
Large-scale Kernel RankSVM

Tzu-Ming Kuo∗ Ching-Pei Lee† Chih-Jen Lin‡

Abstract

Learning to rank is an important task for recommendation

systems, online advertisement and web search. Among

those learning to rank methods, rankSVM is a widely

used model. Both linear and nonlinear (kernel) rankSVM

have been extensively studied, but the lengthy training

time of kernel rankSVM remains a challenging issue. In

this paper, after discussing difficulties of training kernel

rankSVM, we propose an efficient method to handle these

problems. The idea is to reduce the number of variables from

quadratic to linear with respect to the number of training

instances, and efficiently evaluate the pairwise losses. Our

setting is applicable to a variety of loss functions. Further,

general optimization methods can be easily applied to solve

the reformulated problem. Implementation issues are also

carefully considered. Experiments show that our method

is faster than state-of-the-art methods for training kernel

rankSVM.

Keywords: Kernel method, Learning to rank, Ranking
support vector machines, Large-margin method

1 Introduction

Being heavily applied in recommendation systems, on-
line advertisements and web search in recent years,
learning to rank gains more and more importance.
Among existing approaches for learning to rank,
rankSVM [7] is a commonly used method extended from
the popular support vector machine (SVM) [2, 6] for
data classification.

In SVM literature, it is known that linear (i.e., data
are not mapped to a different space) and kernel SVMs
are suitable for different scenarios, where linear SVM is
more efficient, but the more costly kernel SVM may
give higher accuracy.1 The same situation may also
occur in rankSVM because it can be viewed as a special
case of SVM; see more details in Section 2.1. Because
of the lower training cost, linear rankSVM has been
extensively studied and efficient algorithms have been

∗Department of Computer Science, National Taiwan Univer-

sity. b99902073@csie.ntu.edu.tw
†Department of Computer Science, National Taiwan Univer-

sity. r00922098@csie.ntu.edu.tw
‡Department of Computer Science, National Taiwan Univer-

sity. cjlin@csie.ntu.edu.tw
1See, for example, [27] for detailed discussion.

proposed [11, 23, 5, 1, 14]. However, for some tasks that
the feature set is not rich enough, nonlinear methods
may be needed. Therefore, it is important to develop
efficient training methods for large kernel rankSVM.

Assume we are given a set of training label-query-
instance tuples (yi, qi,xi), yi ∈ R, qi ∈ S ⊂ Z,xi ∈
Rn, i = 1, . . . , l, where S is the set of queries. By
defining the set of preference pairs as

(1.1) P ≡ {(i, j) | qi = qj , yi > yj} with p ≡ |P |,

rankSVM [10] solves

min
w,ξ

1

2
wTw + C

∑
(i,j)∈P

ξi,j

subject to wT (φ (xi)− φ (xj)) ≥ 1− ξi,j ,(1.2)

ξi,j ≥ 0,∀(i, j) ∈ P,

where C > 0 is the regularization parameter and φ is
a function mapping data to a higher dimensional space.
The loss term ξi,j in (1.2) is called L1 loss. If it is
replaced by ξ2

i,j , we have L2 loss. The idea behind
rankSVM is to learn w such that

wTφ(xi) > w
Tφ(xj), if (i, j) ∈ P.

A challenge in training rankSVM is to handle the
possibly large number of preference pairs because p can
be as large as O(l2).

In contrast to linear rankSVM that can directly
minimize over a finite vector w, the difficulty of solving
(1.2) is on the high and possible infinite dimensionality
of w after data mappings. Existing studies have
proposed different methods to solve (1.2) through kernel
techniques. The work [7] viewed (1.2) as a special
case of SVM, so standard training methods to solve
the SVM dual problem can be applied. However, the
dual problem of p variables can become very large if
p = O(l2). Joachims [11] reformulated rankSVM as
a 1-slack structural SVM problem and considered a
cutting-plane method. Although [11] only experiments
with linear rankSVM, this approach is applicable to
kernel rankSVM. However, cutting-plane methods may
suffer from slow converge. The work [26], inspired by
a generalized representer theorem [22], represents w as
a linear combination of the training instances. It then

reformulates and modifies (1.2) to a linear programming
problem. However, the resulting problem is still large
because of O(p) variables as well as constraints.

In this paper, a method for efficiently training non-
linear rankSVM is proposed. Our approach solves (1.2)
by following [26] to represent w as a linear combina-
tion of mapped training instances. In contrast to the
linear programming problem in [26], we rigorously ob-
tain an l-variable optimization problem that is equiv-
alent to (1.2). A method for efficiently computing the
loss term and its sub-gradient or gradient without going
through all the p pairs is then introduced by modifying
the order-statistic trees technique from linear rankSVM
[1, 14]. Our approach allows the flexible use of var-
ious unconstrained optimization methods for training
kernel rankSVM efficiently. We present an implementa-
tion that is experimentally faster than state-of-the-art
methods.

