
Supplementary Materials for “SparseKmeans: Efficient K-means
Clustering For Sparse Data”

Khoi Nguyen Pham Dang∗
MBZUAI

khoinguyen.phamdang@mbzuai.ac.ae

He-Zhe Lin∗
MBZUAI

b07902028@csie.ntu.edu.tw

Chih-Jen Lin
National Taiwan Univ. / MBZUAI

cjlin@csie.ntu.edu.tw

A STOPPING CONDITION OF K-MEANS
ALGORITHM

SparseKmeans follows the implementation in scikit-learn to stop
the iteration when the new centroids are close enough to their
corresponding old ones. Specifically, the procedure is terminated
when

𝐾∑︁
𝑗=1
∥𝒄 𝑗 − 𝒄 𝑗 ∥2 ≤ 𝜏 ×

1
𝑛

𝑛∑︁
𝑘=1

𝜎2
𝑘
, (A.1)

where 𝒄 𝑗 ’s and 𝒄 𝑗 ’s are current and previous centroids, 𝜏 is a pre-
defined parameter, and 𝜎2

𝑘
is the variance of the 𝑘-th component in

each 𝒙𝑖 , respectively.
In SparseKmeans, we store the current centroids and previous

centroids as two matrices 𝐶 and 𝐶:

𝐶 =

− 𝒄𝑇1 −
− 𝒄𝑇2 −

.

.

.

− 𝒄𝑇
𝐾
−

and 𝐶 =

− 𝒄𝑇1 −
− 𝒄𝑇2 −

.

.

.

− 𝒄𝑇
𝐾
−

.

To calculate ∥𝒄 𝑗−𝒄 𝑗 ∥2 in (A.1), we first take the subtraction between
𝐶 and 𝐶:

𝐶 −𝐶 =

𝒄𝑇1 − 𝒄

𝑇
1

𝒄𝑇2 − 𝒄
𝑇
2

.

.

.

𝒄𝑇
𝐾
− 𝒄𝑇

𝐾

,

and then calculate the squared norms of 𝐶 −𝐶
∥𝒄𝑇1 − 𝒄

𝑇
1 ∥

2

∥𝒄𝑇2 − 𝒄
𝑇
2 ∥

2

.

.

.

∥𝒄𝑇
𝐾
− 𝒄𝑇

𝐾
∥2

(A.2)

Summing all elements in (A.2), we have the left-hand side of (A.1).

B K-MEANS++ INITIALIZATION
The Initialization of 𝒄 𝑗 ’s are often by choosing a subset of sam-
ples. In scikit-learn, they use K-means++ initialization [1] as its
default setting. Compared to randomly choosing 𝐾 points as the
initial centroids, K-means++ reduces the number of iterations for
convergence and minimizes the risk of poor clustering results.

K-means++ sequentially selects the initial points in a more op-
timal way by prioritizing points that are far from the previously
chosen centroids. Therefore, the moment of choosing 𝒄 𝑗 , we already
have 𝒄1, . . . , 𝒄 𝑗−1. We then maintain a distance vector 𝒅′ ∈ R𝑚 with

𝑑′𝑖 = min
𝑗 ′=1,..., 𝑗−1

∥𝒙𝑖 − 𝒄 𝑗 ′ ∥2,

∗Both authors contributed equally to this research.

which is the squared distance between 𝒙𝑖 and the nearest point
that has been chosen as a centroid. Then, based on 𝒅′, we pick 𝐿
candidates for 𝒄 𝑗 , where points further from the already chosen
centroids are more likely to be selected. After selecting 𝐿 candi-
dates, we assign the one that yields the least total squared distance
between data and centroids (called “potential”) as 𝒄 𝑗 . The complete
procedure of K-means++ is as follows.
(1) Uniformly choose 𝒄1 from {𝒙1, . . . , 𝒙𝑚} and initialize𝑑′𝑖 = ∥𝒙𝑖−

𝒄1∥2.
(2) For 𝑗 = 2, . . . , 𝐾 , do the following to select 𝒄 𝑗 .

