Sampled Estimators For Softmax Must Be Biased
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Abstract

Models requiring probabilistic outputs are ubiquitous and used in fields such as nat-
ural language processing, contrastive learning, and recommendation systems. The
standard method of designing such a model is to output unconstrained logits, which
are normalized into probabilities with the softmax function. The normalization
involves computing a summation across all classes, which becomes prohibitively
expensive for problems with a large number of classes. An important strategy to
reduce the cost is to sum over a sampled subset of classes in the softmax function,
known as the sampled softmax. It was known that the sampled softmax is biased;
the expectation taken over the sampled classes is not equal to the softmax function.
Many works focused on reducing the bias by using a better way of sampling the
subset. However, while sampled softmax is biased, it is unclear whether an unbi-
ased function different from sampled softmax exists. In this paper, we show that
all functions that only access a sampled subset of classes must be biased. With this
result, we prevent efforts in finding unbiased loss functions and validate that past
efforts devoted to reducing bias are the best we can do.

1 Introduction

Training losses based on the softmax function are extensively used across various fields, e.g., natural
language processing [12} [13} 17} 1]], contrastive learning [} 4], and recommendation systems [6} [22].
The most common loss is to take the log of the softmax function, known as the log-softmax or
cross-entropy loss,
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In this loss, the softmax function gives the probability of a class by
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where §* € R is the logit of the target class, ;€ R forevery 1 < i < n are the logits of all negative
classes, and there are n + 1 total classes. By summing this loss over all training data, we obtain the
overall learning objective.

*Work mainly done while visiting Mohamed bin Zayed University of Artificial Intelligence.
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One typically employs gradient methods to train machine learning models. At each training step, the
gradient of log-softmax must be calculated, leading to the following partial derivativesﬂ

pres log Softmax (™, 91, ..., 9, ) = 1 — Softmax(§", 91, ..., 9,,) ()
Y
and forevery 1 <1 < n,
0 o o . o o
8yT log Softmax (9™, 9y ,- - -, 9, ) = —Softmax(4§; , 47 ,---, 91,9, Uittr - Un) (3

Both the loss and gradient computations inevitably rely on the softmax function. The denominator
in (1) sums over logits for all n negative classes, leading to a computational cost of O(n) for each
calculation. This cost can become prohibitively expensive when training models on datasets with a
large number of classes. A typical example involves recommendation systems, like [22]], in which the
size of n can reach millions. In addition to the O(n) computational complexity of the denominator,
evaluating (/1) requires computing all n logits, ¢, . When using large neural networks such as BERT
[9l], computing all n logits can become prohibitively expensive.

As shown in [22]], an intuitive idea to reduce the computation cost is to sample a subset of k classes
for loss calculation, and k < n typically. An important scenario is the stochastic gradient descent
method, where each training step involves a mini-batch of data, and within each batch only the
sampled k classes are used to compute the stochastic gradient. That is, we use only & sampled classes
in calculating (2) and (3)), where a widely used setting is to consider the following sampled softmax:

o
ey
A 3 i “
v + 21 w(iz)e’
where k classes (i1, . .., i) are randomly sampled from the n classes and w(i;) is a weighting term

inversely proportional to the probability of sampling the 7;th sampled class [2]. In contrast, (T)
represents the full softmax, which involves all n + 1 classes.

To ensure equivalence with training a model using the full softmax, it is desirable for the sampled
softmax to satisfy the condition of unbiasedness. Specifically, this condition is defined as follows:

E [Stochastic Gradient] = Full Gradient, Q)

or, equivalently,
E [(4)] = (1), (6)
where E [-] denotes the expectation over the sampled classes (i1, .. ., i). If this condition does not

hold, we consider that (@) is biased with respect to (I)). The different gradients are potentially harmful
to the optimization process and solutions. Unfortunately, previous works like [2, 3] have already
demonstrated that (6) does not hold, highlighting the inherent bias of the sampled softmax. Moreover,
experiments in [3 [16] have demonstrated that bias degrades model performance in tasks such as
multi-label classification and content recommendation.

