
Supplementary Materials for
Efficient Optimization Methods for Extreme Similarity Learning

with Nonlinear Embeddings
Bowen Yuan

National Taiwan University
f03944049@csie.ntu.edu.tw

Yu-Sheng Li
National Taiwan University
r07922087@csie.ntu.edu.tw

Pengrui Quan
University of California, Los Angeles

prquan@g.ucla.edu

Chih-Jen Lin
National Taiwan University

cjlin@csie.ntu.edu.tw

1 MORE IMPLEMENTATION DETAILS
In evaluating 𝐿(𝜽 ), the required 𝑷 ,𝑸, 𝑷𝑐 , 𝑸̂𝑐 , 𝑷𝑐 ,𝑸𝑐 , and Frobenius
inner products can be directly computed by the forward and other
built-in functions. However, when we use GPUs for large data sets,
we face two difficulties. First, as the memory consumption of a
forward process is proportional to the number of data, calculating
the whole 𝑷 and 𝑸 at once may be infeasible for GPUs. Second,
for later computations, we need to cache 𝑷 and 𝑸 in O((𝑚 + 𝑛)𝑘)
space, which may also be infeasible.

For the first difficulty, fortunately, as the computation of each
row of 𝑷 and 𝑸 is independent of others, we follow [2] to have a
mini-batch setting. Specifically, by splitting U and V into multiple
subsets, we sequentially calculate rows of 𝑷 or 𝑸 corresponding to
indices in each subset. For 𝑷̃𝑐 , 𝑸̃𝑐 , 𝑷𝑐 , 𝑸̂𝑐 , 𝑷𝑐 , and 𝑸𝑐 , each of which
is the sum of𝑚 or 𝑛 matrices of size 𝑘 × 𝑘 , we can calculate the
partial results on each subset and accumulate them for the final
output.

To overcome the second difficulty, we apply a heterogeneous
computing scheme by storing 𝑷 and 𝑸 in CPU, which has a larger
memory capacity than GPU. After finishing the above computation
in GPU on each subset, we move the resulting partial 𝑷 and 𝑸
to the CPU memory. Some subsequent sparse operations such as
𝐿+ (𝜽 ) in (10) are conducted in CPU. As the advantage of GPU
over CPU is more significant on dense operations, our setting of
having sparse operations on CPU is appropriate. On the contrary,
for 𝑷̃𝑐 , 𝑸̃𝑐 , 𝑷𝑐 , 𝑸̂𝑐 , 𝑷𝑐 , and 𝑸𝑐 , we store these 𝑘 × 𝑘 matrices in the
GPU memory. Then we compute 𝐿− (𝜽 ) involving dense operations
of Frobenius inner products on GPU.

To compute ∇𝐿(𝜽 ) in (27), similar to 𝐿+ (𝜽 ), 𝑿𝑸 and 𝑿⊤𝑷 are
computed on CPUs. Then by applying the mini-batch setting, for
each subset, we feed the corresponding part of 𝑿𝑸 , 𝑿⊤𝑷 , 𝑨, 𝑩, 𝑷 ,
𝑸 , 𝑷̃ and 𝑸̃ into GPUs. With the cached 𝑷𝑐 , 𝑸̂𝑐 , 𝑷𝑐 , and 𝑸𝑐 , we first
conduct dense operations to compute 𝑿𝑸 +𝜔 (𝑨𝑷𝑸𝑐 −𝑨𝑷̃𝑸̂𝑐 ) and
𝑿⊤𝑷 + 𝜔 (𝑩𝑸𝑷𝑐 − 𝑩𝑸̃𝑷𝑐 ) on GPU. Then we call the automatic dif-
ferentiation function (e.g., tf.gradients in TensorFlow) to finish
the transposed Jacobian-vector products.

To compute 𝑮𝒅 in (40), as we mentioned, the Jacobian-vector
products can be implemented with the forward-mode automatic
differentiation. However, for compatibility with older versions of
libraries where the forward-mode automatic differentiation is not
supported, we apply the trick provided in [1] to compute𝑾 and
𝑯 with the reverse-mode automatic differentiation. Similar to 𝑷

and 𝑸 , we apply the mini-batch setting and cache𝑾 and 𝑯 in the
CPU memory. Then with the cached𝑾 , 𝑯 , 𝑷 , and 𝑸 , we compute
𝒁𝑸 and 𝒁⊤𝑷 on CPUs. Next, similar to ∇𝐿(𝜽 ), by the mini-batch
setting, for each subset, we feed the required partial matrices to
compute 𝑨𝑾𝑸𝑐 + 𝑨𝑷𝑯𝑐 and 𝑩𝑯𝑷𝑐 + 𝑩𝑸𝑾𝑐 in GPU. Finally, we
call the automatic differentiation function to finish the remaining
transposed Jacobian-vector products.

REFERENCES
[1] Jamie Townsend. A new trick for calculating Jacobian vector products, 2017.
[2] Chien-Chih Wang, Kent-Loong Tan, Chun-Ting Chen, Yu-Hsiang Lin, S. Sathiya

Keerthi, Dhruv Mahajan, Sellamanickam Sundararajan, and Chih-Jen Lin. Dis-
tributed Newton methods for deep learning. Neural Comput., 30:1673–1724, 2018.


	1 More Implementation Details
	References