(a) Sample𝐿 = 2+log2 𝐾 candidate points from {𝒙1, 𝒙2, . . . , 𝒙𝑚}
using the distribution

Pr(𝒙𝑖) =
𝑑′
𝑖∑𝑚

𝑖′=1 𝑑
′
𝑖′
.

Denote 𝑆 = {𝒔1, . . . , 𝒔ℓ } as the sampled points.
(b) Calculate the potential for assigning each 𝑠 ∈ 𝑆 as 𝒄 𝑗 . Find

the candidate point in 𝑆 that minimizes the potential as 𝒄 𝑗 ,
i.e.,

𝒄 𝑗 ∈ argmin
𝒔∈𝑆

𝑚∑︁
𝑖=1

min{𝑑′𝑖 , ∥𝒙𝑖 − 𝒔∥
2}. (B.1)

(c) Update

𝑑′𝑖 ← min{𝑑′𝑖 , ∥𝒙𝑖 − 𝒄 𝑗 ∥
2}, 𝑖 = 1, . . . ,𝑚.

C DETAILS OF ELKAN’S CLUSTER
ASSIGNMENT

C.1 The Maintenance of 𝑢 (𝒙𝑖) and 𝑙 (𝒙𝑖 , 𝒄 𝑗)
• For each 𝒙𝑖 in cluster-ℓ𝑖 , 𝑢 (𝒙𝑖) is an upper bound of ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥.

Since the centroids are updated after the cluster assignment, we
need to update 𝑢 (𝒙𝑖) correspondingly. Suppose 𝒄ℓ𝑖 the centroid
for cluster-ℓ𝑖 before the centroid updates and 𝑢 (𝒙𝑖) is an upper
bound of ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥. To update 𝑢 (𝒙𝑖) from 𝑢 (𝒙𝑖), by the triangle
inequality, we have

∥𝒙𝑖 − 𝒄ℓ𝑖 ∥ + ∥𝒄ℓ𝑖 − 𝒄ℓ𝑖 ∥ ≥ ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥.

Therefore, after centroid updates, 𝑢 (𝒙𝑖) can be obtained via

𝑢 (𝒙𝑖) ← 𝑢 (𝒙𝑖) + ∥𝒄ℓ𝑖 − 𝒄ℓ𝑖 ∥ . (C.1)

• For each 𝒙𝑖 and any 𝑗 = 1, . . . , 𝐾 , 𝑙 (𝒙𝑖 , 𝒄 𝑗) is a lower bound of
∥𝒙𝑖−𝒄 𝑗 ∥. Similar to the situation in𝑢 (𝒙𝑖), since 𝒄 𝑗 is changed afer
the centroid updates, we need to update 𝑙 (𝒙𝑖 , 𝒄 𝑗) for all 𝑖 . Suppose
𝒄 𝑗 is the centroid of cluster- 𝑗 before the centroid updates and
𝑙 (𝒙𝑖 , 𝒄 𝑗) is a lower bound of ∥𝒙𝑖 − 𝒄 𝑗 ∥. By the triangle inequality
and the definition of 𝑙 (𝒙𝑖 , 𝒄 𝑗), we have

∥𝒙𝑖 − 𝒄 𝑗 ∥ ≥ ∥𝒙𝑖 − 𝒄 𝑗 ∥ − ∥𝒄 𝑗 − 𝒄 𝑗 ∥ ≥ 𝑙 (𝒙𝑖 , 𝒄 𝑗) − ∥𝒄 𝑗 − 𝒄 𝑗 ∥.

Khoi Nguyen Pham Dang, He-Zhe Lin, and Chih-Jen Lin

Algorithm C.1: The original version of Elkan’s cluster
assignment in [2].

