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Abstract

Newton methods can be applied in many supervised learning approaches. However, for

large-scale data, the use of the whole Hessian matrix can be time consuming. Recently,

subsampled Newton methods have been proposed to reduce the computational time by

using only a subset of data for calculating an approximation of the Hessian matrix. Un-

fortunately, we find that in some situations the running speed is worse than the standard

Newton method because cheaper but less accurate search directions are used. In this

work, we propose some novel techniques to improve the existing subsampled Hessian



Newton method. The main idea is to solve a 2-dimensional sub-problem per iteration

to adjust the search direction to better minimize the second-order approximation of the

function value. We prove the theoretical convergence of the proposed method. Ex-

periments on logistic regression, linear SVM, maximum entropy, and deep networks

indicate that our techniques significantly reduce the running time of the subsampled

Hessian Newton method. The resulting algorithm becomes a compelling alternative to

the standard Newton method for large-scale data classification.

1 Introduction

The problems we consider arise from supervised learning, which aims to train a model

based on observed labeled training data and predict the labels of previously unseen data

with the model. Given a set of training examples (yi,xi), i = 1, ..., l, where yi is a label

(class) and xi ∈ Rn is a feature vector, and a loss function ξ parametrized by a weight

vector w ∈ Rn, the goal is to minimize the average loss of training data.

min
w

f(w), where f(w) ≡ 1

l

l∑
i=1

ξ(w;xi, yi). (1)

We require that the loss function is convex. For large-scale problems, the leading ob-

stacle is that it can be very costly to evaluate the objective function f(w), the gradient

∇f(w) and the Hessian H = ∇2f(w) when all the training examples are used. To

overcome this obstacle, a sampling framework has been recently proposed by Byrd

et al. [2011]. Because training examples are theoretically drawn from some probabil-

ity distribution, f(w) of (1) can be seen as an expected loss. Based on the fact that

training examples are often redundant to some extent, we could employ a subset of
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training examples instead of the whole training data set to the optimization process.

Let R ⊂ {1, . . . , l} be a training subset. The stochastic approximation of the objective

function is defined as

fR(w) ≡ 1

|R|
∑
i∈R

ξ(w;xi, yi). (2)

To avoid expensive Hessian calculation, Byrd et al. [2011] further select a subset S ⊂ R

to define the following “subsampled Hessian:”

HS ≡
1

|S|
∑
i∈S

∇2ξ(w;xi, yi). (3)

The work by Byrd et al. [2011] then devises a subsampled Hessian Newton method. For

a multinomial logistic regression problem, the running speed is shown to be better than

that of using the full Hessian. Although Byrd et al. [2011] consider a general setting

of having both subsets R and S, in their analysis and experiments, R = {1, . . . , l} is

assumed. We follow the same setting and focus on studying the use of subsampled

Hessian with S.

In machine learning practice, to avoid overfitting, a regularization term is often

considered together with the training loss. Then the objective function becomes

f(w) =
1

2
wTw +

C

l

l∑
i=1

ξ(w;xi, yi),

where C is a given regularization parameter. With this modification, fR(w) is no longer

the average of subsampled training losses. Therefore, in our analysis we do not restrict

fR(w) and HS to be the same as (2) and (3), respectively. Instead, we consider a more

general setting by assuming that for the function to be minimized, its HS and the full

Hessian are related:

m̄HS � H � M̄HS,∀wk, (4)
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where {wk} is the sequence of iterates generated by the optimization procedure, M̄ ≥

m̄ ≥ 0 are two constants, and A � B means that B − A is positive semi-definite. For

subsampled Hessian Newton methods considered in this paper, we show in Section 5

that (4) easily holds for popular methods like logistic regression, SVM, and maximum

entropy.

Some studies other than Byrd et al. [2011] have considered subsampled Hessian

Newton methods. For example, Martens [2010] proposed and applied a subsampled

Hessian method for training neural networks. Chapelle and Erhan [2011] make an

extension to use preconditioned conjugate gradient methods for obtaining search direc-

tions.

In this work, we begin with pointing out in Section 2 that for some classification

problems, the subsampled Hessian Newton method may be slower than the full Hessian

Newton method. The main reason is that, by using only a subset S, the resulting search

direction and step size are very different from the full Newton direction that minimizes

the second-order approximation of the function reduction. Based on this observation,

in Section 3, we propose some novel techniques to improve the subsampled Hessian

Newton method. The main idea is to solve a 2-dimensional sub-problem for adjusting

the search direction so that the second-order approximation of the function value is

better minimized. The theoretical convergence of the proposed methods is given in

Section 4. In Section 5, we apply the proposed methods to several machine learning

problems: logistic regression (LR), l2-loss support vector machines (SVM), maximum

entropy (ME) and deep neural networks.

Our implementation for LR, SVM, and ME is extend from the software LIBLINEAR

4



[Fan et al., 2008], while for deep networks we extend the implementation in Martens

[2010]. Experiments in Section 6 show that the proposed methods are faster than

the subsampled Newton method originally proposed in Byrd et al. [2011]. There-

fore, our improved subsampled Hessian Newton method can effectively train large-

scale data. A supplementary file including additional analysis and experiments is avail-

able at http://www.csie.ntu.edu.tw/˜cjlin/papers/sub_hessian/

supplement.pdf.

2 Subsampled Hessian Newton-CG Method and Its Prac-

tical Performance

We briefly review the method in Byrd et al. [2011]. At the kth iteration, from the current

solutionwk and a given subset Sk, we find a direction dk by solving the following linear

system

HSk
dk = −∇f(wk), (5)

where HSk
is the subsampled Hessian defined in (3). The main difference from the

standard Newton method is that HSk
rather than the full Hessian Hk ≡ ∇2f(wk) is

used.