The bias of sampled softmax leads us to wonder whether, beyond @]), there could be other forms of
approximation that are unbiased. In this paper, we show that any general function s : R¥*1 — R
with access to k < n logits must be biased, that is,

E [s@t, 5, 95] # (1), )
where k classes (i1, ..., i) are randomly sampled from n classes. By extending from the sampled
softmax to any general function, this conclusion generalizes the finding of [3|] and forms our main
contribution. Our negative answer to the existence of unbiased approximations establishes a theoreti-

cal boundary on what is and is not achievable. Our result not only fills a notable gap in the literature
but also sets clear limits for future research directions.

The remainder of this paper is organized as follows: In Section 2] we summarize related works.
In Section [3] we formally define the problem we aim to address and then state the main results
of this work and our assumption. Section [4]starts with preliminaries in Section [4.1] that provide
the necessary background and lemmas, followed by a sketch of the proof in Section [4.2] The
detailed proof is presented in Sections[4.3]and Appendix [E] Finally, Section [5|concludes the paper.
The main notations used in this work are in Table [I] and the appendix is available at https:
//www.csie.ntu.edu.tw/ cjlin/papers/softmax_biased/|

2The detailed proof is given in Appendix
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Table 1: Notation

Notation | Description

n Number of classes excluding the target

g7 ER Logit of the target class

Y1,---,9, €R Logits of the remaining classes

k Number of sampled classes

[r]={1,...,7} Set of positive integers up to r

Sy Set of permutations on [r]

(q = _a Number of combinations of r items chosen from ¢ items
T rl(g—r)!

R>o = {a € R | a > 0} |Set of positive real numbers

hi :RF = R Estimator taking k arguments

S RF 5 R The symmetrization of hy,

2 Related Works

Prior efforts all implicitly assume that an unbiased solution does not exist without attempting to
justify or challenge it. They can be roughly categorized into three directions.

* Focusing on the sampled softmax (4) and attempting to minimize its bias. While [3] demon-
strated that the inherent bias in the sampled softmax cannot be completely eliminated, they proposed
a strategy to minimize this bias. Specifically, the closer the sampling distribution used for selecting
(41, . .,1) approximates the full softmax, the less biased the sampled softmax becomes. To this
end, 3] and its follow-up study [16] developed computationally efficient approximations for sam-
pling. Additionally, numerous hard negative mining strategies have been widely adopted alongside
the sampled softmax, such as those used in representation learning [21} 20} [7]. Hard negatives refer
to negative classes that produce large gradients when used in the sampled log-softmax loss:
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This setting effectively involves sampling negatives based on their corresponding logits. Further-
more, studies like [24] have argued that an effective hard negative mining method should be based
on a good approximation of the full softmax distribution, consistent with the ideas proposed in [3].
In addition to the aforementioned approach of selecting an appropriate sampling distribution,
[3] mentioned another idea: using a larger sample size k to reduce bias. However, increasing k
naturally leads to higher computational cost. To address this issue, subsequent works [19, 23]
introduced the concept of applying moving averages over multiple mini-batches of gradients,
thereby approximating the effect of a large sample size k£ while maintaining low cost.

—log

* Exploring alternative functions that are computationally more efficient than the full softmax
(I). Works in this category generally try to avoid sampling and explore a new loss with all n
logits in their calculation. Well-known examples include hierarchical softmax [14] and spherical
softmax [8]]. However, as reported in [8]], such alternative functions may perform worse than the
full softmax (IJ). Since these methods do not involve sampling over the 7 classes, we do not extend
our discussion to them.

* Designing a different learning problem with the same optimal solution. In [11}[15[10], they
transform the original optimization problem involving a log-softmax term in the objective function
into a new optimization problem. In the transformed problem, there is no log-softmax term in
the objective function. They then show that for special types of models, the transformed problem
has the same optimal solution as the original problem. The equivalence of the optimal solution is
what they refer to as “unbiased,” which is unrelated to the problem of bias discussed in this paper.
While these reformulation approaches are still under development, our negative answer to directly
sampling softmax indicates that they are directions worth investigation.

By proving the non-existence of an unbiased solution, our work provides a theoretical boundary and
serves as a meaningful complement to these studies.



