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Abstract Support vector data description (SVDD) is a useful method for outlier de-
tection and has been applied to a variety of applications. However, in the existing
optimization procedure of SVDD, there are some issues which may lead to improper
usage of SVDD. Some of the issues might already be known in practice, but the the-
oretical discussion, justification and correction are still lacking. Given the wide use of
SVDD, these issues inspire us to carefully study SVDD in the view of convex optimiza-
tion. In particular, we derive the dual problem with strong duality, prove theorems
to handle theoretical insufficiency in the literature of SVDD, investigate some novel
extensions of SVDD, and come up with an implementation of training SVDD with
theoretical guarantee.

Keywords Density estimation · Outlier detection · Strong duality · Convex
optimization

1 Introduction

Support vector data description (SVDD), proposed by Tax and Duin (2004), is a model
which aims at finding spherically shaped boundary around a data set. Given a set of
training data xi ∈ Rn, i = 1, . . . , l, Tax and Duin (2004) solve the following optimiza-
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tion problem.

min
R,a,ξ

R2 + C

l∑
i=1

ξi

subject to ‖φ(xi)− a‖2 ≤ R2 + ξi, i = 1, . . . , l, (1)

ξi ≥ 0, i = 1, . . . , l,

where φ is a function mapping data to a higher dimensional space, and C > 0 is a
user-specified parameter. After (1) is solved, a hyperspherical model is characterized
by the center a and the radius R. A testing instance x is detected as an outlier if

‖φ(x)− a‖2 > R2.

Because of the large number of variables in a after the data mapping, Tax and Duin
(2004) considered solving the following dual problem.

max
α

l∑
i=1

αiQi,i −αTQα

subject to eTα = 1, (2)

0 ≤ αi ≤ C, i = 1, . . . , l,

where e = [1, · · · , 1]T ,α = [α1, · · · , αl]T , and Q is the kernel matrix such that

Qi,j = φ(xi)
Tφ(xj), ∀1 ≤ i, j ≤ l.

Problem (2) is very similar to the support vector machine (SVM) (Boser et al., 1992;
Cortes and Vapnik, 1995) dual problem, and can be solved by existing optimization
methods for SVM.

SVDD has been successfully applied in a wide variety of applications such as hand-
written digit recognition (Tax and Duin, 2002), face recognition (Lee et al., 2006),
pattern denoising (Park et al., 2007), and anomaly detection (Banerjee et al., 2007).
However, there are some issues in the existing optimization procedure of SVDD. For
example, Cevikalp and Triggs (2012) pointed out that the dual problem (2) is infeasi-
ble when C < 1/l, and Chang et al. (2007) showed that the primal problem (1) is not
convex and thus one might face the problem of local optima. Furthermore, the issue of
the infeasibility when C < 1/l was actually faced by users of our SVDD tools based
on LIBSVM (Chang and Lin, 2011). These issues motivate us to provide a thorough
analysis of SVDD in the view of convex optimization.

Given the fact that some problems of SVDD are known in practice but yet the
lack of theoretical research works that successfully provide satisfactory solutions and
explanations to these problems, the goal of this paper is to establish a comprehensive
study, by means of convex optimization theory, to fill the gap between the practical and
the theoretical parts of SVDD. Therefore, in this paper, we first review some concepts
in the literature of convex optimization so as to calibrate the definitions. We then
rigorously derive theorems to handle the insufficiency in existing studies of SVDD. In
particular, the dual problem with strong duality is derived by considering the convex
reformulation of (1) in Chang et al. (2007), and theorems are proposed to make the
primal-dual relation valid for any C > 0. We also investigate a novel extension of
SVDD that replaces the loss term of (1) by the squared-hinge loss.
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The remainder of this paper is organized as follows. Section 2 outlines some es-
sential knowledge of convex optimization and reviews details of issues in the existing
optimization procedure of SVDD. Section 3 presents the proposed theorems that cover
rigorous derivations along with implementation details. Section 4 further discusses some
extended cases, while section 5 concludes this work.

2 Issues in Existing Studies of SVDD

In this section, we first briefly review some concepts in the literature of convex opti-
mization, and then carefully discuss issues we mentioned in Section 1.

2.1 Convex Optimization, Strong Duality, and KKT Conditions

Many machine learning models are formulated as convex optimization problems. Ac-
cording to Boyd and Vandenberghe (2004), a convex optimization problem is of the
form

min f0(w)

subject to fi(w) ≤ 0, i = 1, . . . ,m, (3)

hi(w) = 0, i = 1, . . . , p,

where f0, . . . , fm are convex functions and h1, . . . , hp are affine. When the problem (3)
is difficult to solve (e.g., w is high dimensional), people may seek to solve the Lagrange
dual problem, which is of the form

max g(λ,ν)

subject to λi ≥ 0, i = 1, . . . ,m, (4)

where λ ∈ Rm and ν ∈ Rp are called the Lagrange multipliers and g(λ,ν) is the
Lagrange dual function such that

g(λ,ν) ≡ inf
w
L(w,λ,ν) = inf

w

(
f0(w) +

m∑
i=1

λifi(w) +
p∑
i=1

νihi(w)

)
.

To distinguish from the dual problem (4), (3) is often referred to as the primal problem.
Note that the optimal value of (4), denoted by d∗, is only a lower bound of p∗, the
optimal value of (3). In particular, we have

d∗ ≤ p∗, (5)

which holds even if the original problem (3) is not convex. This property is known as
weak duality, and the value p∗−d∗ is referred to as the duality gap. However, to ensure
that solving the dual problem is a viable alternative of solving the primal problem, we
need equality in (5) to hold. This stronger property is called strong duality.