1 Compute 𝐷 ∈ R𝐾×𝐾 with 𝐷 𝑗, 𝑗 ′ = ∥𝒄 𝑗 − 𝒄 𝑗 ′ ∥/2
2 for 𝑖 = 1, . . . ,𝑚 do
3 if 𝑢 (𝒙) ≤ min𝑗≠ℓ𝑖 𝐷 𝑗,ℓ𝑖 /2 then
4 continue
5 𝑏𝑜𝑢𝑛𝑑_𝑡𝑖𝑔ℎ𝑡 ← False
6 for 𝑗 = 1, . . . , 𝐾 do
7 if 𝑗 ≠ ℓ𝑖 and 𝑢 (𝒙𝑖) > 𝐷 𝑗,ℓ𝑖 /2 and 𝑢 (𝒙𝑖) > 𝑙 (𝒙𝑖 , 𝒄 𝑗)

then
// filter clusters that 𝒙𝑖 must not belong to

8 if 𝑏𝑜𝑢𝑛𝑑_𝑡𝑖𝑔ℎ𝑡 is False then
9 𝑑𝑖 ← ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥

10 𝑢 (𝒙𝑖) ← 𝑑𝑖 , 𝑙 (𝒙𝑖 , 𝒄ℓ𝑖) ← 𝑑𝑖

11 𝑏𝑜𝑢𝑛𝑑_𝑡𝑖𝑔ℎ𝑡 ←True
12 Go to Line 7
13 𝑙 (𝒙𝑖 , 𝒄 𝑗) ← ∥𝒙𝑖 − 𝒄 𝑗 ∥
14 if 𝑑𝑖 > ∥𝒙𝑖 − 𝒄 𝑗 ∥ then
15 ℓ𝑖 ← 𝑗 , 𝑢 (𝒙𝑖) ← ∥𝒙𝑖 − 𝒄 𝑗 ∥

Therefore, after centroid updates, 𝑙 (𝒙𝑖 , 𝒄 𝑗) can be updated by

𝑙 (𝒙𝑖 , 𝒄 𝑗) ← max
{
𝑙 (𝒙𝑖 , 𝒄 𝑗) − ∥𝒄 𝑗 − 𝒄 𝑗 ∥, 0

}
. (C.2)

C.2 Elkan’s K-means Assignment in the Orignal
Work [2]

In the main paper, we give the sketch of Elkan’s K-means assign-
ment in the original work of [2]. Here we provide a detailed version
in Algorithm C.1. In particular, there are two additional settings:
(1) (Line 3 to Line 4) To avoid the for-loop over 𝑗 in Algorithm 1,

Elkan [2] uses considers the following condition

𝑢 (𝒙) ≤ 1
2
min
𝑗 :𝑗≠ℓ𝑖

∥𝒄 𝑗 − 𝒄ℓ𝑖 ∥. (C.3)

If (C.3) holds, then condition (6) must hold for all 𝑗 ≠ ℓ𝑖 , which
means 𝒙 must remain in its original cluster.

(2) To further reduce the number of distance calculations, when
the distance ∥𝒙𝑖 − 𝒄 𝑗 ∥ may need to be calculated, we update
𝑢 (𝒙𝑖) to be the tighest upper bound ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥. We illustrate
the idea in the following figure:

bound_loose︷ ︸︸ ︷
1, . . . , (𝑗∗ − 1), 𝑗∗︸︷︷︸

Line 8 invoked

bound_tight︷ ︸︸ ︷
, (𝑗∗ + 1), . . . , 𝐾 . (C.4)

Suppose 𝑗∗ is the first cluster satisfying neither (6) nor (7).
For 𝑗 = 1, . . . , 𝑗∗ − 1, we use 𝑢 (𝒙𝑖) to check condition (6) and
(7). When 𝑗 = 𝑗∗, we need both ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥ and ∥𝒙𝑖 − 𝒄 𝑗∗ ∥ to
determine whether 𝒙𝑖 should stay in cluster-ℓ𝑖 or go to cluster-
𝑗∗. Under this situation, we update 𝑢 (𝒙𝑖) to ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥, we go to
Line 7 and recheck the conditions. Then, from 𝑗 = 𝑗∗ + 1, . . . , 𝐾 ,
we maintain 𝑢 (𝒙𝑖) = ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥ in Line 15 while ℓ𝑖 may be
changed. Since we use the smallest possible value of 𝑢 (𝒙𝑖), the
number of distance calculations can be reduced.