3 Problem Definition and Main Result

Let (i1,...,i%) € [n]* be random variables denoting a subset of % indices sampled from [n] =
{1,...,n} without replacement. We wish to find an estimator s(§", ¢, ,...,¢;, ) such that
o . e’
E[S(y ’yi17"'7yik)] = = (8)
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where the expectation is over (iy, . . ., ix)}]

Our main results are Theorem 3.1]and Corollary

Theorem 3.1. For every k < n, there is no estimator s that satisfies (|8)) when the k logits are sampled
uniformly without replacement.

Theorem 3. states that there is no estimator that can be unbiased to the softmax function when the k&
logits are uniformly sampled. In this work, we focus on the existence of an unbiased estimator of
the softmax function for two main reasons. First, during training, what matters most is the gradient
of log-softmax, as model parameters are updated through gradient-based optimization. Second,
during inference, the output of interest is softmax itself, which represents the predicted probability
distribution over classes. In both situations, the exact value of the log-softmax is not directly required.
Regardless, with Theorem [3.1] we show that an unbiased estimator of log-softmax does not exist in

Appendix [F]

After we establish that Theorem [3.T]applies for uniform sampling, we next examine whether Theorem
still holds for other ways of sampling the k classes (i1, ...,4;). An example of non-uniform
sampling is [13]], where the samples are the union of the target class, in-batch negative samples, and
samples based on BM25 [18]]. In-batch negative samples refer to using the target classes of other
instances in a mini-batch as the negative classes of the current instance.

While we want to consider sampling distributions that are as general as possible, we must be careful
not to include impractical sampling distributions. Recall that the purpose of a sampled estimator is to
avoid computing all n logits; using the logits as part of the sampling process defeats the entire point
of sampling. Consequently, we make the following assumption.

Assumption 3.2. The sampling distribution is selected before computing the logits.

An example of violating Assumption [3.2]is to use a distribution where the probability of sampling
each class 7 is proportional to the exponential of its logit e¥:. In such a case, it was proven [3] that the
sampled softmax is an unbiased estimator. However, constructing the distribution is equivalent to
computing the softmax function for each class. Clearly, if we already have the softmax function, we
would not need to compute a sampled estimator. We obviously want to exclude such distributions
from consideration.

In the previous example of [13], in-batch sampling and negative sampling are both selected before
computing the logits, so they satisfy Assumption[3.2] Similarly, we find that most works on sampled
softmax satisfy Assumption[3.2} For the minority of exceptions [3| [16], we give a brief discussion in
Appendix

Given Assumption [3.2)and setting s(-) to , [3]] concluded that the sampled softmax is biased with
respect to the full softmax,
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In the following sections, we further extend their conclusion to any general s(-) under Assumption

B2

Corollary 3.3. Theorem also holds if the k logits are sampled from any distribution satisfying
Assumption

*Note that (4) with w(i,) can be also expressed by . Details are in Appendix@




The proof of Corollary [3.3]is given in Appendix [E]

In the following proof of (7)), due to a simplification outlined in Section 4.2} we will work with a
function hy : R¥ — R instead of s : R¥F! — R, but they refer to the same problem of estimating
the full softmax.

4 Main Proof

In this section, we prove Theorem [3.1] We begin with necessary preliminaries and lemmas, followed
by a sketch that highlights the main ideas of the proof before presenting the complete derivation.

4.1 Preliminaries

This section introduces lemmas used in the proof of the main theorem. The proofs are provided in
Appendix [C]

Definition 4.1. Let h; : R¥ — R be a function and S, be the set of permutations on [k]. The
symmetrization fj, of hy is defined by

1
fk(lil, . ,Ik) = H Z hk.(xr(l), . ,IT(;C)).
"t TESK
The symmetrization is so named because it is symmetric in its arguments, stated as follows.

Lemma 4.2. For every o € Sy,

(@1, 2k) = (@), - Tok))-

Furthermore, the symmetrization has the same expectation under a uniform sample, stated as follows.

Lemma 4.3. Let a = (a1, ...,a,) € R be n real numbers and (iy, ... ,i1) € [n]* be random
variables denoting k indices sampled uniformly from [n] without replacement. Then

E [fk(ail,...,aik)] =E [hk(ain...,aik)],

where the expectation is over (i1, . .. ,i).