A convex optimization problem enjoys several nice properties including:

1. Any locally optimal point is also globally optimal.
2. Strong duality holds in a large family of convex optimization problems.
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Note that strong duality does not necessarily hold for all convex optimization problems.
Thus, we need some additional conditions, called constraint qualifications, to ensure
strong duality. We will discuss a condition that is applicable to our case in Theorem 3.

Another way to characterize primal and dual solutions is through the Karush-Kuhn-
Tucker (KKT) optimality conditions. Many optimization algorithms can be interpreted
as methods for solving KKT conditions stated as follows.

Theorem 1 (Boyd and Vandenberghe, 2004, Section 5.5.3) Consider any optimization
problem (not necessarily convex) that both the objective and the constraint functions
are differentiable. Let w̃ and (λ̃, ν̃) be any primal and dual optimal solutions with zero
duality gap. Then we have

fi(w̃) ≤ 0, i = 1, . . . ,m,

hi(w̃) = 0, i = 1, . . . , p,

λ̃i ≥ 0, i = 1, . . . ,m,

λ̃ifi(w̃) = 0, i = 1, . . . ,m,

∂L(w,λ,ν)

∂w
|
(w̃,λ̃,ν̃)

= 0. (6)

The conditions above are called the Karush-Kuhn-Tucker (KKT) conditions. In other
words, KKT conditions are necessary conditions for optimality if strong duality holds.

In addition, if the optimization problem is convex, then KKT conditions are suffi-
cient conditions for optimality.

In summary, for any optimization problem that possesses strong duality with differen-
tiable objective and constraint functions, any pair of primal and dual optimal points
must satisfy the KKT conditions.

From Theorem 1, if the problem considered is convex, then KKT conditions provide
both necessary and sufficient conditions for optimality. However, if strong duality does
not hold, KKT conditions are not necessary conditions for optimality. We will point
out the importance of that KKT conditions being the necessary conditions for SVDD
in later sections.

2.2 Convexity and Duality of (1)

Chang et al. (2007) argued that problem (1) is not convex. The reason is that the
following function of (a, R, ξi)

‖φ(xi)− a‖2 −R2 − ξi

is concave with respect to R. Therefore, problem (1) is not in the form of (3), implying
that it is not a convex optimization problem. By defining

R̄ = R2,
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Chang et al. (2007) proposed the following convex reformulation of (1).

min
R̄,a,ξ

R̄+ C

l∑
i=1

ξi

subject to ‖φ(xi)− a‖2 ≤ R̄+ ξi, i = 1, . . . , l, (7)

ξi ≥ 0, i = 1, . . . , l,

R̄ ≥ 0.

A new constraint specifying the non-negativity of R̄ is added. Because

‖φ(xi)− a‖2 − R̄− ξi = aTa− 2φ(xi)
Ta− R̄− ξi + constant (8)

is linear (and thus convex) to R̄ as well as ξi, and is strictly convex with respect to a,
(7) is in the form of (3).

Note that the objective function of (7) is convex rather than strictly convex. Thus,
(7) may possess multiple optimal solutions with the same optimal objective value. We
discuss the uniqueness of optimal solutions of (7) in the following theorem.

Theorem 2 The optimal a of (7) is unique. In contrast, the optimal R̄ and ξ of (7)
are not unique.

The proof is in Appendix A.
The difference between (7) and (1) is that, if (R∗,a∗, ξ∗) is a local optimal solution

of (1), then (−R∗,a∗, ξ∗) is also a local optimum, while their convex combinations
might not be optimal. Thus we are not certain which local optimum is globally optimal.
On the other hand, being a convex optimization problem, (7) guarantees that any
convex combinations of its optimal solutions is still an optimal solution.

Under an additional assumption R̄ > 0, Chang et al. (2007) then derived the dual
problem of (7) and found that it is identical to (2) derived by Tax and Duin (2004).
Nonetheless, Chang et al. (2007) did not check constraint qualifications. Thus, strong
duality is not guaranteed and the KKT conditions only serve as sufficient conditions
of optimality. We will further discuss this problem when computing the optimal radius
R in Section 3.2.

2.3 Issues in Deriving the Lagrange Dual Problem

The Lagrange dual problem of (1) is

max
α≥0,γ≥0

(
inf
R,a,ξ

L(R,a, ξ,α,γ)

)
,

where α and γ are Lagrange multipliers, and L is the Lagrangian

L(a, R, ξ,α,γ) =R2 + C
l∑
i=1

ξi −
l∑
i=1

αi(R
2 + ξi − ‖φ (xi)− a‖2)−

l∑
i=1

γiξi.
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To obtain the infimum of L, Tax and Duin (2004) set both the partial derivatives of L
with respect to R and a to be zero.

∂L

∂R
= 0 ⇒ R(1−

l∑
i=1

αi) = 0, (9)

∂L

∂a
= 0 ⇒

l∑
i=1

αiφ(xi)− a
l∑
i=1

αi = 0. (10)

From (9), they stated
l∑
i=1

αi = 1, (11)

and got

a =
l∑
i=1

αiφ(xi)

by combining (10) and (11). They then obtained the dual problem (2) based on the
above results.

However, if R = 0, (11) does not necessarily hold. Thus it is unclear if further
derivations based on (11) are valid. To rule out a similar issue in deriving the dual
problem of (7), Chang et al. (2007) explicitly assume R̄ > 0. Nonetheless, we will later
show in Section 3.2 that this assumption may fail. Finally, as pointed out in Cevikalp
and Triggs (2012), problem (2) does not have any feasible solution when 0 < C < 1/l.
In contrast, the primal problems (1) and (7) are feasible for any C > 0. Therefore,
neither the relation between (1) and (2) nor that between (7) and (2) is entirely clear.