This paper is organized as follows. In Sec-
tion 2, we detailedly discuss previous studies on
kernel rankSVMs. By noticing their shortcom-
ings, an efficient method is then proposed in Sec-
tion 3. An implementation with comprehensive com-
parisons to existing works is described in Section
4. Section 5 concludes this paper. A supplemen-
tary file including additional analysis and experiments
is available at http://www.csie.ntu.edu.tw/~cjlin/
papers/ranksvm/kernel_supplement.pdf.

2 Existing Methods

We introduce three existing methods for training non-
linear rankSVMs. The first one treats rankSVM as an
SVM problem. The next way solves rankSVM under
a structural SVM framework. The last approach is in-
spired by a generalized representer theorem to optimize
an alternative linear programming problem.

2.1 SVM Approach Given a set of label-instance
pairs (yi,xi),xi ∈ Rn, yi ∈ {1,−1}, i = 1, . . . , l, SVM
solves the following optimization problem.

min
w,ξ̄

1

2
wTw + C

∑l

i=1
ξ̄i

subject to yiw
Tφ(xi) ≥ 1− ξ̄i,(2.3)

ξ̄i ≥ 0, i = 1, . . . , l.

Clearly, if we define

yi,j ≡ 1, and φi,j ≡ φ(xi)− φ(xj),∀(i, j) ∈ P,

then (1.2) is in the form of (2.3) with p instances [7].
One can then apply any SVM solver to solve (1.2).

To handle the high dimensionality of φ(xi) and w,
it is common to solve the dual problem of (2.3) with the

help of kernel tricks [6]. To adopt the same technique
to rankSVM, the dual problem of (1.2) is as follows.

min
α

1

2
αT Q̂α− eTα

subject to 0 ≤ αi,j ≤ C, ∀(i, j) ∈ P,(2.4)

where α ∈ Rp is indexed by pairs in P , e ∈ Rp is a
vector of ones, and

(2.5) Q̂(i,j),(u,v) = φTi,jφu,v,∀(i, j), (u, v) ∈ P

is a p by p symmetric matrix. For example, [10] solves
(2.4) using the SVM package SVMlight [9].

Problem (2.4) is a large quadratic programming
problem because the number of variables can be up to
O(l2). From the primal-dual relationship, optimal w
and α satisfy

(2.6) w ≡
∑

(i,j)∈P
αi,jφi,j .

Notice that because φ(x) may be infinite dimensional,
(2.5) is calculated by the kernel function K(·, ·).

Q̂(i,j),(u,v) = K(xi,xu) +K(xj ,xv)

−K(xi,xv)−K(xj ,xu), where

K(xi,xj) = φ(xi)
Tφ(xj).

Although directly computing the matrix Q̂ requires
O(l4) kernel evaluations, we can take the following
special structure of Q̂ to save the cost.

(2.7) Q̂ = AQAT ,

where

Q ∈ Rl×l with Qi,j = K(xi,xj),

and A ∈ Rp×l is defined as follows.

A ≡

· · · i · · · j · · ·
...

(i, j)
...

 0 · · · 0 +1 0 · · · 0 −1 0 · · · 0

 .

That is, if (i, j) ∈ P then the corresponding row in A has
that the i-th entry is 1, the j-th entry is −1, and other
entries are all zeros. Hence, computing Q̂ requires O(l2)
kernel evaluations. However, the difficulty of having
O(l2) variables remains, so solving (2.4) has not been a
viable approach for large kernel rankSVM.

http://www.csie.ntu.edu.tw/~cjlin/papers/ranksvm/kernel_supplement.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/ranksvm/kernel_supplement.pdf

2.2 Structural SVM Approach To avoid the dif-
ficulty of O(l2) variables in the dual problem, Joachims
showed that (1.2) is equivalent to the following 1-slack
structural SVM problem [11].

min
w,ξ

1

2
wTw + Cξ

subject to wT
∑

(i,j)∈P

ci,jφi,j ≥
∑

(i,j)∈P

ci,j − ξ,(2.8)

ci,j ∈ {0, 1},∀(i, j) ∈ P.