For large-scale problems, existing Newton methods often approximately solve the

linear system by the conjugate gradient (CG) method, which mainly computes a se-

quence of Hessian-vector products. Byrd et al. [2011] adopt the same strategy, so sub-

sampled Hessian-vector products are computed. They terminate the CG procedure after

either a pre-specified maximal number of CG iterations has been reached or the follow-

5

http://www.csie.ntu.edu.tw/~cjlin/papers/sub_hessian/supplement.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/sub_hessian/supplement.pdf


Algorithm 1 Subsampled Hessian Newton-CG method

1: Given initial w0 = 0, CGmax and constants η, σ ∈ (0, 1).

2: for k = 0, 1, . . . do

3: Choose a subset Sk.

4: Approximately solve (5) by CG to obtain a direction dk after the condition (6)

is satisfied or the number of CG iterations reaches CGmax.

5: Find αk satisfying (7) by backtracking line search with initial α = 1.

6: Update wk+1 = wk + αkdk.

7: end for

ing inequality has been satisfied.

||HSk
dk +∇f(wk)|| ≤ σ||∇f(wk)||, (6)

where σ ∈ (0, 1) is a given tolerance. For many machine learning problems, the Hessian

(or subsampled Hessian) takes a special form, and hence, the Hessian-vector product in

the CG procedure can be conducted without explicitly forming the Hessian. This type

of Hessian-free Newton-CG methods for machine learning applications has been used

in, for example, Keerthi and DeCoste [2005], Lin et al. [2008].

After obtaining the direction dk, to ensure the convergence, a line search is used to

find a step size αk that satisfies the following sufficient decrease condition

f(wk + αkdk) ≤ f(wk) + ηαk∇f(wk)
Tdk, (7)

where η ∈ (0, 1) is a pre-specified constant. Note that the direction dk obtained after

CG iterations is a descent direction (i.e.,∇f(wk)
Tdk < 0) ,1 so (7) is satisfied for some

1See references of CG in, for example, Golub and Van Loan [1996].
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Figure 1: A comparison between using 5% subsampled Hessian and full Hessian. Data

set news20 and logistic regression (LR) are considered. See Section 6 for details of

experimental settings. The “CG10” in legends indicates the CGmax value in Algorithm

1.

αk. Byrd et al. [2011] suggest using backtracking line search by sequentially trying

αk = 1,
1

2
,
1

4
, . . . (8)

until (7) holds. Then αkdk is used to update wk to wk+1. The overall procedure is

summarized in Algorithm 1. It is proved in Byrd et al. [2011] that if the subsampled

Hessian satisfies some minor conditions, then Algorithm 1 leads to the convergence of

{∇f(wk)} to zero. In their experiments, the maximal number of CG iterations is set to

be

CGmax = 10.

Although solving (5) with subsampled Hessian is cheaper than full Hessian, the less

accurate direction may result in slower convergence (i.e., more iterations in the Newton

method). In Figure 1, we conduct a simple comparison between using subsampled and
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full Hessian. For fairness, all other implementation details are kept the same. We check

the relationship between the closeness to the optimal objective value and the following

measures.

(a) Number of iterations.

(b) Training time.

It can be clearly seen in Figure 1(a) that the implementation of using subsampled

Hessian needs significantly more iterations to converge. We then check running time

in Figure 1(b). The difference between the two settings becomes smaller because each

iteration of using subsampled Hessian is cheaper. However, the approach of using sub-

sampled Hessian is still worse. Although from Byrd et al. [2011] and our subsequent

experiments, subsampled Newton is shown to be faster for some other problems, our

example here demonstrates that the opposite result may occur.

The slower convergence of the subsampled Hessian method in Figure 1(a) indicates

that its direction is not as good as the full Newton direction. This situation is expected

because the sampled set Sk may not represent the full set well. In Section 6, we will see

that as the size of Sk shrinks, the performance gets worse.

Based on the above discussion, we aim at improving the subsampled-Hessian method

so that it is generally faster than the full-Hessian setting. It is well known that the stan-

dard Newton method of using full Hessian solves the following second-order approxi-

mation of f(wk + d)− f(wk).

min
d
∇f(wk)

Td+
1

2
dTHkd. (9)

When wk is near the optimum, f(wk + d) − f(wk) is almost the same as the ap-
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proximation in (9). Therefore, not only does the full Newton direction (i.e., αk = 1)

satisfy the sufficient decrease condition in (7), but also the method enjoys fast quadratic

convergence. We observe in the above experiment that when subsampled Hessian is

used, αk = 1 satisfies the condition (7) at a much later stage. Therefore, a crucial rea-

son for the inferior running speed is that the obtained directions are not as good as the

full Newton directions. In Section 3, we will propose novel techniques to improve the

subsampled Hessian Newton method.

3 Modified Subsampled-Hessian Newton Directions

The main objective of this section is to adjust a subsampled Newton direction so that it

gives a smaller objective function value of (9).

To make the direction closer to the full Newton, extra computational operations or

data accesses are needed. Let us check what we may be able to afford. At each iteration

of a standard line-search Newton method, the number of times to access all data is

1 + #CG steps + #line-search steps. (10)

The first term in (10) indicates that we need at least one full data access for calculating

f(wk) and ∇f(wk). In general, the second term is larger than the third, so the sub-

sampled method aims at reducing the number of data accesses in the CG procedure by

considering only a subset of data. Given that the whole data set must be accessed at

least once, our ideas are to use one extra access of data for either improving the direc-

tion or reducing the number of line-search steps. Specifically, we take this extra data

access to calculate and use the full Hessian matrix.
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To begin, we consider the initial step size for line search. While in Byrd et al.