3 Convexity and the Dual Problem of SVDD

In this section, we carefully address all issues mentioned in Section 2. First, we consider
the convex reformulation (7) and check its constraint qualifications before rigorously
deriving the dual problem. Second, we propose theorems to remove the assumption
R̄ > 0 and further justify the primal-dual relation for any C > 0.

3.1 Strong Duality and Constraint Qualifications

In order to ensure strong duality of problem (7), we check if (7) satisfies any constraint
qualifications. Many types of constraint qualifications have been developed in the field
of convex optimization. We consider Slater’s condition here.

Theorem 3 (Boyd and Vandenberghe, 2004, Section 5.2.3, Refined Slater’s condition)
For any set of functions fi, i = 0, . . . ,m, and any set S, define

D ≡ (∩mi=0domain (fi)) ,

and
relint(S) ≡ {w ∈ S | ∃r > 0, Br(w) ∩ aff(S) ⊂ S},
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where Br(w) is the open ball centered at w with radius r, and aff(S) is the affine hull
of S. Consider the convex optimization problem (3), If the first k constraint functions
f1, . . . fk are affine, then strong duality for problem (3) holds if there exists a w ∈
relint(D) such that

fi(w) ≤ 0, i = 1, . . . , k,

fi(w) < 0, i = k + 1, . . . ,m,

hi(w) = 0, i = 1, . . . , p.

Note that it is rather simple to verify Theorem 3 for SVM since SVM involves only
affine constraints while SVDD has nonlinear constraints.

We then apply this theorem to obtain the strong duality of (7).

Corollary 1 For the convex optimization problem (7) with any data xi, i = 1, . . . , l,
strong duality holds.

Proof Note that there is no equality constraints in (7), and the domain of f0, . . . , fm
are all the same Euclidean space. Hence every point in that space lies in the relint of
this space. We let a = 0, R̄ = 1, and

ξi = ‖φ(xi)‖2 + 1.

Then clearly (R̄,a, ξ) is a feasible solution and

R̄ = 1 > 0,

ξi ≥ 1 > 0,

‖φ(xi)− a‖2 − R̄− ξi = ‖φ(xi)‖2 − 1− ‖φ(xi)‖2 − 1 = −2 < 0.

Thus (R̄,a, ξ) satisfies Theorem 3 and strong duality for (7) holds.

In some studies of SVDD such as Chang et al. (2007) and Wang et al. (2011),
they derived the dual problem by applying the KKT optimality conditions without
examining strong duality. However, as discussed earlier, to have that KKT conditions
are necessary and sufficient for optimality to convert a dual optimal solution to a primal
optimal solution, strong duality and hence constraint qualifications are still needed.

3.2 The Dual Problem of (7)

Recall that a difficulty of deriving (11) from (9) is that R may be zero. In a similar
derivation for the dual problem of (7), Chang et al. (2007) assume that R̄ > 0, but
this assumption may not hold. We illustrate the infeasibility of this assumption and
handle the difficulty of deriving the dual problem by the following theorem.

Theorem 4 Consider problem (7).

1. For any C > 1/l, the constraint R̄ ≥ 0 in (7) is not necessary. That is, without
this constraint, any optimal solution still satisfies R̄ ≥ 0.

2. For any 0 < C < 1/l, R̄ = 0 is uniquely optimal. If C = 1/l, then at least one
optimal solution has R̄ = 0.
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The proof is in Appendix B. With Theorem 4, we can clearly see that R̄ may be zero
rather than positive, which implies that the assumption of R̄ > 0 in Chang et al.
(2007) may fail whenever C ≤ 1/l. Moreover, the first case in Theorem 4 still cannot
guarantee R̄ > 0. We therefore conclude that the derivations in Tax and Duin (2004);
Chang et al. (2007) and Wang et al. (2011) are not always valid.

According to Theorem 4, we now derive the dual problem by considering C > 1/l
and C ≤ 1/l separately.

Case 1: C > 1/l.
The Lagrangian of (7) without the constraint R̄ ≥ 0 is

L(a, R̄, ξ,α,γ) =R̄+ C

l∑
i=1

ξi −
l∑
i=1

αi(R̄+ ξi − ‖φ(xi)− a‖2)−
l∑
i=1

γiξi (12)

=R̄

(
1−

l∑
i=1

αi

)
+

l∑
i=1

ξi (C − αi − γi) +
l∑
i=1

αi

(
‖φ(xi)− a‖2

)
,

where α and γ are Lagrange multipliers. The Lagrange dual problem is

max
α≥0,γ≥0

(
inf
R̄,a,ξ

L(a, R̄, ξ,α,γ)

)
. (13)

Clearly, if (α,γ) satisfies
1− eTα 6= 0,

or
C − αi − γi 6= 0 for some i,

then
inf
R̄,a,ξ

L(a, R̄, ξ,α,γ) = −∞.

Such (α,γ) should not be considered because of the maximization over α and γ in
(13). This leads to the following constraints in the dual problem.

1− eTα = 0, (14)

C − αi − γi = 0, i = 1, . . . , l. (15)

Substituting (14) and (15) into (13), and taking γi ≥ 0,∀i into account, the dual
problem (13) is reduced to

max
α

(
inf
a

l∑
i=1

αi

(
‖φ(xi)− a‖2

))
subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (16)

eTα = 1.