4.2 Sketch of Proof for Theorem [3.1]

The core idea of our proof is that unbiasedness imposes a strong requirement, demanding the
estimator to generalize across arbitrary cases. To illustrate this, we constructed two of the simplest
yet representative cases: one where all logits are identical and another where the logits are divided
into two groups, each with a distinct value. It turns out that these two minimal cases alone have
already revealed a set of contradictory constraints. The proof is non-trivial, as it involves identifying
subtle examples that clearly demonstrate the inherent contradictions.

The proof of Theorem [3.1] proceeds by contradiction, as shown below:
1. We begin by reformulating the problem of estimating the full softmax into an equivalent problem
of estimating:
1
T 1+ Srap
where a = (a1,...,a,) € RZyjand R-g = {a € R | a > 0}.

F(a)

2. We hypothesize the existence of an unbiased estimator hy, : R* — R for F, which accepts k
arguments, and uses the symmetrization fj of hy, which has the same expectation, to simplify the
derivations.

3. We analyze the expectation of f; across various possible values of a and derive a necessary
equation for each vector a that fj, must satisfy to be unbiased. These equations are derived using
mathematical induction.



4. Finally, we complete our proof by demonstrating that it is impossible for fj to simultaneously
satisfy all equations, leading to a contradiction.

Specifically, for Step 3 above, we check different a of the form,
(b1,...,b1,ba,...,ba),
——

where b1,b, € Rygandm =0, ..., k.

4.3 Proof of Theorem 3.1]

Proof. First, we note that

o+
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Softmax(§", 41 ,...,9,) =

It follows that there is an unbiased estimator for the full softmax for every possible model output if
and only if there is an unbiased estimator for F’
Fla)= —— ©
1+ Zi:l a;
forevery a = (a1,...,a,) € RZ,

We prove by contradiction, so we assume there is an unbiased estimator hy. That is, there exists an
hy, such that for every a

F(a) =E [hr(aiy, ... a:,)], (10)
where (iy,...,i;) € [n]* are random variables denoting k indices sampled uniformly from [n]
without replacement.
Next, we calculate the expectation in in detail. For the selection of (i1, ...,k ), the number of

all possible samples of indices is

() # =

which is the number of combinations of £ choices from n items multiplied by the number of
permutations on k items. Therefore, for every function G : R¥ — R we have

n—Fk)!
E[G(ai,,...,ai,)] = % Z Z G(Zo1) > To(k))s (1)
’ zeC(n,k;a) o€Sk

where C/(n, k; a) denotes the set of (}) choices of k elements from a.

Let fj, be the symmetrization of hj. Then
F(a) =K [hk(aiN. .. ,aik)] =K [fk(ail, e ,aik)] (12)

n—k)!
:(ni!k) Z ka(%u),-w%(k))

zeC(n,k;a) o€Sk

:w SN Aen..om) (13)

xzeC(n,k;a) 0€Sk

:w Z ez, .. zk)

xzeC(n,k;a)

1
=Y Ao ), (14)

(k) zeC(n,k;a)
where (12) follows from Lemma[4.3]and (T3)) follows from Lemma[4.2}



We claim that for every b; € R+, we have

1

b1,...,b1) = . 15
Je(b1, ..., b1) 1 by (15)
This is because f, is unbiased for every a, including for @ = (b1, ..., by), implying
1
F = 16
(a) 1 + nb1 ( )
:E[fk(ail,...,aik)] (17)
1
= Y. Jrlbr,.. by) (18)
(k) xzeC(n,k;a)
= fk(bla ceey b1)7
where (T6) is the definition of F in (9), (I7) is from (12) and (I8) is from (T4).
Similarly, suppose a = (b1, ..., b1, bs) for some by, by € R< . Then we have

1
14 (n—1)by + by
=E [fi(ai, -, a3,)]

;1;) ((n; l)fk(blv"'7b1) + (Z:i)fk(bl,...,bl,bz)) (19)

- RW -1 1 (R (n- 1)l
nl (n—k— DIk 1+ nb, o i — e b b)
(20)

F(a) =

n—k 1 k
= 1+ by +Efk(b1,...,b1’b2).

The term (";1) in is the number of ways of choosing k counts of b; and the term (Zj) is
the number of ways of choosing k& — 1 counts of by and 1 count of by. Also, in 20), we use (T3).