[2011], they start with αk = 1, another setting is to consider

f(wk + αdk)− f(wk) ≈ α∇f(wk)
Tdk +

1

2
α2dTkHkdk. (11)

and minimize the right-hand side of (11) to get

α =
−∇f(wk)

Tdk

dTkHkdk
. (12)

Using this value as the initial step size can potentially reduce the number of line search

steps, but the extra cost is to calculate the product between the full Hessian and dk in

(12).

By still paying one extra data access, we extend the above idea to minimize (9) as

much as possible. We propose minimizing the following form.

min
β1,β2

1

2
(β1dk + β2d̄k)

THk(β1dk + β2d̄k) +∇f(wk)
T (β1dk + β2d̄k), (13)

where dk is the search direction obtained at the current iteration, and d̄k is a chosen

vector. If d̄k = 0, then problem (13) is reduced to (11) and the method in (12) becomes

a special case here.

The function in (13) is convex to β1 and β2, so we can solve it by taking the gradient

to be zero.  dTkHkdk d̄
T
kHkdk

d̄
T
kHkdk d̄

T
kHkd̄k


 β1

β2

 =

 −∇f(wk)
Tdk

−∇f(wk)
T d̄k

 . (14)

This two-variable linear system has a simple closed-form solution. The resulting direc-

tion is a descent one because from (14),

∇f(wk)
T (β1dk + β2d̄k) = −(β1dk + β2d̄k)

THk(β1dk + β2d̄k) < 0. (15)
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Therefore, the backtracking line search is guaranteed to terminate.

Using this new direction, β1dk + β2d̄k, we have

∇f(wk)
T (β1dk + β2d̄k) +

1

2
(β1dk + β2d̄k)

THk(β1dk + β2d̄k)

= − 1

2
∇f(wk)

T (β1dk + β2d̄k)

≤ − η∇f(wk)
T (β1dk + β2d̄k)

if η ≤ 1/2. Therefore, this modified subsampled Newton direction can easily satisfy

the sufficient decrease condition (7) if (13) gives a good estimate of the function-value

reduction.

Once (14) is solved, we must choose an initial step size for line search. Obviously

we can apply (12) that aims to find a suitable initial α. Interestingly, the equality in (15)

implies that if we apply β1dk + β2d̄k to (12), then α = 1 is obtained. This derivation

indicates that a reasonable initial step size for line search is α = 1.

For the first outer iteration, it is unclear what d̄1 should be. We can simply set

d̄1 = 0, so β1 is the same as that by (12).

In (14), two products between the full Hessian and vectors dk, d̄k are needed. How-

ever, with careful implementations, training instances are accessed once rather than

twice; see an example in Section 5.1.

The remaining issue is the selection of the vector d̄k. One possible candidate is

dk−1, the direction at the previous iteration. Then information from both subsets Sk−1

and Sk are used in generating the direction of the current iteration. Another possible d̄k

is to use −∇f(wk). Then (13) attempts to combine the second-order information (i.e.,

Newton direction dk) and the first-order information (i.e., negative gradient). In Section
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Algorithm 2 An Improved Subsampled Hessian Newton-CG method

1: Given initial w0 = 0, CGmax and constants η, σ ∈ (0, 1).

2: for k = 0, 1, . . . do

3: Choose a subset Sk.

4: Approximately solve (5) by CG to obtain a direction dk after the condition (6)

is satisfied or the number of CG iterations reaches CGmax.

5: if k = 0 then

6: d̄k = 0

7: else

8: Choose a suitable d̄k

9: end if

10: Solve (13) to obtain a direction βk,1dk + βk,2d̄k.

11: Find αk satisfying (7) by backtracking line search with initial α = 1.

12: Update wk+1 = wk + αk(βk,1dk + βk,2d̄k).

13: end for

6, we will compare different choices of d̄k. A summary of our improved subsampled-

Hessian Newton method is in Algorithm 2.

For problems with many variables (e.g., deep learning problems discussed in Sec-

tion 5.4), it is difficult to solve (13) by using the full Hessian. Instead, we can replace

Hk with HSk
to have the following optimization problem.

min
β1,β2

1

2
(β1dk + β2d̄k)

THSk
(β1dk + β2d̄k) +∇f(wk)

T (β1dk + β2d̄k). (16)

More details are shown in Section 5.4.
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3.1 Relations with Prior Works of Using Second Directions

The concept of combining several search directions in one iteration has been applied in

past optimization works. For example, in an early study by Polyak [1964], a heavy ball

method was proposed so that

wk+1 = wk −
α

L
∇f(wk) + β(wk −wk−1),

where α, β, and L are constants. It can be easily shown that

wk+1 = wk −
1

L

k∑
i=0

αβk−i∇f(wk).

Thus, the update from wk to wk+1 involves all past gradients ∇f(w0), . . . , ∇f(wk).

In Drori and Teboulle [2014], they have shown that some other first-order optimization

methods can be expressed in a similar setting of using all past gradients.

The main difference between ours and past studies is that our directions (dk and

if d̄k = dk−1) are obtained from using second-order information. The coefficients for

combining directions are then obtained by solving a two-variable optimization problem.

4 Convergence

In this section, we discuss the convergence properties of the proposed methods. The

proof is related to that in Byrd et al. [2011], but some essential modifications are needed.

In addition, our analysis more broadly covers continuously differentiable f(w) because

Byrd et al. [2011] require twice differentiability. We begin with proving the conver-

gence of using (13) because the proof for (16) is similar.
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4.1 Convergence of Using (13)

Following Byrd et al. [2011], we need HSk
to be uniformly positive definite. That is,

there exists m > 0 such that

vTHSk
v ≥ m||v||2, ∀v ∈ Rn. (17)

If a convex loss is used, this property can be easily achieved by adding an l2 regu-

larization term to the objective function. We also need that there exists M > 0 such

that

||HSk
|| ≤M, ∀k. (18)

To connect HSk
and Hk, as mentioned in Section 1, we require that there exist m̄ and

M̄ such that

m̄HSk
� Hk � M̄HSk

, ∀k. (19)

We present the convergence result in the following theorem.