He then considered a cutting-plane method to solve the
dual problem of (2.8). Because of the 2p constraints
in (2.8), the corresponding dual problem contains the
same amount of variables. While optimizing (2.8) seems
to be more difficult at first glance, it is shown that the
optimal dual solution is sparse with a small number of
non-zero elements, and this number is independent of p.
At each iteration, their cutting-plane method optimizes
a sub-problem of the dual problem of (2.8). The sub-
problem is consisted of variables in a small working set,
which is empty in the beginning of the optimization
procedure. After the sub-problem is solved, the variable
corresponding to the most violated constraint of (2.8)
is added to the working set. This approach thus avoids
unnecessary computations involving variables that are
zero in optima [12]. An efficient algorithm is also
proposed to evaluate ξ and decide which variable is
added to the working set at each iteration. Although
[11] only discussed the case when kernels are not used,
the method can be easily extended to kernel rankSVM.
Based on the structural SVM package SVMstruct [24,
12], a package SVMrank that can solve both linear and
kernel rankSVM by a cutting plane method is released.2

However, empirical examinations show that in the
linear case, solving rankSVM under the structural
SVM framework using a cutting-plane method con-
verges slower than other state-of-the-art methods that
directly solve (1.2) [14].

2.3 Reformulation from Representer Theorem
To address the difficulty of optimizing the dual problem
with O(l2) variables, [26] considered solving the primal
problem. Although the number of variables may be
infinite following the data mapping, they applied a
generalized representer theorem [22] to have that the
optimal w is a linear combination of training data with

2http://www.cs.cornell.edu/People/tj/svm_light/svm_

rank.html. Note that as stated on the website, the method for

computing the loss term in this package has a higher complexity
then the algorithm proposed in [11].

coefficients β.3

(2.9) w ≡
∑l

i=1
βiφ(xi).

Therefore, wTφi,j can be computed by

wTφi,j =
∑l

m=1
βm (K (xi,xm)−K (xj ,xm))

= (Qβ)i − (Qβ)j .

To reduce the number of nonzero βi, [26] considered a
regularization term eTβ with β being nonnegative, and
obtained the following linear programming problem.

min
β,ξ

eTβ + CeT ξ

subject to (Qβ)i − (Qβ)j ≥ 1− ξi,j ,(2.10)

ξi,j ≥ 0,∀(i, j) ∈ P,
βi ≥ 0, i = 1, . . . , l.

A package RV-SVM is released,4 but this approach has
the following problems. First, in the representer theo-
rem, the coefficients β are unconstrained. To enhance
the sparsity, they added the nonnegative constraints on
β. Thus the setting does not coincide with the theorem
being used. Second, they have the regularization term
eTβ, which, after using (2.9), is equivalent to neither
‖w‖1 (L1 regularization) nor wTw/2 (L2 regulariza-
tion). Therefore, after solving (2.10), we cannot use
(2.9) to obtain the optimal w of the original problem.
This situation undermines the interpretability of (2.10).
Third, without noticing (2.7), they claimed in [26] that
the number of kernel evaluations required by solving
the dual problem (2.4) is O(l4), and theirs only requires
O(l3). However, as we discussed earlier in (2.7) and
from (2.10), if Q can be stored, both approaches re-
quires only O(l2) kernel evaluations. Finally, the num-
ber of variables ξ in the linear programming problem
can still be as large as O(l2). Solving a linear program-
ming problem with this amount of variables is expen-
sive, so in the experiments conducted in [26], the data
size is less than 1, 000 instances.

3 Methods and Technical Solutions

An advantage of the approach in [26] is that the
formulation of w in (2.9) involves only l variables. This
is much smaller than O(l2) in the dual rankSVM (2.4).
However, the O(l2) number of constraints in (2.10) still

3A similar idea, using the original representer theorem [13] for
L2-regularized L2-loss kernel rankSVM, is briefly mentioned in

[5]. However, their focus was linear rankSVM.
4https://sites.google.com/site/postechdm/research/

implementation/rv-svm.

http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html
http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html
https://sites.google.com/site/postechdm/research/implementation/rv-svm
https://sites.google.com/site/postechdm/research/implementation/rv-svm

causes a large linear programming problem. To derive
efficient optimization algorithms, in this section, we
rewrite (1.2) as the following form.

(3.11) min
w

1

2
wTw + C

∑
(i,j)∈P

max
(
0, 1−wTφi,j

)
,

where the first term is the regularization term, while
the second is the loss term. We then incorporate two
techniques.
1. Let w involve l variables as in (2.9).
2. Apply efficient techniques to calculate the loss term.

In particular, some past developments for linear
rankSVM are employed.

3.1 Regularization Term If w is represented by
(2.9), then (1.2) can be written as
(3.12)

min
β∈Rl

1

2
βTQβ + C

∑
(i,j)∈P

max(0, 1− (Qβ)i + (Qβ)j),

and
(3.13)

min
β∈Rl

1

2
βTQβ+C

∑
(i,j)∈P

max(0, 1− (Qβ)i + (Qβ)j)
2,

respectively for L1 and L2 losses. A difference between
the two problems is that (3.13) is differentiable while
(3.12) is not. The small number of l variables is superior
to the O(l2) variables in the dual rankSVM problem
(2.4). Interestingly, this advantage does not occur for
standard SVM. We explain the subtle difference below.