Because
l∑
i=1

αi‖φ(xi)− a‖2
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is strictly convex with respect to the unbounded variable a, the infimum occurs at the
point that the partial derivative with respect to a is zero.

a

l∑
i=1

αi =
l∑
i=1

αiφ(xi). (17)

By the constraint (14), (17) is equivalent to

a =

∑l
i=1 αiφ(xi)

eTα
=

l∑
i=1

αiφ(xi). (18)

We then obtain the following dual problem for C > 1/l.

max
α

l∑
i=1

αiQi,i −αTQα

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (19)

eTα = 1,

which is the same as (2).
Note that if we do not apply Theorem 4 to remove the constraint R̄ ≥ 0, the

Lagrangian has an additional term −βR̄, where β is the corresponding Lagrange mul-
tiplier. Then the constraint (14) becomes

1− eTα− β = 0 and β ≥ 0.

The situation becomes complicated because we must check if eTα > 0 or not before
dividing eTα from both sides of (17).

We discuss how to obtain the primal optimal solution after solving the dual problem.
Clearly, the optimal a can be obtained by (18). Tax and Duin (2004) find R̄ by the
following setting of using an optimal αi with 0 < αi < C. By Theorem 1 and the
constraint qualifications verified in Section 3.1, KKT optimality conditions are now
both necessary and sufficient conditions. Therefore, primal and dual optimal solutions
satisfy the following complementary slackness conditions.

γiξi = 0 and αi
(
‖φ(xi)− a‖2 − R̄− ξi

)
= 0, i = 1, . . . , l. (20)

Consider (20) along with (15). If there exists an index i such that 0 < αi < C, then
we have

ξi = 0 and R̄ = ‖φ(xi)− a‖2. (21)

Notice that none of Tax and Duin (2004), Chang et al. (2007) and Wang et al.
(2011) verified strong duality, so KKT may not be necessary conditions. That is, they
did not ensure that α of (2) satisfies (20), and therefore their derivation of the optimal
R̄ by (21) is not rigorous.

As pointed out by Wang et al. (2011), however, it is possible that all αi values are
bounded. In this circumstance, the method of Tax and Duin (2004) failed and Wang
et al. (2011) spent considerable efforts to show that the optimal R̄ is not unique but
can be any value in an interval. By a simple proof, we easily obtain R̄ in the following
theorem, regardless of whether some 0 < αi < C exist or not.
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Theorem 5 When C > 1/l, given the optimal a of (7) and an optimal α of (19), a
feasible R̄ is optimal for (7) if and only if

max
i:αi<C

‖φ(xi)− a‖2 ≤ R̄ ≤ min
i:αi>0

‖φ(xi)− a‖2. (22)

The proof is in Appendix C. If there exists an index i with 0 < αi < C, (22) is reduced
to (21) and the optimal R̄ is unique. Otherwise, if every αi is bounded (i.e., its value is
0 or C), then (22) indicates that any R̄ in an interval is optimal. Interestingly, (22) is
similar to the inequality for the bias term b in SVM problems; see, for example, Chang
and Lin (2011). For the practical implementation, we may use the following setting
adopted from LIBSVM (Chang and Lin, 2011) to calculate R̄.

1. If some indices satisfy 0 < αi < C, then we calculate the average of ‖φ(xi)− a‖2
over all such i. The reason is that each single ‖φ(xi) − a‖2 may be inaccurate
because of numerical errors.

2. If all αi are bounded, then we choose R̄ to be the middle point of the interval in
(22).

Finally, it is straightforward from the primal function (7) that the optimal ξ can be
computed by

ξi = max
(
‖φ(xi)− a‖2 − R̄, 0

)
, i = 1, . . . , l. (23)

Another interesting property is that when C is large, all models of SVDD are
identical. This result was known by judging from the dual constraints in (19). Here we
complement this fact by providing a theorem on the primal problem.

Theorem 6 For any C > 1, problem (7) is equivalent to the following problem.

min
R̄,a

R̄

subject to ‖φ(xi)− a‖2 ≤ R̄. (24)

The proof is in Appendix D. Note that the dual problem of (24) is (19) without the
constraint αi ≤ C for all i. The relation between (7) and (24) is similar to that between
soft- and hard-margin SVMs, where the latter uses neither C nor ξ because of assuming
that the training instances are separable. For SVM, it is known that if the training
instances are separable, there is a C̄ such that for all C > C̄, the solution is the same
as that of the problem without the loss term; see, for example, Lin (2001). This C̄ is
problem dependent, but for SVDD, we have shown that C̄ is one.

Case 2: C ≤ 1/l.
By Theorem 4, we note that in this case, the task is reduced to finding the optimal
a, and any test point that is not identical to this a is categorized as an outlier. To
solve the optimization problem, using Theorem 4, we first remove the variable R̄ from
problem (7). Because the minimum must occur when

ξi = ‖φ(xi)− a‖2 ≥ 0,

problem (7) can be reduced to

min
a

l∑
i=1

‖φ(xi)− a‖2. (25)
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This problem is strictly convex to a, so setting the gradient to be zero leads to

a =

∑l
i=1 φ(xi)

l
. (26)

Therefore, when C ≤ 1/l, the optimal solution is independent of C. Further, the
optimization problem has a closed-form solution (26) and we thus do not need to
consider the dual problem.

Note that as explained in Lin (2001), our derivation here also work when w is of
infinite dimension. This may happen when, for example, an RBF kernel is used.

3.3 Implementation Issues

The dual problem (19) is very similar to the SVM dual problem. They both have a
quadratic objective function involving the kernel matrix, one linear constraint, and l
bounded constraints. Therefore, existing optimization methods such as decomposition
methods (Platt, 1998; Joachims, 1998; Fan et al., 2005) for SVM dual problems can be
easily applied to our problem. We also note that (19) is related to the dual problem of
one-class SVM (Schölkopf et al., 2001), which is another method for outlier detection.

In the prediction stage, for any test instance x, we must check the value

‖φ(x)− a‖2 − R̄.