Theorem 1. Let f(w) be continuously differentiable and assume the following condi-

tions hold.

1. The sublevel set {w : f(w) ≤ f(w0)} is bounded, where w0 is the initial point.

2. ∇f(w) is Lipschitz continuous. That is, there exists L > 0 such that

||∇f(w)−∇f(ŵ)|| ≤ L||w − ŵ||, ∀w, ŵ.

3. (17), (18) and (19) hold.

Then, the sequence {wk} generated by Algorithm 2 using the direction of solving (13)

satisfies

lim
k→∞
∇f(wk) = 0.
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Proof. Like Byrd et al. [2011], we establish all needed conditions in Theorem 11.7 of

Griva et al. [2009] for the convergence proof. We begin with showing that

− (β1dk + β2d̄k)
T∇f(wk)

||β1dk + β2d̄k||||∇f(wk)||
(20)

is bounded above zero for all k. From (15), (19) and (17),

−∇f(wk)
T (β1dk + β2d̄k) = (β1dk + β2d̄k)

THk(β1dk + β2d̄k)

≥ m̄(β1dk + β2d̄k)
THSk

(β1dk + β2d̄k)

≥ m̄m||β1dk + β2d̄k||2. (21)

Following Byrd et al. [2011] to apply properties of CG, there exists a matrix Qk and a

vector vk such that

dk = Qkvk and QT
kHSk

Qkvk = −QT
k∇f(wk), (22)

where Qk’s columns form a orthonormal basis of the Krylov subspace that includes

∇f(wk).2 Therefore,∇f(wk) is in the range of Qk’s columns, and hence

||QT
k∇f(wk)|| = ||∇f(wk)||. (23)

From (23), (22) and (18), we can derive

||∇f(wk)|| = ||QT
k∇f(wk)|| ≤ ||HSk

||||Qkvk|| ≤M ||dk||. (24)

2 This property holds because the initial point of the CG procedure is the zero vector.
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Using (18) and (19),

M ||dk||||β1dk + β2d̄k|| ≥ ||dk||||HSk
||||β1dk + β2d̄k||

≥ 1

M̄
||dk||||Hk||||β1dk + β2d̄k||

≥ 1

M̄
dTkHk(β1dk + β2d̄k)

= − 1

M̄
∇f(wk)

Tdk (25)

=
1

M̄
vTkQ

T
kHSk

Qkvk (26)

=
1

M̄
dTkHSk

dk ≥
m

M̄
||dk||2, (27)

where (25) is from the first equality in (14), (26) is from (22), and (27) is from (17).

Therefore, (21), (24) and (27) imply that

− (β1dk + β2d̄k)
T∇f(wk)

||∇f(wk)||||β1dk + β2d̄k||
≥ m̄m||β1dk + β2d̄k||

M ||dk||
≥ m2

M2

m̄

M̄
,

which means our modified direction β1dk + β2d̄k is a sufficient descent direction.

The remaining condition needed is to show that the search direction is gradient

related and is bounded in norm. From (27) and (24), we have

||β1dk + β2d̄k|| ≥
m

MM̄
||dk|| ≥

m

M2M̄
||∇f(wk)||.

From (21),

||β1dk + β2d̄k||2 ≤
−∇f(wk)

T (β1dk + β2d̄k)

mm̄
≤ ||∇f(wk)||||β1dk + β2d̄k||

mm̄
,

so

||β1dk + β2d̄k|| ≤
||∇f(wk)||

mm̄
. (28)

Because the sublevel set is bounded, from the continuity of ||∇f(wk)||, we have that

||∇f(wk)|| is bounded, and so is ||β1dk + β2d̄k||.
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Finally, we have shown that all conditions in Theorem 11.7 of Griva et al. [2009]

are satisfied, so the convergence is obtained.

It can be seen that (21), (24) and (27) are three major inequalities derived in the

proof. While (24) is the same as that in Byrd et al. [2011], (21) and (27) are new. The

key difference is that we must make a connection between ||β1dk + β2d̄k|| and ||dk||.

4.2 Convergence of Using (16)

We show that the convergence proof in Section 4.1 can be modified if (16) is used.

Because (16) differs from (13) only in using HSk
rather than Hk, all we must address

are places in Theorem 1 that involve Hk. Clearly we only need to check inequalities

(21) and (27). Easily we see that they still hold and the derivation is in fact simpler.

Therefore, the convergence is established.

5 Examples: Logistic Regression, l2-loss Linear SVM,

Maximum Entropy and Deep Neural Networks

In this section, we discuss how the proposed approach can be applied to various machine

learning problems.

5.1 Logistic Regression

For two-class data with label y ∈ {+1,−1}, the logistic regression (LR) loss is as

follows:

ξ(w;x, y) = log(1 + e−yw
Tx).

17



Furthermore, the optimization problem of regularized logistic regression is

min
w

f(w), where f(w) ≡ 1

2
wTw +

C

l

l∑
i=1

log(1 + e−yiw
Txi).

Note that f(w) is twice continuously differentiable with the following Hessian.

∇2f(w) = I +
C

l
XTDX, (29)

where I is the identity matrix, X = [x1, . . . ,xl]
T , and D is a diagonal matrix with

Dii =
e−yiw

Txi

(1 + e−yiwTxi)2
, i = 1, . . . , l.