In SVM, the use of formulations like (3.12)-(3.13)
has been considered in many places such as [19, 17, 4],
where the derivation mainly follows the representer
theorem. Take L1 loss as an example. The SVM
optimization problem analogous to (3.12) is

(3.14) min
β̄

1

2
β̄
T
Q̄β̄ + C

l∑
i=1

max
(
0, 1−

(
Q̄β̄
)
i

)
,

where Q̄i,j = yiyjK(xi,xj) and notice that in SVM
problems, yi ∈ {−1, 1},∀i. If ᾱ is the variable of dual
SVM, then both ᾱ and β̄ have l components. However,
ᾱ is nonnegative while β̄ is unconstrained. It is proved
in [4] that if Q̄ is positive definite, then the optimum is
unique and satisfies

ᾱi = yiβ̄i,∀i.

Therefore, (3.14) and SVM dual are strongly related.
For SVM, because (3.14) does not possess significant
advantages, most existing packages solve the dual prob-
lem. The situation for rankSVM is completely different.

The work [17] derives (3.14) without using the represen-
ter theorem. Instead, they directly consider (3.14) and
investigate the connection to the SVM dual problem via
optimization theory. Following the same setting, the
problem to be considered for rankSVM is

(3.15) min
β̂∈Rp

1

2
β̂
T
Q̂β̂+C

∑
(i,j)∈P

max(0, 1− (Q̂β̂)i,j).

In Appendix A, we prove that any optimal β̂ leads to
an optimal

(3.16) w =
∑

(i,j)∈P
β̂i,jφi,j

of (1.2). This form is the same as (2.6), but a crucial

difference is that β̂ is unconstrained. Therefore, we can
define

β ≡ AT β̂
to simplify (3.15) to an equivalent form in (3.12). This
discussion explains why we are able to reduce the
number of variables from O(l2) of β̂ to l of β. From
Appendix A, any optimal solution of dual rankSVM is
also optimal for (3.15). Thus, we can say that (3.15)
provides a richer set of possible values to construct the
optimal w.5 Therefore, the simplification from β̂ to β
becomes possible.

We mentioned that for standard SVM, if Q̄ in (3.14)
is positive definite, the dual SVM and (3.14) have the
same unique solution. For rankSVM, this property
requires that Q̂ is positive definite. However, from
(2.7) and the fact that each row of (AQ)AT is a linear
combination of AT ’s rows,

rank(Q̂) ≤ rank(AT) ≤ min(p, l) ≤ l.

Therefore, Q̂ tends to be only positive semi-definite
because usually p 6= l. This result indicates that the
connection between (3.15) and the rankSVM dual (2.4)
is weaker than that between (3.14) and the SVM dual.

3.2 Loss Term After reformulating to (3.12) or
(3.13), the number of variables is reduced to l. However,
to calculate the loss term, we still have the summation
over p preference pairs. The same difficulty occurs for
linear rankSVM, so past works have proposed efficient
algorithms. Among them, a recently developed method
using order-statistic trees [1, 14] is the fastest, with only
O(l log l) cost to compute this summation. For other
values commonly used in optimization methods such as
sub-gradient (if L1 loss is used), gradient, or Hessian-
vector products (if L2 loss is adopted), the cost is also

5Note that the optimal w is unique because wTw/2 is strictly
convex.

O(l log l). We observe that the loss term of (3.12) is
similar to that of linear rankSVM, which is of the form∑

(i,j)∈P
max(0, 1−wT (xi − xj)).

Thus we can easily see that methods for summing up
the p pairs in linear rankSVM is also applicable to
nonlinear rankSVM. We give an illustration by showing
the calculation of the loss term in (3.12). By defining

SV(β) ≡ {(i, j) | (i, j) ∈ P, 1− (Qβ)i + (Qβ)j > 0},

the loss term can be written as∑
(i,j)∈SV(β)

1− (Qβ)i + (Qβ)j

=
∑l

i=1
(l+i (β)− l−i (β))(Qβ)i + l−i (β),

where

l+i (β) ≡ |{j | (j, i) ∈ SV(β)}|,(3.17)

l−i (β) ≡ |{j | (i, j) ∈ SV(β)}|.(3.18)

We can then use order-statistic trees to compute l+i (β)
and l−i (β) in O(l log l) time; see details in [1, 14]. The
calculation of sub-gradient (for L1 loss), and gradient as
well as Hessian-vector products (for L2 loss) is similar.
We give details in Appendix B. The major difference
between the loss term of linear and nonlinear rankSVM
is that the computation of wTxi only costs O(n) while
obtaining (Qβ)i requires l kernel evaluations, which
usually amount to O(ln) time. However, the O(ln) cost
can be reduced to O(l) if Q is maintained throughout
the optimization algorithm.