If it is positive, then x is considered as an outlier. If a kernel is used and C > 1/l, then
from (18), the calculation is conducted by

‖φ(x)− a‖2 − R̄ = K(x,x)− 2
∑
i:αi>0

αiK(x,xi) +αTQα− R̄,

where K(·, ·) is the kernel function such that

K(x,y) = φ(x)Tφ(y), ∀x,y.

The αTQα − R̄ term is expensive to calculate, but it is independent from the test
instances. A trick is to store this constant after solving the dual problem.

4 Extensions

In this section, we discuss some extensions of SVDD.

4.1 L2-Loss SVDD

Tax and Duin (2004) consider L1 loss (hinge loss) in the formulation of SVDD. In
SVM, L2 loss (squared-hinge loss) is a common alternative to L1 loss. Surprisingly,
however, we have not seen any paper studying details of L2-loss SVDD. From the
experience of SVM, the performance of L2-loss SVM may outweigh L1 loss SVM in
some circumstances. This motivates us to conduct a thorough investigation. We will
show that the derivation of L2-loss SVDD is not trivial and has some subtle differences
from the L1-loss case.
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The optimization problem of L2-loss SVDD is

min
R̄,a,ξ

R̄+ C

l∑
i=1

ξ2
i

subject to ‖φ(xi)− a‖2 ≤ R̄+ ξi, i = 1, . . . , l, (27)

R̄ ≥ 0.

Note that the constraint ξi ≥ 0, ∀i appeared in (7) is not necessary for L2-loss SVDD,
because if at an optimum, ξi < 0 for some i, we can then replace ξi with 0 so that

‖φ(xi)− a‖2 ≤ R̄+ ξi < R̄+ 0.

The constraints are still satisfied, but the objective value is smaller. This contradicts
the assumption that ξi is optimal. Similar to the L1-loss case, because of using R̄ rather
than R2, (27) is a convex optimization problem. Furthermore, Slater’s condition holds,
and thus so does the strong duality. Because the loss term C

∑l
i=1 ξ

2
i is now strictly

convex, we are able to prove the uniqueness of the optimum.

Theorem 7 The optimal solution of (27) for any C > 0 is unique.

The proof is in Appendix E.
Similar to the L1-loss case, with the help of Theorem 7, we discuss how to solve

(27) in two cases according to the following theorem.

Theorem 8 Let (a∗, ξ∗) be the optimal solution of the following problem,1

min
a,ξ

l∑
i=1

ξ2
i

subject to ‖φ(xi)− a‖2 ≤ ξi. (28)

If
∑l
i=1 ξ

∗
i > 0, we define

C∗ =
1

2
∑l
i=1 ξ

∗
i

, (29)

and have:

1. For any C > C∗, the optimal R̄ satisfies R̄ > 0. Furthermore, the constraint R̄ ≥ 0
in (27) is not necessary.

2. For any 0 < C ≤ C∗, R̄ = 0 is optimal.

The proof is in Appendix F. The case
∑l
i=1 ξ

∗
i = 0 not covered in Theorem 8 happens

only when φ(x1) = . . . = φ(xl). In this case, the optimal solution of (28) is a∗ = φ(xi)
and ξ∗i = 0, ∀i = 1, . . . , l. We can easily rule out this situation beforehand. Clearly, C∗

plays the same role as 1/l in Theorem 4 for L1-loss SVDD. The main difference is that
C∗ is problem dependent.

Following Theorem 8, we discuss the two situations C > C∗ and C ≤ C∗ in detail.

1The uniqueness of (a∗, ξ∗) can be derived by the same method to prove Theorem 7.
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Case 1: C > C∗.
The Lagrangian of (27) without the constraint R̄ ≥ 0 is

L(a, R̄, ξ,α) = R̄+ C

l∑
i=1

ξ2
i −

l∑
i=1

αi

(
R̄+ ξi − ‖φ (xi)− a‖2

)
, (30)

where α is the Lagrange multiplier. The Lagrange dual problem is

max
α≥0

(
inf
a,R̄,ξ

L (a, R̄, ξ,α)

)
. (31)

Clearly, if
1− eTα 6= 0,

then
inf
a,R̄,ξ

L(a, R̄, ξ,α) = −∞.

Thus we have the following constraint in the dual problem.

1− eTα = 0. (32)

In addition, L is strictly convex to ξi, ∀i, so we have

∂L

∂ξi
= 0 ⇒ ξi =

αi
2C

, i = 1, . . . , l. (33)

Substituting (32) and (33) into (31), the dual problem (31) is reduced to

max
α

(
inf
a

l∑
i=1

αi‖φ(xi)− a‖2 −
l∑
i=1

α2
i

4C

)
subject to 0 ≤ αi ≤ ∞, i = 1, . . . , l, (34)

eTα = 1.

Similar to the derivation from (16) to (17), the infimum occurs when

a =
l∑
i=1

αiφ(xi). (35)

Finally, the dual problem is

max
α

l∑
i=1

αiQi,i −αTQα−
l∑
i=1

α2
i

4C

subject to 0 ≤ αi ≤ ∞, i = 1, . . . , l, (36)

eTα = 1,

which is very similar to (19). One minor difference is that similar to the dual problem of
L2-loss SVM, (36) has an additional

∑l
i=1(α2

i /4C) term, so the optimization problem
is strongly convex. Despite the situation that α is unbounded above, note that the
equality constraint along with the non-negative constraints in (36) implicitly set an
upper bound for α.
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After the dual problem (36) is solved, we use (35) to compute the optimal a. The
computation of the optimal ξ is shown in (33). Combining the KKT condition

αi(R̄+ ξi − ‖φ(xi)− a‖2) = 0

with (33), we obtain the optimal R̄.

R̄ = ‖φ(xi)− a‖2 −
αi
2C

, for any i such that αi > 0.