By using a subset Sk, the subsampled Hessian-vector product is

HSk
v = v +

C

|Sk|
(XT (DSk

(Xv))). (30)

By a sequence of matrix-vector products in (30), we have a Hessian-free approach be-

cause HSk
is never explicitly formed.

After the CG procedure, we must calculate Hkdk and Hkd̄k in order to apply our

proposed approach. This step may be the bottleneck because the whole training set

rather than a subset is used. From (30), we can calculate Xdk and Xd̄k together, so the

number of data accesses remains the same as using only dk.3

For convergence, we check if assumptions in Theorem 1 hold.

(1) Because of the regularization term wTw/2, the sublevel set is bounded. See, for

example, Appendix A of Lin et al. [2008].

3Note that from the recent development of linear classification, it is known that the number of data

accesses may affect the running time more than the number of operations.
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(2) The gradient is Lipschitz continuous. The mean-value theorem implies

||∇f(w)−∇f(ŵ)|| ≤ ||∇2f(w̄)||||w − ŵ||,

where w̄ is between w and ŵ. From (29) and Dii ≤ 1, ||∇2f(w̄)|| is bounded by

||∇2f(w)|| ≤ 1 +
C

l
||XT ||||D||||X||

≤ 1 +
C

l
||XT ||||X||.

(3) The regularization term implies that (17) holds with m = 1. For (18), because

Dii ≤ 1, we have

1 ≤ ||HSk
|| ≤ 1 +

C

l
||XT ||||D||||X|| ≤ 1 +

C

l
||XT ||||X||. (31)

Next, we check (19). Because Hk is a special case of HSk
when Sk = {1, . . . , l}, it

also satisfies (17) and (18). Then, (19) follows.

5.2 l2-loss Linear SVM

For two-class data with label y ∈ {+1,−1}, the squared hinge loss (l2-loss) takes the

following form.

ξ(w;x, y) = max(0, 1− yiwTx)2.

Two-class l2-loss SVM then solves the following optimization problem.

min
w

f(w), where f(w) ≡ 1

2
wTw +

C

l

∑
i∈B

(1− yiwTxi)
2. (32)

In (32), yi ∈ ±1, i = 1, . . . , l, C is the regularization parameter, and B = {i |

1 − yiwTxi > 0}. It is known that (32) is differentiable but not twice differentiable.

However, we can define the following generalized Hessian [Mangasarian, 2006],

∇2f(w) = I + 2
C

l
XTDX, (33)
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where I is the identity matrix, X = [x1,x2, . . . ,xl]
T , and D is a diagonal matrix with

Dii =


1 if i ∈ B,

0 otherwise.

Then the Newton method can still be applied; see an example in Lin et al. [2008] that

uses the full Hessian. For the subsampled Hessian, the diagonal matrix D is modified

to have

Dii =


1 if i ∈ B ∩ Sk,

0 otherwise.

Regarding the convergence, most assumptions in Theorem 1 hold by the same ex-

planation in Section 5.1. The only exception is the Lipschitz continuity of ∇f(w),

where a proof can be found in Eq. (15) of Mangasarian [2002].

5.3 Maximum Entropy

For multi-class data with label y ∈ {1, . . . , k}, maximum entropy (ME) is an extension

of LR.4 The probability that an instance x is associated with label y is

Pw(y|x) =
exp(wT

y x)∑k
c=1 exp(wT

c x)
,

where y is the label of x and w =

[ w1

...
wk

]
∈ Rkn×1.

Minimizing the negative log likelihood with a regularization term leads to the fol-

lowing optimization problem.

min
w

f(w), where f(w) ≡ 1

2
wTw +

C

l

l∑
i=1

(log(
k∑
c=1

exp(wT
c xi))−wT

yi
xi).

4For a detailed explanation connecting LR and ME, see, for example, Section 5.2 of Huang et al.

[2010].
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In Byrd et al. [2011], ME is referred to as multinomial logistic regression.

Notice that f(w) is twice continuously differentiable. The Hessian-vector product

of f(w) is

Hv =


(Hv)1

...

(Hv)k

 , where v =


v1

...

vk

 (34)

and

Pi,s =
exp(wT

s xi)∑k
c=1 exp(wT

c xi)
,

(Hv)t = vt +
C

l

l∑
i=1

[
Pi,t(v

T
t xi −

k∑
c=1

Pi,cv
T
c xi)

]
xi.

Details of the derivation are in the supplementary materials. If using the subsampled

Hessian, we have

(HSk
v)t = vt +

C

|Sk|
∑
i∈Sk

[
Pi,t(v

T
t xi −

k∑
c=1

Pi,cv
T
c xi)

]
xi.

Regarding the convergence, we prove that Theorem 1 holds, but leave details in the

supplementary materials.

5.4 Deep Neural Networks

We apply deep neural networks for multi-class classification, where the number of

classes is k and the class labels are assumed to be 1, . . . , k. A deep neural network

maps each feature vector to one of the class labels by the connection of nodes in a

multi-layer structure. Between two layers a weight vector maps inputs (the previous

layer) to outputs (the next layer). An illustration is in Figure 2.
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W 1 W 2 W 3

Input layer1 layer2 Output

Figure 2: An illustration of the deep neural networks, where W 1 contains 8 elements,

W 2 contains 4, and W 3 has 8.

Assume the network has L layers. We use n0- · · · -nL to denote a structure so that

the number of neurons at the mth layer is nm.5 The example in Figure 2 has a structure

of 4-2-2-4. At the mth layer, the output zm is obtained by the following recurrence.

xm = Wmzm−1,

zmi = σ(xmi ), ∀i, (35)

where wmij is the weight from node i of the (m − 1)st layer to node j of the mth layer,

σ is an activation function,6 zL = xL is the output, and z0 = x0 = x is the given

input feature vector. Assume θ = [W 1;W 2; . . . ;WL] is the collection of all variables.