Rearranging, we have

n 1 n—=k 1

k1+(n—Dbi+by  k 1+nb

fu(br, ... b1, bg) =

More generally, for each m < k, if we consider

a:(bl,...,bl,bg,...,bg),
——
we find that
1 1 &K /n—m\/m
Fla) = Ay - vo s Qg )| = 705 . . ), 21
(@ = 1 o~ E LA J k)j_o(k_])<])9m @
where
g(j)Efk(bl,...,bl,bQ,...,b2> jZO,...,k, (22)
——

J
and the factor (7;;—7]%) (3”) is the number of ways of choosing k — j counts of b; and j counts of bs.
The dependence of g on n, k, by and b are suppressed in the notation for brevity. We prove by strong
induction on m that

m

—0.... .k 23
lz:l—i—n—lbl—i—lbg m=0,....k 23)



where

c(m,l) (24)
n(f?n ifm =1,
(kfm)
- 3 1) iftm> 1,
i & (L) (7)o o
0 otherwise.

Likewise, the dependence of ¢ on n and k are suppressed in the notation for brevity.

For the base case,
1 ¢0,0)
1 + nbl - ]. —+ nb1 ’

9(0) = fr(br,....b1) =
where we respectively use (22), (I3) and

¢(0,0) = (Z) /(Z) ~1 (25)

For the induction step, we split the summation in (21) to single out g(m):

() (som+ 5 () (7)o

Rearranging (21), we have

B (et £ (22 (0)0)

k—m

(6]
- (Z(Z%)1+(nﬂi)b1+mb2 nom mo( T)( > (4)- 27)

J
For the first term in (27), by the definition in (24), we have

(&)

for the derivation above.

c(m,m) = —Fr—. (28)
(k—m)
For the second term, assuming the induction hypothesis (23) is true for all j = 0,...,m — 1, we have
m—1
5 2 () ()
= ) )9G)
o 2 i)\
m—1 7 .
-1 n—m)\ [m c(4,1)
S . (29)
(k—m)]¥0<k: ])<j>§1+(n—l)b1+lb2
_ LN ( )(m) )
jm j )1+ (n—10)by +1by
DY) ( ) (m> i, (30)
(;7 = = J )14+ (n—10by +1by
R e T GO
o =0 1 + (n — l)b1 + lbg
m—1
_ c(m,1) 31)

T+ (n— )by + by

0



In (29). g(j) is substituted with the induction hypothesis (23)); (30) exchanges the order of summation
over j and [; and ¢(m, () in follows from the definition in (24). By replacing values in with

(28) and (BT)), we have

g(m) = (n@n) R S (e

k—m k—m/) j=0
_ c(m,m) n mz_:l c(m, 1)
L+ (n—m)by +mby = 1+ (n—1)by+ b
_ i c(m, 1)
N 1+ (n— )by + b
Therefore, we have finished proving (23) by induction.
Let
¢* = max [e(i, 1)
Recalling that & < n, we have for all 5 < k
J .
N c(4,1)
i)l = l; 1+ (n— Dby + lbs
J .
|c(4, D)]
< 32
_;1+(nfl)b1+lb2 (32)
J c*
<
_; 1+ (n—=10)by + lbs
J o
—_— 33
<l§1+(n—k)b1 (33)
(U +1De :
= =0,...,k 34

where (32)) is due to triangle inequality, and (33)) follows from the facts that by, by € R and k > 0,
since k is the number of samples. However, by the definition of ¢ in (22) and (T3),

1
k)= by,...,by) = .
g( ) fk( 25 5 2) 1+7’lb2
So we can use (34) to have
1 (k+1)c
= lag(k _\wr e
prmrl G A wry ey
which is a contradiction because if
2(k+ 1) —1
bp=——mF——
n—k
and
1
b2 =
n
then
1 1 (k+1)c*

T+nby 2 1+ (n—kb



To show that by is well-defined, i.e., by > 0, we have

by = At De =1
n—=~k
(2(k + 1) max; <p |e(j,D)]) — 1
n—=~k
o 20k + D]e(0,0) — 1
= n—=k
2k +1) —1

=Tk (33)