We are always able to find an αi > 0 to compute the optimal R̄ directly because of the
constraints 0 ≤ αi ≤ ∞, ∀i = 1 . . . , l and eTα = 1 in (36). In contrast, for the L1-loss
case, because of 0 ≤ αi ≤ C, we may not be able to find an αi ∈ (0, C). Note that we
also follow the computation of R̄ in L1-loss SVDD to average the results of all αi > 0.

Case 2: C ≤ C∗.
We first note that after setting R̄ to be zero, (27) degenerates to (28) that is independent
of C. Thus, if we already know the value of C∗ by solving (28), then clearly we already
know the optimal solution in this case. The remaining issue is how to solve (28). Note
that this problem is in a more complicated form than (25), and thus does not have a
closed-form solution.

We consider the KKT conditions and obtain that at the optimal (a, ξ), there exists
α such that

αi = 2ξi ≥ 0,

l∑
i=1

αi(a− φ(xi)) = 0.

Therefore, as long as α 6= 0, by normalizing α we have

a =
l∑
i=1

βiφ(xi), where βi ≥ 0,
l∑
i=1

βi = 1.

The only case that α = 0 can happen is φ(x1) = . . . = φ(xl) and this can be easily
ruled out before we try to solve the problem. Now we can turn to solve the following
problem.

min
β

l∑
i=1

‖φ(xi)−
l∑
i=1

βiφ(xi)‖4

subject to 0 ≤ βi, i = 1, . . . , l, (37)

eTβ = 1.

Because constraints in (37) are the same as those in (2) and (36), decomposition meth-
ods can be modified to solve (37).
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4.2 Smallest Circle Encompassing the Data

The radius of the smallest circle encompassing all training instances is useful for eval-
uating an upper bound of leave-one-out error for SVMs (Vapnik and Chapelle, 2000;
Chung et al., 2003). It can be computed by a simplified form of (7) without considering
ξ.

min
R̄,a

R̄

subject to ‖φ(xi)− a‖2 ≤ R̄.

Note that this is identical to (24). Past works have derived the dual problem of (24).
As expected, it is (19) without the constraint αi ≤ C, ∀i. A practical issue is that when
applying an optimization procedure for (19) to solve the dual problem here, replacing
C with ∞ may cause numerical issues. We address this issue by applying Theorem 6.
That is, to solve (24), all we have to do is to solve (7) with any C > 1.

5 Conclusions

In this paper, we point out insufficiencies in the existing literature of SVDD. We then
conduct a thorough investigation, rigorously derive the dual problem of SVDD with
strong duality to ensure the optimality of the original primal problem, discuss addi-
tional properties, and study some extensions of SVDD. Based on this work, we have
updated the extension of LIBSVM for SVDD at LIBSVM Tools.2

A Proof of Theorem 2

If a is not unique, then there are two optimal solutions (R̄1,a1, ξ1) and (R̄2,a2, ξ2) such that

a1 6= a2 (38)

and

R̄1 + C
l∑
i=1

(ξ1)i = R̄2 + C
l∑
i=1

(ξ2)i. (39)

We begin with showing that the optimal objective value is positive. Otherwise, constraints in
(7) implies that

R̄1 = R̄2 = 0 and ξ1 = ξ2 = 0.

Then
0 = ‖φ(xi)− a1‖ = ‖φ(xi)− a2‖, ∀i = 1, . . . , l

implies
a1 = a2,

a contradiction to (38).
Because ‖φ(x) − a‖2 is strictly convex with respect to a and a1 6= a2 from (38), there

exists θ ∈ (0, 1) such that for all i = 1, . . . , l,

‖φ(xi)− (θa1 + (1− θ)a2)‖2 < θ‖φ(xi)− a1‖2 + (1− θ)‖φ(xi)− a2‖2 (40)

≤ θ(R̄1 + (ξ1)i) + (1− θ)(R̄2 + (ξ2)i).

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#libsvm_for_svdd_and_finding_the_
smallest_sphere_containing_all_data.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#libsvm_for_svdd_and_finding_the_smallest_sphere_containing_all_data
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#libsvm_for_svdd_and_finding_the_smallest_sphere_containing_all_data
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From (40), there exists ∆ ∈ (0, 1) such that

∆

(
θ

[
R̄1

ξ1

]
+ (1− θ)

[
R̄2

ξ2

])
satisfies that ∀i = 1, . . . , l,

‖φ(xi)− (θa1 + (1− θ)a2)‖2 ≤ ∆
(
θ
(
R̄1 + (ξ1)i

)
+ (1− θ)

(
R̄2 + (ξ2)i

))
.

Therefore,

θ

∆R̄1

a1

∆ξ1

+ (1− θ)

∆R̄2

a2

∆ξ2


is a feasible points for (7). However, with (39), the new objective value is

∆θ(R̄1 + C
l∑
i=1

(ξ1)i) +∆(1− θ)(R̄2 + C
l∑
i=1

(ξ2)i) = ∆(R̄1 + C
l∑
i=1

(ξ1)i).

Because we have shown that the optimal objective value is positive, this new value is strictly
smaller than the optimal objective value we have. Thus, there is a contradiction. Therefore,
our assumption in (38) is incorrect and the optimal a is unique.

We give an example to show that the optimal R̄ and ξ are not unique. Consider problem
(7) with C = 1/2 and the input instances are x1 = 1,x2 = −1,x3 = 2,x4 = −2. We claim
that the following two points (R̄1,a, ξ1) and (R̄2,a, ξ2) where

R̄1 = 1, a = 0, ξ1 = [0, 0, 3, 3]T ,

R̄2 = 4, a = 0, ξ2 = [0, 0, 0, 0]T ,
(41)

are both optimal. Clearly, they are both feasible. Furthermore, we have

R̄+ C

4∑
i=1

ξi ≥ R̄+
1

2
(ξ3 + ξ4) ≥

1

2
min
a

(a− 2)2 + (a+ 2)2 = 4.