A model is obtained by minimizing the following regularized training losses:

min
θ

f(θ), where f(θ) =
1

2C
||θ||2 +

1

l

l∑
i=1

ξ(θ;xi, yi), (36)

where C > 0 is a regularization constant. We follow Martens [2010] to consider the

5Note that n0 is the number of features and nL = k is the number of classes.

6In this paper, we use the sigmoid function as an activation function. That is, 1/(1 + e−x).
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least-square loss:

ξ(θ;x, y) = ||ey − zL||2,

where ey = [0, . . . , 0︸ ︷︷ ︸
1 to y − 1

, 1, 0, . . . , 0]T and y ∈ {1, . . . , k}. After the training procedure of

constructing the network, the predicted class for a test instance x is

arg max
j∈{1,...,nL}

zLj .

Because the total number of parameters
∑L

t=1 nt−1nt is large, to apply Newton

methods, we need a Hessian-free approach. Two major challenges are

1. In contrast to (30), the (sub)-Hessian vector product is now much more complicated

because of the network structure.

2. f(θ) is not a convex function.

Martens [2010] and Martens and Sutskever [2012] have designed a subsampled Hessian

Newton method to handle these two difficulties. For fast Hessian-vector product, they

employ the technique of “forward-differentiation” [Wengert, 1964, Pearlmutter, 1994].

We give more details in the supplementary materials.

For a non-convex f(θ), Hk is not positive semi-definite, so Schraudolph [2002] has

proposed using a generalized Gauss-Newton matrix to approximate the Hessian in deep

learning problems. Though we do not give details, a generalized Gauss-Newton matrix

is positive semi-definite and takes the following form

G ≡ JTBJ, (37)

where B is a positive definite matrix. We can clearly see that this form is similar to

the Hessian matrix of LR and l2-loss SVM in (29) and (33), respectively. We can
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further add a regularization term to ensure the positive definiteness. The Hessian-vector

product becomes the product between the generalized Gauss-Newton matrix and the

vector. This calculation can be conducted byR-operators discussed above.

In Algorithm 1, the line search procedure is used to ensure the convergence. Other

optimization techniques for a similar purpose include Levenberg-Marquardt method

[Moré, 1978] and trust region methods [Conn et al., 2000]. Martens [2010] applies the

Levenberg-Marquardt method prior to the line search procedure. Specifically, instead

of the linear system in (5), the direction dk is obtained by solving the following linear

system:

(GSk
+ λkI)dk = −∇f(θk),

where Gk is the Gauss-Newton matrix in (37) at the current iteration, I is an identity

matrix, and λk is a damping factor. For the next iteration, λk+1 is updated by

λk+1 =



λk × drop if ρk > 0.75,

λk if 0.25 < ρk < 0.75,

λk × boost otherwise.

Note that (drop, boost) are constants and

ρk =
f(θk + dk)− f(θk)

qk(dk)
,

where

qk(d) ≡ ∇f(θk)
Td+

1

2
dTGSk

d (38)

and ρk is the ratio between actual and predicted function reductions. According to

Martens and Sutskever [2012], this adjustment of the direction is practically useful in

training deep networks.
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Next we discuss how to improve the direction using methods developed in Section

3. Because deep neural networks have a large number of variables, we solve (16) in-

stead of (13). Further, HSk
in (16) is replaced with the Gauss-Newton matrix Gk. The

optimization problem is convex in β1 and β2, so the following linear system is solved. dTkGSk
dk d̄

T
kGSk

dk

d̄
T
kGSk

dk d̄
T
kGSk

d̄k


 β1

β2

 =

 −∇f(θk)
Tdk

−∇f(θk)
T d̄k

 . (39)

One may criticize that dk is already the best solution of minimization the second-

order approximation qk(d) defined in (38), so (16) should not give a better direction.

However, because of the damping factor λk, dk is not the optimal solution to minimize

qk(d) in (38). Therefore, (39) may be useful to find a more accurate solution to min-

imize qk(d) and hence obtain a better direction. We will see detailed experiments in

Section 6.2.

Because the objective function of deep networks is non-convex and our algorithm

has been extended to incorporate the LM procedure, we do not have theoretical conver-

gence like that in Section 4.

6 Experiments

In this section, we conduct experiments on logistic regression, l2-loss linear SVM,

maximum entropy, and deep neural networks. We compare the proposed approaches

with existing sub-sampled Hessian Newton methods in Byrd et al. [2011] and Martens

[2010].

Programs for experiments in this paper can be found at http://www.csie.

ntu.edu.tw/˜cjlin/papers/sub_hessian/sub_hessian_exps.tar.
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Table 1: Summary of two-class sets used for experiments on logistic regression and l2-

loss linear SVM. n is the number of features, and n̄ is the average number of non-zero

features per training example. l is the number of training examples. C∗lr and C∗l2 are

the parameters among {2−6, 2−5, . . . , 26} to achieve the best five-fold cross validation

accuracy for logistic regression and l2-loss linear SVM, respectively.

Data set n n̄ l C∗lr C∗l2

news20 1,355,191 455 19,996 64l 64l

yahoo-korea 3,052,939 340 368,444 32l 2l

kdd2010-a 20,216,830 36 8,407,752 0.0625l 0.015625l

kdd2010-b 29,890,095 29 19,264,097 0.0625l 0.015625l

gz. All data sets except yahoo-japan are publicly available at http://www.csie.

ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

6.1 Logistic Regression and l2-loss Linear SVM

We select some large, sparse, and two-class data for experiments. Such data sets are

commonly used in evaluating linear classifiers such as SVM and logistic regression.

Detailed data statistics are in Tables 1.

We compare the following five methods.