D ADDITIONAL IMPLEMENTATION DETAILS
FOR UPDATING CENTROIDS

In Section 3.1, we mentioned that when updating centroids, we
need to maintain a vector 𝒅 with 𝑑𝑖 = ∥𝒙𝑖 − 𝒄ℓ𝑖 ∥, i.e., the distance
to the nearest centroid. This allows us to replace the 𝑢 (𝒙𝑖) in (6)
and (7) with 𝑑𝑖 without additional costs. Here we explain why 𝒅 is
needed in centroid updates.

The main reason is, after cluster assignment, it is possible that
none of 𝒙𝑖 ’s belongs to some cluster- 𝑗 , so we cannot update 𝒄 𝑗 by
(2). Suppose we have 𝐸 empty clusters after the cluster assignment.
Then scikit-learn would find 𝐸 samples with the top-𝐸 largest 𝑑𝑖
values, and reassign them to these empty clusters.

E DATASETS
This section describes the preprocessing method applied to the four
data sets across all experiments. For binary classification data set
Url1, we directly use the data instances for clustering. Other data
sets including Amazon-670K2, Wiki-500K3 and Amazon-3M4 are
multi-label data sets, in which each instance can be associated with
several labels. In the context of this work, to avoid confusion with
clustering labels, we refer to the original labels of these mult-label
data sets as meta-labels. Instead of clustering on data instances,
we preprocessed the data to obtain a set of representations for
meta-labels. These representations are then normalized and used
as input for the K-means clustering algorithms. To clarify, let 𝑘 be
the total number of data instances, 𝒛𝑖 be the TF-IDF representation
of 𝑖𝑡ℎ instance,𝑚 be the total number of meta-labels and 𝒙 𝑗 be the
representation of 𝑗𝑡ℎ meta-label. We call 𝑌 ∈ R𝑘×𝑚 as a binary
matrix, such that:

𝑌𝑖 𝑗 =

{
1 if 𝒛𝑖 is associated with the meta-label 𝑗𝑡ℎ

0 otherwise
. (E.1)

To obtain a meta-label representation, we compute the sum over
all data instances corresponding to that meta-label.

𝒙 𝑗 =

∑
𝑖:𝑌𝑖 𝑗=1 𝒛𝑖

∥∑𝑖:𝑌𝑖 𝑗=1 𝒛𝑖 ∥ . (E.2)

The process could be formalized as matrix multiplication:

𝑋 = 𝑌𝑇𝑍 (E.3)

following by a normalization for each row 𝒙𝑖 , in which 𝑋 ∈ R𝑚×𝑛
and 𝑍 ∈ R𝑘×𝑛 are matrices of meta-label representations and in-
stances representations, respectively.

REFERENCES
[1] David Arthur and Sergei Vassilvitskii. 2007. k-means++: the advantages of careful

seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. 1027–1035.

[2] Charles Elkan. 2003. Using the triangle inequality to accelerate k-means. In
Proceedings of the Twentieth International Conference on International Conference
on Machine Learning (ICML). 147–153.

1https://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/binary/url_combined_normalized.bz2
2https://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/multilabel/Amazon-
670K_tfidf_train_ver2.svm.bz2
3https://drive.google.com/open?id=1bGEcCagh8zaDV0ZNGsgF0QtwjcAm0Afk
4https://drive.google.com/open?id=187vt5vAkGI2mS2WOMZ2Qv48YKSjNbQv4

	A Stopping Condition of K-means Algorithm
	B K-means++ Initialization
	C Details of Elkan's Cluster Assignment
	C.1 The Maintenance of u(xi) and l(xi, cj)
	C.2 Elkan's K-means Assignment in the Orignal Work CE03a

	D Additional Implementation Details for Updating Centroids
	E Datasets
	References