Thus the optimal objective value is at least 4. Because points in (41) give the objective value
4, (R̄1,a, ξ1) and (R̄2,a, ξ2) are both optimal.

B Proof of Theorem 4

For any C > 1/l, consider problem (7) without the constraint R̄ ≥ 0. Assume it has an optimal
(R̄,a, ξ) with R̄ < 0. We consider a new point (0,a, ξ + R̄e), where e is the vector of ones.
This point is feasible because

0 ≤ ‖φ(xi)− a‖2 ≤ R̄+ ξi = 0 + (ξi + R̄)

and therefore
ξi + R̄ ≥ 0.

Because C > 1/l and R̄ < 0, the new objective function satisfies

0 + C

l∑
i=1

(ξi + R̄) = C

l∑
i=1

ξi + lCR̄ < C

l∑
i=1

ξi + R̄, (42)

a contradiction to the assumption that (R̄,a, ξ) is optimal. Therefore, even if the R̄ ≥ 0
constraint is not explicitly stated in problem (7), it is still satisfied by any optimal solution.

For any C ≤ 1/l, assume (R̄,a, ξ) is an optimum of (7) with R̄ > 0. We consider a new
point (0,a, ξ + R̄e). This point is feasible because

0 ≤ ‖φ(xi)− a‖2 ≤ R̄+ ξi = 0 + (ξi + R̄)
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and
ξi + R̄ ≥ 0.

Because C ≤ 1/l and R̄ > 0, the new objective function satisfies

0 + C

l∑
i=1

(ξi + R̄) = C

l∑
i=1

ξi + lCR̄ ≤ C
l∑
i=1

ξi + R̄. (43)

Along with the constraint R̄ ≥ 0, the new point with R̄ = 0 is optimal when C ≤ 1/l.
Furthermore, when C < 1/l, (43) becomes a strict inequality. This contradicts the assumption
that (R̄,a, ξ) is optimal for (7), so the optimal R̄ must be zero for C < 1/l.

C Proof of Theorem 5

From the KKT conditions (20) and (15), at an optimum we have for all i,

R̄ ≥ ‖φ(xi)− a‖2, if αi < C,

R̄ ≤ ‖φ(xi)− a‖2, if αi > 0.

The inequality (22) immediately follows. Note that because Slater’s condition is guaranteed,
KKT conditions are necessary and sufficient for optimality (Theorem 1). Thus both the if and
the only if directions are true.

D Proof of Theorem 6

From (14), (15) and the constraint αi ≥ 0, ∀i, if C > 1, then γi > 0 and the KKT optimality
condition γiξi = 0 in (20) implies that ξi = 0. Therefore, the C

∑l
i=1 ξi term can be removed

from the objective function of (7). The R̄ ≥ 0 constraint is not needed because without ξ,
R̄ ≥ ‖φ(xi) − a‖2 has implicitly guaranteed the non-negativity of R̄. Therefore, if C > 1,
problems (7) and (24) are equivalent.

E Proof of Theorem 7

Because of using the strictly convex loss term C
∑l
i=1 ξ

2
i , the optimal ξ is unique. Then

R̄ = Primal optimal value− C
l∑
i=1

ξ2
i

is unique because a convex programming problem has a unique optimal objective value.
To prove the uniqueness of the optimal a, we follow a similar argument in the proof of

Theorem 2. If a is not unique, there are two optimal solutions (R̄,a1, ξ) and (R̄,a2, ξ) such
that

a1 6= a2. (44)

Similar to the uniqueness proof for the L1-loss case, the optimal objective value is positive.
Because ‖φ(x) − a‖2 is strictly convex with respect to a and a1 6= a2 from (44), there

exists θ ∈ (0, 1) such that for all i = 1, . . . , l,

‖φ(x)i − (θa1 + (1− θ)a2)‖2 < θ‖φ(x)i − a1‖2 + (1− θ)‖φ(x)i − a2‖2 (45)

≤ θ(R̄+ ξi) + (1− θ)(R̄+ ξi)

= R̄+ ξi.

From (45), there exists ∆ ∈ (0, 1) such that for all i = 1, . . . , l,

‖φ(x)i − (θa1 + (1− θ)a2)‖2 ≤ ∆2(R̄+ ξi) ≤ ∆2R̄+∆ξi.
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Therefore,  ∆2R̄
θa1 + (1− θ)a2

∆ξ


is a feasible point of (27). However, the new objective value is

(∆2R̄) + C

l∑
i=1

(∆ξi)
2 = ∆2(R̄+ C

l∑
i=1

ξi).

Because we have shown that the optimal objective value is positive, this new value is strictly
smaller than the optimal objective value we have. Thus, there is a contradiction. Therefore,
our assumption in (44) is incorrect and the optimal a is unique.

F Proof of Theorem 8

First, we prove that if C > C∗, then the optimal R̄ > 0. If this result is wrong, there exists
C > C∗ such that the optimal R̄ = 0. Then clearly the optimal solution is (0,a∗, ξ∗). For any
ε > 0, (ε,a∗, ξ∗ − εe) is a feasible solution of (27) because ε ≥ 0 and

‖φ(xi)− a∗‖ ≤ ξ∗i = ε+ ξ∗i − ε, i = 1, . . . , l.

The objective value of (27) at this point is

ε+ C

l∑
i=1

(ξ∗i − ε)2.