1. Full: the Newton method of using the full Hessian. We do not use CGmax (the

maximal number of CG iterations) for a stopping condition of the CG procedure, so

only (6) is used.

2. Full-CG: the Newton method of using the full Hessian. CGmax is set as the maximal
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number of CG steps. For example, Full-CG10 means that CGmax = 10.

3. Subsampled: the method proposed in Byrd et al. [2011], where the backtracking line

search starts with α = 1. See also Algorithm 1.

4. Method 1: the same as Subsampled, but the initial α for backtracking line search

is by (12). Although this modification is minor, we are interested in checking how

important the initial α of line search is in a subsampled Newton method.

5. Method 2: the method proposed in Section 3 by using the direction β1dk + β2d̄k.

Note that we set d̄k = dk−1.

For the CG procedure at each iteration, we let σ = 0.1 in the stopping condition (6).

Following Byrd et al. [2011], except Full we set

CGmax = 10

because in some situations (6) is difficult to be satisfied.

The constant η in the sufficient decrease condition is chosen to be 0.0001. The ratio

of backtracking line search is 1/2; see (8). Our experimental framework is modified

from the Newton-CG implementation of the software LIBLINEAR [Fan et al., 2008].

We present the running time in Figure 3 (logistic regression) and Figure 4 (l2-loss

linear SVM) by using the following subsampling rates:

1. |Sk|
l

= 5%.

2. |Sk|
l

= 1%.
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In each sub-figure, the x-axis shows the running time in seconds, while the y-axis gives

the relative difference to the optimal value defined as

f(wk)− f(w∗)

f(w∗)
, (40)

wherew∗ is an optimal solution andwk is the k-th iterate. Becausew∗ is not available,

we run one method long enough to obtain an approximate reference value. Note that in

Figures 3 and 4, both x-axis and y-axis are log-scaled.

We can make the following observations.

1. Among the three subsampled Hessian Newton methods, in general

Method 2 > Method 1 > Subsampled,

where “>” indicates faster convergence speed. The difference is bigger when using

a smaller Sk. In this situation, the obtained direction using subsampled Hessian is

very different from the full Newton direction, so some adjustments are very useful.

Overall our approach (Method 2) significantly improves upon the approach in Byrd

et al. [2011].

In Figures 4(c) and 4(d), Method 1 is slightly worse than Subsampled. An inves-

tigation shows that at final iterations, the sufficient decrease condition (7) holds at

αk = 1. In such a situation, the effort by Method 1 to find a good initial α is not very

cost-effective.

2. When |Sk|/l is reduced from 5% to 1%, the running time of the three subsampled

Newton methods (Subsampled, Method 1, Method 2) increases. This result is ex-

pected because a smaller |Sk| leads to worse directions.
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3. A comparison between Full and Full-CG10 shows that the number of CG steps per

outer iteration may significantly affect the running time. A smaller CGmax reduces

the cost per outer iteration, but may cause more outer iterations. In Figures 3 and

4, Full-CG10 is in general slower than Full, so selecting a larger CGmax seems to be

necessary for these problems. On the other hand, except in Figures 3(a) and 4(a),

Subsampled-CG10 is faster than Full-CG10. This result is consistent with that in

Byrd et al. [2011]. However, Subsampled-CG10 is slower than Full, where they

differ not only in the use of subsampled or full Hessian, but also in the stopping con-

dition of the CG procedure. This example indicates that in comparing two methods,

it is important to keep all settings except the one for analysis to be the same.

4. After using our proposed techniques, Method 2 becomes faster than Full and Full-

CG10. The only exception is news20, which has #features� #instances, so using

only a subset Sk may cause a significant information loss. Therefore, subsampled

Newton methods are less suitable for such data sets. In addition, the C value chosen

for this set is relatively large. The Hessian matrix becomes more ill-conditioned in

this situation, so using full Hessian can obtain better search directions.

The above discussion indicates the importance of setting a proper CGmax value, so

in Figure 5, we analyze results of using various CGmax values. In Figure 5(a), CGmax =

10 is the best, but in Figure 5(b), the best CGmax becomes 100. Therefore, the best

CGmax value is problem dependent, regardless of using full or subsampled Hessian.

Unfortunately, we do not have a good strategy for selecting a suitable CGmax, so this is

a future issue for investigation.
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Figure 3: Experiments on logistic regression. We present running time (in seconds)

versus the relative difference to the optimal function value. Both x-axis and y-axis are

log-scaled. Left: |Sk|/l = 5%. Right: |Sk|/l = 1%.
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Figure 4: Experiments on L2-loss linear SVM. We present running time (in seconds)

versus the relative difference to the optimal function value. Both x-axis and y-axis are

log-scaled. Left: |Sk|/l = 5%. Right: |Sk|/l = 1%.
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Figure 5: A comparison between different CGmax. Data sets yahoo-korea and

kdd2010-b, 5% subsampled Hessian, and logistic regression (LR) are considered. We

present running time (in seconds) versus the relative difference to the optimal function

value. Both x-axis and y-axis are log-scaled.

An important issue of the proposed method in Section 3 is the selection of d̄k. While

we have experimentally demonstrated that d̄k = dk−1 is useful, we have also checked

d̄k = −∇f(wk).

Because of space consideration, we leave details in the supplementary materials. Re-

sults clearly show that using d̄k = dk−1 is much better than −∇f(wk). We believe

the superiority of dk−1 is because it comes from solving a sub-problem of using some

second-order information.

6.2 Maximum Entropy for Multi-Class Classification

We select some large multi-class data for experiments. Detailed data statistics are in

Tables 2. For simplicity, C = l is used for all problems.
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Table 2: Summary of multi-class data sets used for experiments on maximum entropy. n

is the number of features, and n̄ is the average number of non-zero features per training

example. l is the number of training examples. For aloi, we use only 80% of the data

because in Section 6.3 the remaining 20% are used as the test set.