>0,

where (35) follows from (23)). The contradiction completes our proof. O

5 Conclusions

This paper considered the problem of bias for methods that sample classes and examined the
possibility of using a different function instead of the sampled softmax. Previous works have taken it
as a foundational assumption that such a function cannot be found, treating this claim as if it were
true without justification. We proved, for the first time, that no function can be an unbiased estimator,
which extends the conclusion in [3] that is only limited to the sampled softmax. Our result now can
serve as the theoretical premise for related studies. According to our result, future work should not
aim to find an unbiased estimator. By providing a proof of impossibility, our work allows follow-up
studies to focus on feasible solutions.
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A Using Log-Softmax Loss During Training

The typical loss function for models based on Softmax is the log-softmax function

L(Q*,Q;, eyl ) = logSOftmaX(g)Jr,Qf,...,g};)

=" —log <ey+ —l—Zegi) .
i=1

During training, we need to compute the gradient of L at each step. In other words, we need to
compute the partial derivatives. The partial derivative of log-softmax with respect to the target class is

ot

OLG i) _
oyt eVt + 3T el
=1 — Softmax (9™, 97 ..., 9, )s
and the partial derivatives with respect to the negative classes j € {1,...,n} are
aL(g+7g;77gg) — e:gj_
o0 s
= —Softmax(§; , 91 - U5 1,0 ja1s - U )

Therefore, computing the gradient of the loss function requires computing Softmax.

B Reducing () to (8)

Let 0; € R denote the original logits for the ith negative class. Instead of using 6; directly, we use

9i = 0; +log(w(i))
such that
I gor Hog(w(@)
= w(i) e’ ,
where Vi, w(7) are constants. So we have

gt
el

P k Y;.
i’ + Zj:l e

et

5(g+ag;7"'7gi_k) =

~A— 7

evt + Zle w(ij)e’s

which is the sampled softmax in (4) on the original logits 0; .

C Proof of Lemmas

C.1 Proof of Lemma[4.2]

Proof.
1
el son) = 1 3 by aege)
T rES)
1
- k! Z hk(xr(a(l))v e 7x7’(o(k)))
’ TES)

= fe(Toy, s To(r)),

where follows because the summation over 7 sums over the same set of summands.
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C.2 Proof of Lemmal4.3]

Proof. We first note that the number of all possible samples of indices is

()=

which is the number of combinations of k choices from n items multiplied by the number of
permutations on k items. Let C'(n, k; @) denote the set of (Z) choices of k elements from a. Then

E [fi(aiy, ... a;)] = (=Rl ST fe@eqys o To)

n!
xeC(n,k;a) 0€Sk

—k)! 1
- % Z Z k! Z hi(Tr (o (1)) - - > Tr(o(k)))

zeC(n,k;a) €S, TES)

—k)!
- (nni') > 2 % > hi(@eays o Ter) (37)

xeC(n,k;a) €S, TES)

n—k)!
_ % Z Z hk(l'q—(l),n-yxf(k))

zeC(n,k;a) TESK
=E [hk(aim cee 7aik)] »

where (37) follows because the summation over 7 sums over the same set of summands. O

D Sampling Distributions Depending On All Logits

In this section, we show that [3]] and [16] do not meet Assumption [3.2]by giving a brief overview of
how they work.

Their methods depend on the following problem structure. Given input space X and the input € X,
logits of class ¢ take the form

9i = (f(x),v:)

where f : X — R? is the model, d is the embedding dimension and v; € R? is the embedding of
class ¢. In other words, the probability of class ¢ is given by

o R R A ei
Softmax (Fi, Y1, - - Yie1, Yitlr - - > Unt1) = @
lF(@)v)

Ty @

In keeping with (I)), we let n denote the number of negative classes, so there are a total of n + 1
classes. They proposed a sampling distribution p that is efficient to compute and has a structure
similar to the softmax function. The probability p(i) of sampling class 7 is given by

i) = (U@ 600)

2= (0(f (@), d(v;))

; (38)

where ¢ : R — R?” is a feature map given by

¢(’U) = (Ul’Ul, ...y VU10q, V2V, ...,02Vq, ... 7’Ud1}d).
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Notably, the sampling distribution (38) does not satisfy Assumption [3.2] because (38) effectively
involves computing the logits. Expanding out the terms of the inner product, we have