An important advantage of our method is that it
is very general. Almost all unconstrained optimization
methods can be applied.

3.3 Implementation Issues and Discussion Ev-
ery time to evaluate the function value of (3.12), we
need to conduct kernel evaluations. However, because
Q is fixed regardless of the value of β, it can be calcu-
lated and stored if space is permitted. Unfortunately,
for large problems, storing the whole Q may not be pos-
sible because Q is a dense matrix. The same situation
has occurred in SVM training, where the main solution
is the decomposition method [9, 20, 3]. This method
needs few kernel columns at each iteration and allo-
cates available memory to store recently used columns
(called kernel cache). The viability of decomposition
methods relies on O(l) cost per iteration if needed ker-
nel columns are in the cache and O(ln) if some kernel
columns must be calculated. If similar decomposition
methods are applied to rankSVM, the same property

may not hold because calculating the sum of loss terms
may become dominant by taking O(l log l) cost. Alter-
natively, because (3.12) and (3.13) are unconstrained,
we can apply any general optimization method. Usu-
ally such methods must calculate the product between
Q and β. We can split Q to several blocks and store
a fix portion in the memory. Other blocks are com-
puted upon needed. Each Q’s block can be efficiently
obtained if the data set is dense and optimized numer-
ical linear algebra subprograms (e.g., optimized BLAS
[25]) are employed.

Our method may provide an efficient alternative
to train linear rankSVM when l � n. Note that
(3.12)-(3.13) involve a vector variable β of size l. In
contrast, most existing methods train linear rankSVM
by optimizing w, which has n variables. Therefore, if
l � n, using (3.12)-(3.13) may be superior to (3.11)
because of a smaller number of variables. Because
kernels are not used,

Q = XXT ,

where X ≡ [x1, . . . ,xl]
T . We can then easily conduct

some operations without storing Q. For example, Qβ
can be calculated by

Qβ = X(XTβ).

In linear rankSVM, using only a subset of pairs
in P may reduce the training time significantly by
slightly trading the performance [18]. Interestingly, this
approach may not be useful for kernel rankSVM. For
linear rankSVM, the dominant cost is to evaluate the
summation over all preference pairs. Thus reducing
the number of pairs can significantly reduce the cost.
In contrast, the bottleneck for kernel rankSVM is on
calculating Qβ. The O(l2) or even O(l2n) cost is much
larger than O(l log l) for the loss term. Therefore, kernel
rankSVM shares the same bottleneck with kernel SVM
and support vector regression (SVR) [2, 6]. In this
regard, kernel rankSVM may not be more expensive
than kernel SVR, which is also applicable to learning
to rank.6 Contrarily, training linear rankSVM may
cost more than linear SVR, which does not require the
summation over all pairs.

4 Empirical Evaluation

We first implement a truncated Newton method to
minimize (3.13). Next, we compare this implementation
with the existing methods described in Section 2.

6This is called the pointwise approach because it approximates
the relevance level of each individual training point.

4.1 An Implementation of the Proposed
Method We consider (3.13) that is derived from L2-
regularized L2-loss rankSVM. An advantage of using
(3.13) rather than (3.12) is that (3.13) is differentiable.
We then apply a type of truncated Newton methods
called trust region Newton method (TRON) [15] to min-
imize (3.13). Past uses of TRON for machine learning
include logistic regression and linear SVM [16], and lin-
ear rankSVM [14].

At the tth iteration with iterate βt, TRON finds a
truncated Newton step vt by approximately solving a
linear system

(4.19) ∇2f(βt)vt = −∇f(βt),

where we use f(β) to denote the objective function of
(3.13). Note that f(β) is not twice differentiable, so
following [19] we consider a generalized Hessian; see
(B.3) in Appendix B for details.

To approximately solve (4.19), TRON applies con-
jugate gradient (CG) methods that conduct a sequence
of Hessian-vector products. We have discussed in Sec-
tion 3.2 and Appendix B on the efficient calculation of
Hessian-vector products and function/gradient values.

As a truncated Newton method, TRON confines vt

to be within a region that we trust. Then β is updated
by

βt+1 =

βt + vt if the function value

sufficiently decreases,

βt otherwise.

If we fail to modify βt, the trust region is resized so
that we search for vt in a smaller region around βt. In
contrast, if the function value sufficiently decreases, we
enlarge the trust region. We omit other details of TRON
because it is now a common optimization method for
linear classification. More details can be seen in, for
example, [16].