Data set n n̄ l k

mnist 780 150 60,000 10

rcv1 47,236 65 518,571 53

sector 55,197 163 6,412 105

aloi 128 31 86,400 1,000

We compare the five settings considered in Section 6.1, present results in Figure 6,

and have the following observations.

1. The same as in Section 6.1, we still have

Method 2 > Method 1 > Subsampled.

However, the difference between Method 2 and the other two is generally smaller.

This seems to indicate that the direction dk obtained using subsampled Hessian is

good enough and the use of two directions by β1dk + β2d̄k does not give significant

improvements. In this regard, the selection of a good initial step size for line search

becomes more crucial, so in Figures 6(c) and 6(d), Method 1 is much better than

Subsampled, but it is almost the same as Method 2.

2. Except Figure 6(a), all subsampled methods (Subsampled, Method 1, and Method

2) are faster than Full or Full-CG10. This result is similar to what has been reported
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Table 3: Summary of the data sets used for experiments on deep networks. n is the

number of features. l is the number of training instances. lt is the number of testing

instances. For the last column, the first * means the number of features and the last *

means the number of classes. Note that either the set we obtained is already in the range

of [0, 1] or we conduct a feature-wise scaling on the data set.

Data set n l lt k Deep structure

pendigits 16 7,494 3,498 10 *-300-200-100-30-*

usps 256 7,291 2,007 10 *-500-250-100-30-*

mnist 780 60,000 10,000 10 *-1000-500-250-30-*

aloi 128 86,400 21,600 1,000 *-1000-*

in Byrd et al. [2011]. Therefore, for these multi-class problems, the subsampled

Hessian method may have obtained a good enough direction, a situation consistent

with our conclusion from the previous observation.

3. Full is much faster than Full-CG10 in Figure 6(a), but is slower in others. This result

confirms our earlier finding that a suitable CGmax is problem dependent.

6.3 Deep Learning for Multi-Class Classification

For deep neural networks, we consider some multi-class data sets listed in Table 3.

They are different from those used in Section 6.2 because our deep neural network

implementation is not suitable for sparse data with many features.

We compare the following methods. The first three are variants of subsampled Hes-
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Figure 6: Experiments on maximum entropy. We present running time (in seconds)

versus the relative difference to the optimal function value. Both x-axis and y-axis are

log-scaled. Left: |Sk|/l = 5%. Right: |Sk|/l = 1%.
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sian methods considered in Martens [2010]. They differ in selecting a CG iterate as the

approximate Newton direction. Our experimental framework is modified from the code

at http://www.cs.toronto.edu/˜jmartens/docs/HFDemo.zip. Note

that Martens [2010] considers the following stopping condition rather than (6) for the

CG procedure. Let {si} be the sequence of CG iterates. The CG procedure stops at the

ith step and let dk = si if

i > t and qk(si) < 0 and
qk(si)− qk(si−t)

qk(si)
< tε, (41)

where t = max(10, 0.1i) and ε = 0.0005.

1. Martens-sub: this method, proposed in Martens [2010], stores a subset of CG iter-

ates and selects the one such that the objective value of using the subset Sk (i.e.,∑
i∈Sk

ξ(θ;xi,yi)/|Sk|) is the smallest.

2. Martens-last: this method, proposed in Martens [2010], selects the last CG iterate

as the search direction. This setting corresponds to the “Subsampled” method in

Section 6.1.

3. Martens-full: this method, proposed in Martens [2010], stores a subset of CG iterates

and selects the one such that the objective function value of using the full data set

(i.e.,
∑l

i=1 ξ(θ;xi,yi)/l) is the smallest.

4. Comb1: the method proposed in Section 3 by using the direction β1dk +β2d̄k. Note

that (16) is used and all other settings are the same as Martens-last. See more details

in Section 5.4.
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5. Comb2: the same as Comb1 except that the stopping condition (6) is used for the

CG procedure.

For the sake of simplicity, we do not implement some tricks used in Martens [2010]:

• No pre-conditioning.

• No use of the previous solution as the initial guess in the CG procedure. The zero

vector is used as the initial CG iterate.

For Comb2, we set σ = 0.001 for (6). The value is smaller than 0.1 in Section

6.1 because otherwise the CG stopping condition is too loose. In addition, we consider

the same (boost, drop) = (2/3, 3/2) as Martens [2010] for the Levenberg-Marquardt

method. We use the subsampling rate |Sk|/l = 5% and C = 5 × 104 from Martens

[2010] for (36).

From results presented in Figure 7, we observe that the proposed Comb1 and Comb2

methods are faster than other methods. Therefore, the optimization problem (16) is

useful to improve the quality of the search direction. The difference between Comb1

and Comb2 is generally small, but for usps and mnist, Comb2 is slightly better because

of a smaller number of CG iterations per outer iteration. We observe that (6) with

σ = 0.001 is generally looser than (41). Earlier we mentioned that (6) with σ = 0.1 is

too loose. Therefore, with a similar issue discussed earlier on finding suitable CGmax,

we clearly see the importance of using a CG stopping condition that is neither too loose

nor too strict.
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Figure 7: Experiments on deep neural networks. We present running time (in seconds)

versus test error.

7 Conclusions

In this paper, we have proposed novel techniques to improve the subsampled Hessian

Newton method. We demonstrate the effectiveness of our method on logistic regression,

linear SVM, maximum entropy, and deep neural networks. The asymptotic convergence

is proved, and the running time is shown to be shorter than Byrd et al. [2011] and

Martens [2010]. This work gives a compelling example of showing that little extra cost

in finding the search direction may lead to dramatic overall improvement.
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