By Theorem 7 that the optimal solution is unique and (0,a∗, ξ∗) 6= (ε,a∗, ξ∗ − εe), we have

C

l∑
i=1

(ξ∗i )2 < C

l∑
i=1

(ξ∗i − ε)2 + ε = C

l∑
i=1

(ξ∗i )2 − 2Cε

l∑
i=1

ξ∗i + Clε2 + ε, ∀ε > 0.

Divide both sides by ε and let ε→ 0. We obtain

−2C

l∑
i=1

ξ∗i + 1 ≥ 0.

This shows that if the optimal R̄ of (27) is zero, then with the assumption
∑l
i=1 ξ

∗
i > 0,

C ≤
1

2
∑l
i=1 ξ

∗
i

= C∗,

a violation to the condition C > C∗. Therefore, the optimal R̄ must satisfy R̄ > 0.
We now further prove that the constraint R̄ ≥ 0 in (27) is not necessary. Consider (27)

without the R̄ ≥ 0 constraint.

min
R̄,a,ξ

R̄+ C

l∑
i=1

ξ2
i

subject to ‖φ(xi)− a‖2 ≤ R̄+ ξi, i = 1, . . . , l. (46)

Assume it has an optimal solution (R̂, â, ξ̂) with R̂ < 0. Let (R̃, ã, ξ̃) be the unique optimal
solution of (27). Clearly,

R̂+ C

l∑
i=1

ξ̂2
i ≤ R̃+ C

l∑
i=1

ξ̃2
i (47)
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because (R̃, ã, ξ̃) is feasible for (46). Because the optimal R̄ satisfies R̄ > 0 whenever C > C∗,
consider a new point

(Rθ,aθ, ξθ) = θ(R̂, â, ξ̂) + (1− θ)(R̃, ã, ξ̃)

such that Rθ = 0 for some θ ∈ (0, 1). By convexity of ‖ · ‖2, (Rθ,aθ, ξθ) is a feasible point of
(27). However, the new objective value satisfies

Rθ + C

l∑
i=1

(ξθ)2
i ≤ θ(R̂+ C

l∑
i=1

ξ̂2
i ) + (1− θ)(R̃+ C

l∑
i=1

ξ̃2
i ) (48)

≤ R̃+ C

l∑
i=1

ξ̃2
i , (49)

where inequality (48) is from convexity and (49) is from (47). That is, (Rθ,aθ, ξθ) is optimal
for (27). With Theorem 7, this result contradicts the previously proven property that the
optimal R̄ is larger than zero when C > C∗. Thus the optimal R̄ for (46) always satisfies
R̄ ≥ 0. We have thus proven the first statement of Theorem 8.

Next we prove that if C < C∗, then at optimum, R̄ = 0. If this result is wrong, there exists
C < C∗ such that the optimal (R̂, â, ξ̂) has R̂ > 0. The point (0,a∗, ξ∗) is not optimal at the
current C because the optimal solution is unique according to Theorem 7. Thus

C

l∑
i=1

(ξ∗i )2 > R̂+ C

l∑
i=1

ξ̂2
i . (50)

For any θ ∈ (0, 1], define

(Rθ,aθ, ξθ) ≡ θ(R̂, â, ξ̂) + (1− θ)(0,a∗, ξ∗).

By convexity of the constraints, it is a feasible point. We get

C

l∑
i=1

(ξ∗i )2 > θ(R̂+ C

l∑
i=1

ξ̂2
i ) + (1− θ)(C

l∑
i=1

(ξ∗i )2) ≥ Rθ + C

l∑
i=1

(ξθ)2
i , (51)

where the first inequality is from (50) and the second one is from convexity of square functions.
We can easily see that (0,aθ, ξθ + eRθ) is also feasible, and

C

l∑
i=1

((ξθ)i +Rθ)2 ≥ C
l∑
i=1

(‖φ(xi)− aθ‖)2 ≥ C
l∑
i=1

(ξ∗i )2. (52)

Combining (51) and (52), because Rθ > 0, we get

C(2
l∑
i=1

(ξθ)i + lRθ) > 1. (53)

We note that both Rθ and
∑l
i=1(ξθ)i are continuous functions of θ, and

lim
θ→0

Rθ = 0, lim
θ→0

l∑
i=1

(ξθ)i =
l∑
i=1

ξ∗i .

Therefore, with the assumption
∑l
i=1 ξ

∗
i > 0, (53) gives

C ≥ lim
θ→0

1

2
∑l
i=1(ξθ)i + lRθ

=
1

2
∑l
i=1 ξ

∗
i

= C∗,

a violation to the condition C < C∗. We have thus proven that if C < C∗, the optimal R̄ = 0.
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Finally, we check the situation when C = C∗. We have shown that (0,a∗, ξ∗) is the unique
optimum of (27) for all C ∈ (0, C∗). Assume that the optimal solution at C = C∗ is (R̂, â, ξ̂).
Then we have that for any C ∈ (0, C∗),

R̂+ C∗
l∑
i=1

ξ̂2
i ≤ 0 + C∗

l∑
i=1

(ξ∗i )2,

0 + C

l∑
i=1

(ξ∗i )2 ≤ R̂+ C

l∑
i=1

ξ̂2
i .

Let C → C∗, we have

C∗
l∑
i=1

(ξ∗i )2 ≤ R̂+ C∗
l∑
i=1

ξ̂2
i ≤ C∗

l∑
i=1

(ξ∗i )2.

Thus

C∗
l∑
i=1

(ξ∗i )2 = R̂+

l∑
i=1

ξ̂2
i .

That is, (0,a∗, ξ∗) is an optimal solution of (27) at C = C∗. By Theorem 7, the optimal
solution of (27) is unique at any C and thus at C∗. We then have R̂ = 0.
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