4.2 Data Sets and Evaluation Criteria We con-
sider data from LETOR 4.0 [21]. We take three sets
MQ2007, MQ2008 and MQ2007-list. Each set consists 5
folds and each fold contains its own training, validation
and testing data. We take the first fold for each set.
Because MQ2007-list is too large for some methods in
the comparison, we randomly select queries to include
5% instances and form the training setMQ2007-list 5%
and use it for all methods. Note that the feature values
are already in the range [0, 1]; therefore, no scaling is
conducted. The details of data sets are listed in Table
1.

To evaluate the prediction performance, we first
consider pairwise accuracy because it is directly related

Data set l n k |S| p
MQ2007 42, 158 46 3 1, 017 246, 015
MQ2008 9, 360 46 3 471 52, 325
MQ2007-list 743, 790 46 1, 268 1, 017 285, 943, 893
MQ2007-list 5% 37, 251 46 1, 128 52 14, 090, 798

Table 1: The details of the first fold of each data set. l
is the number of training instances. n is the number of
features. k is the number of relevance levels. |S| is the
number of queries. p is the number of preference pairs.
MQ2007-list 5% is sub-sampled from MQ2007-list.

to the loss term of RankSVM.

Pairwise Accuracy ≡ |{(i, j) ∈ P : wTxi > w
Txj}|

p
.

We also consider normalized discounted cumulative gain
(NDCG), which is often used in information retrieval
[8]. We follow LETOR 4.0 to use mean NDCG defined
below. Assume k is a pre-specified positive integer, π is
an ideal ordering such that

yπ(1) ≥ yπ(2) ≥ . . . ≥ yπ(lq),∀q ∈ S,

where lq is the number of instances in query q, and π̄ is
the ordering being evaluated. Then

NDCG@m ≡ I−1
m

∑m

i=1
(2yπ̄(i) − 1) · d(i), and

Mean NDCG ≡
∑lq
m=1 NDCG@m

lq
,

where

Im ≡
∑m

i=1
(2yπ(i)−1)·d(i) and d(i) ≡ 1

log2(max(2, i))
.

After obtaining mean NDCG of each query, we take
the average.

4.3 Settings for Experiments We compare the
proposed method with the following methods.
• SVMlight: it is discussed in Section 2.1 by solving the

dual problem of rankSVM.
• SVMrank: this method, discussed in Section 2.2,

solves an equivalent 1-slack structural SVM problem.
• RV-SVM: it implements the method discussed in Sec-

tion 2.3 by using CPLEX7 to solve the linear program-
ming problem. Note that CPLEX supports parallel
computing, but the extra memory requirement is be-
yond our machine’s capacity. Hence we run CPLEX
using only one thread.

7http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

We consider Radial Bias Function (RBF) kernel

K(xi,xj) = exp(−γ‖xi − xj‖)

and conduct the experiment on a 64-bit machine with
Intel Xeon 2.0GHz (E5504), 1 MB cache and 32GB
memory.

For parameter selection, we must decide C and γ,
where C is the regularization parameter in (1.2), and
γ is the kernel parameter in the RBF kernel. Because
the compared approaches solve problems under differ-
ent loss or regularization terms, parameter selection is
conducted for each method and each evaluation cri-
terion. We search on a grid of (C, γ) values, where
C ∈ {2−5, 2−4, . . . , 25} and γ ∈ {2−6, 2−5, . . . , 2−1}.
We choose the one that has the best prediction per-
formance on the validation set. The best parameter
(C, γ) for each method and criterion is listed in the sup-
plementary materials. Note that RV-SVM failed to run
on MQ2007 and MQ2007-list 5% because the constraint
matrix is too large to fit in the memory. Thus no best
parameters are presented.

We mentioned that kernel evaluations are a bottle-
neck in training rankSVM. To reduce repeated kernel
evaluations, our implementation stores the full kernel
matrix Q , SVMlight caches partial Q̃ that can fit in the
memory, and SVMrank stores full kernel matrix of the
dual of sub-problem of (2.8). For RV-SVM, it stores the
full AQ matrix required by CPLEX for solving the linear
programming problem (2.10).

4.4 Comparison Results We record prediction per-
formances for every iteration of TRON and SVMrank,
and every 50 iterations of RV-SVM and SVMlight. Fig-
ures 1-3 present the relation between training time and
test performances.

