposed methods are not related to parameters, they are quite stable for different parameter

selection methods.

Regarding the MSEs of CV and two Bayesian methods, Table VII shows that CV and BSVR2 are better. This

result is consistent with those in previous tables. Better target value prediction also leads to better probability

intervals.
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VI. CONCLUSIONS

In this paper, we propose a simple approach for probabilistic prediction suitable for the standard SVR. Our

approach starts with generating out-of-sample residuals by cross validation, and then fits the residuals by simple

parametric models like Gaussian and Laplace. The most powerful scale-invariant test is applied to effectively test

Gaussian against Laplace. We then compare it with the Bayesian SVR methods by evaluating the performance of

the prediction intervals. The experiments on real-world problems show that our easy approach works fairly well and

is robust to parameter selection strategies. Moreover, in certain cases we can further improve upon our approach

by re-estimate the scale parameter of the Laplace family. In summary, though we assume that the distribution of

the target value depends on its input only through the predicted value, the proposed approach easily provides some

useful probability information for SVR analysis.
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