<
&H
&
Py
<
o
M=~

<

Il
—
ol

Il
-

f(w)jf(w)kvijvik

[
pj&

Uu Z f kvik
x)’vi> : <f<iL')7’Ul>

o
—~ .
@@lii ~
. ~—~

E Proof of Corollary 3.3

Proof. The proof is by contradiction. Assume there is an unbiased estimator hy, for F' with a sampling
distribution p. That is,

Pr(il :jla"wik :jk) :p(.]lvajk)

The expectation is given by

F(a) :Ep [hk(ail,...,a“ = n_ ' Z (k‘))hk(ag(l),...,ag(k)). (39)
€S,

Note that this is different from (T1)), in which we have & choices from items first due to the uniform
sampling. Therefore, here we have S,, instead of Sy, in (L1)). Further, the summation over ¢ has n!

summands but there are only
Y g = _n
k o (n—k)!

choices of indices. Therefore, the summation counts each choice of indices (n — k)! times, which is
corrected by the first factor ﬁ

We first observe that F' is symmetric in its arguments, i.e., for every permutation 7 € S,

1 1

F
(@)= T+ 4 1+og, (i)

= F(ar1y; s 0r(n))- (40)

By Assumption p is the same function regardless of the values of aE| This property and
imply that, for every permutation 7 € S,,,

F(a) = F(a 7(1),--- T(n))
- (n—k l Z 0 (k) hi(ao(r(1))s - -+ Qo (r(k)))- 41

ocES,

“Without Assumption it is possible to have a different distribution p, for each a. See Appendix@for
more details.
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Therefore,

1
Fla)=— > F(a)
’ TESK
1 1
= > =R > p(e(D),. 0 (k) X hi(ao(ra))s - -2 Gorry)  (42)
" res, " oES,
1
R > ()0 (k) X Y hilas(r(a))s- - Go(rii)
’ T 0ES, TES,
1
= (= k) Z p(o(1),...,0(k)) x Z hi(ar(1y,- -5 Qrer)) (43)
’ ’ UESn Tesn
1
= m(n—k)' X Z hk(aT(l),...,aT(k)), (44)
) ’ TESK
1
= E Z hk<a7.(1), ey aT(k))
TES,
n—k)!
= ( nl ) Z Z hk(xa(l)a ‘e 7:1"0'(]6))7 (45)

z€C(n,k;a) 0€Sk

where follows from (4T)), and follows because the summation over 7 sums over the same set
of summands. From (@3) to (@4), we use

> plo(1),...,a(k) = (n—k)!
ocES,,

because, as we mentioned earlier, each element is counted (n — k)! times. Finally, @) is just (11}, the
expectation under the uniform distribution. This implies that iy is also an unbiased estimator under
the uniform distribution. Such an hy, does not exist by Theorem 3.1} leading to a contradiction. [

F Impossibility of an Unbiased Log-Softmax Estimator

In this section, we prove that an unbiased and differentiable log-softmax estimator ¢ does not exist.
We prove by contradiction. Assume that

E [0, ;- 8;,)] =logSoftmax (4,47 ,..., 4, )
Then

i Al L 0 N o
log Softmax(§, 91 ,.... 4, ) = 957 F @, 9;, - 9;)]

0 1
_ TR -
- agJ’,a E(y 7y0'(1)""’y0'(k))

oESy,
1
-y

ocES,

0 4 _
=E {3g+€(y+’yi1""’yik)} (46)

0
oyt

o .
57 (0 Ty )

So

Softmax(g*, 9y ,..., 9, ) = — log Softmax (§™, 97 ,...,9,) — 1

0
oyt
—E|-ZL gt om i
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where the first equality follows from (2) and the second equality follows from (@6). The expression
0
oyt

in (@7) is therefore an unbiased estimator for softmax, which contradicts Theorem [3:1}

g(ﬂ+agiv7g1;)_l

Note that the proof above assumes a differentiable estimator ¢, but the proof of Theorem [3.1] does
not. Since we take the gradient of the loss estimator during training, we can reasonably assume that
practical loss estimators are differentiable.
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