The compared methods solve optimization prob-
lems with different regularization and loss terms, so
their final pairwise accuracy or NDCG may be slightly
different. Instead, the goal of the comparison is to check
that, for each method, how fast its optimization proce-
dure converges. From Figures 1-3, it is clear that the
proposed method very quickly achieves the performance
of the final optimal solution. Because the training time
is log-scaled, it is much faster than others. The package
SVMrank comes the second, although, in the figures,
its performance is not stabilized yet in the end. For
SVMlight, the performance is unstable because the op-
timization problem has not been accurately solved. For
smaller data sets, we did observe the convergence to the
final performance if enough running time is spent. For
RV-SVM, we have mentioned that it can handle only the
smaller problem MQ2008.

10
2

10
3

10
4

35

40

45

50

55

60

65

70

75

Time (sec.)

P
a

ir
w

is
e

 A
c
c
u

ra
c
y

SVM
light

TRON

SVM
rank

(a) Pairwise accuracy

10
2

10
3

10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time (sec.)

M
e
a
n
 N

D
C

G

SVM
light

TRON

SVM
rank

(b) Mean NDCG

Figure 1: Experimental results on MQ2007

10
1

10
2

10
3

20

30

40

50

60

70

80

90

Time (sec.)

P
a

ir
w

is
e

 A
c
c
u

ra
c
y

SVM
light

TRON
RV−SVM

SVM
rank

(a) Pairwise accuracy

10
1

10
2

10
3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec.)

M
e
a
n
 N

D
C

G

SVM
light

TRON
RV−SVM

SVM
rank

(b) Mean NDCG

Figure 2: Experimental results on MQ2008

10
2

10
3

10
4

40

50

60

70

80

90

Time (sec.)

P
a
ir
w

is
e
 A

c
c
u
ra

c
y

SVM
light

TRON

SVM
rank

Figure 3: Experimental results on MQ2007-list 5%.
Note that mean NDCG is not available for MQ2007-
list 5% because of the overflow of 2π̄(i) caused by the
large k.

5 Conclusions

In this paper, we propose a method for efficiently train-
ing rankSVMs. The number of variables is reduced
from quadratic to linear to training instances. Ef-
ficient method to handle the large number of pref-
erence pairs are are incorporated. Empirical com-
parisons show that the training time is reduced in
magnitudes when compared to state-of-the-art meth-
ods. Although only one loss function is used in our
implementation for the experiments because of the
lack of space, our method is applicable to a vari-
ety of loss functions and different optimization meth-
ods. The proposed approach makes kernel rankSVM
a practically feasible model. The programs used for
our experiment is available at http://www.csie.ntu.

edu.tw/~cjlin/papers/ranksvm/kernel.tar.gz and
we release a package based on our study. It is
available at http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/#large_scale_ranksvm.

Acknowledgement

This work was supported in part by the National Science
Council of Taiwan via the grant 101-2221-E-002-199-
MY3. The authors thank Antti Airola for his comments.

References

[1] A. Airola, T. Pahikkala, and T. Salakoski. Training
linear ranking SVMs in linearithmic time using red–
black trees. PR Letters, 32(9):1328–1336, 2011.

[2] B. E. Boser, I. Guyon, and V. Vapnik. A training
algorithm for optimal margin classifiers. In COLT,
1992.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM TIST, 2:27:1–27:27,
2011.

[4] O. Chapelle. Training a support vector machine in the
primal. Neural Computation, 19(5):1155–1178, 2007.

[5] O. Chapelle and S. S. Keerthi. Efficient algorithms for

ranking with SVMs. Information Retrieval, 13(3):201–
215, 2010.

[6] C. Cortes and V. Vapnik. Support-vector network.
Machine Learning, 20:273–297, 1995.

[7] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. In
P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J.
Smola, editors, Advances in Large Margin Classifiers,
pages 115–132. MIT Press, 2000.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4):422–446, 2002.

[9] T. Joachims. Making large-scale SVM learning practi-
cal. In Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1998.

[10] T. Joachims. Optimizing search engines using click-
through data. In ACM KDD, 2002.

[11] T. Joachims. Training linear SVMs in linear time. In
ACM KDD, 2006.

[12] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting plane
training of structural SVMs. Machine Learning, 77,
2009.

[13] G. S. Kimeldorf and G. Wahba. A correspondence
between Bayesian estimation on stochastic processes
and smoothing by splines. The Annals of Mathematical
Statistics, 41:495–502, 1970.

[14] C.-P. Lee and C.-J. Lin. Large-scale linear rankSVM.
Neural Computation, 2014. To appear.

[15] C.-J. Lin and J. J. Moré. Newton’s method for large-
scale bound constrained problems. SIAM Journal on
Optimization, 9:1100–1127, 1999.

[16] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust re-
gion Newton method for large-scale logistic regression.
JMLR, 9:627–650, 2008.

[17] K.-M. Lin and C.-J. Lin. A study on reduced support
vector machines. IEEE TNN, 14(6):1449–1559, 2003.

[18] K.-Y. Lin. Data selection techniques for large-scale
rankSVM. Master’s thesis, National Taiwan Univer-
sity, 2010.

[19] O. L. Mangasarian. A finite Newton method for
classification. Optimization Methods and Software,
17(5):913–929, 2002.

[20] J. C. Platt. Fast training of support vector ma-
chines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods - Support Vector Learn-
ing, Cambridge, MA, 1998. MIT Press.

[21] T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR:
A benchmark collection for research on learning to
rank for information retrieval. Information Retrieval,
13(4):346–374, 2010.

[22] B. Schölkopf, R. Herbrich, and A. J. Smola. A
generalized representer theorem. In COLT, 2001.

[23] D. Sculley. Large scale learning to rank. In NIPS 2009
Workshop on Advances in Ranking. 2009.

[24] I. Tsochantaridis, T. Joachims, T. Hofmann, and
Y. Altun. Large margin methods for structured and
interdependent output variables. JMLR, 2005.

http://www.csie.ntu.edu.tw/~cjlin/papers/ranksvm/kernel.tar.gz
http://www.csie.ntu.edu.tw/~cjlin/papers/ranksvm/kernel.tar.gz
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_scale_ranksvm
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_scale_ranksvm

[25] R. C. Whaley, A. Petitet, and J. J. Dongarra. Auto-
matically tuned linear algebra software and the ATLAS
project. Technical report, Department of Computer
Sciences, University of Tennessee, 2000.

[26] H. Yu, J. Kim, Y. Kim, S. Hwang, and Y. H. Lee. An
efficient method for learning nonlinear ranking SVM
functions. Information Sciences, 209:37–48, 2012.

[27] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. Recent advances
of large-scale linear classification. PIEEE, 100:2584–
2603, 2012.

A Optimality of w Defined in (3.16)

Assume α∗ and β̂
∗

are optimal for (2.4) and (3.15),
respectively. By the strong duality of rankSVM and the
feasibility of α∗ to problem (3.15), we have

optimal value of (1.2)

=
1

2
(α∗)T Q̂α∗ + C

∑
(i,j)∈P

max(0, 1− (Q̂α∗)i,j)

≥ 1

2
(β̂
∗
)T Q̂β̂

∗
+ C

∑
(i,j)∈P

max(0, 1− (Q̂β̂
∗
)i,j)

≥ optimal value of (1.2).

The last inequality is from the fact that any w con-
structed by (3.16) is feasible for (1.2). Thus, the above
inequalities are in fact equalities, so the proof is com-
plete. Further, the above equation implies that any dual
optimal solution α∗ is also optimal for (3.15).

B Calculation of First and Second Order
Information of (3.12) and (3.13)

Assume Qi is the i-th column of Q. One sub-gradient
of (3.12)’s objective function is

Qβ − C
∑

(i,j)∈SV(β)
(Qi −Qj)

= Qβ + C
∑l

i=1
(
∑

(j,i)∈SV(β)
Qi −

∑
(i,j)∈SV(β)

Qi)

= Qβ + C
∑l

i=1
(l+i (β)− l−i (β))Qi,

For (3.13) that uses L2 loss, the computation is as
follows. We define pβ ≡ |SV(β)|, and let Aβ ∈ Rpβ×l

include A’s rows corresponding to SV(β). That is, if
(i, j) ∈ SV(β), then the (i, j)th row of A is selected.
The objective function of (3.13) can then be written as

f(β) ≡ 1

2
βTQβ + C(AβQβ − eβ)T (AβQβ − eβ)

=
1

2
βTQβ + CβTQ(ATβAβQβ − 2ATβeβ) + pβ,(B.1)

where eβ ∈ Rpβ is a vector of ones. Its gradient is

Qβ − 2C
∑

(i,j)∈P

(Qi −Qj) max(0, 1− (Qβ)i + (Qβ)j)

= Qβ + 2CQ(ATβAβQβ −ATβeβ).(B.2)

Because f(β) is not twice differentiable, ∇2f(β) does
not exist. We follow [19] and [16] to define a generalized
Hessian matrix ∇2f(β) ≡ Q + 2CQATβAβQ. Because
this matrix may be too large to be stored, some opti-
mization methods employ the Hessian-free techniques so
that only the Hessian-vector products are needed. For
any vector v ∈ Rl,

(B.3) ∇2f(β)v = Qv + 2CQATβAβQv.

We notice that (B.1)-(B.3) share some common terms,
which can be computed by the same method. For ATβeβ
and pβ needed in (B.1) and (B.2),

ATβeβ =

 l−1 (β)− l+1 (β)
...

l−l (β)− l+l (β)

 , and pβ =
∑l

i=1
l−i (β),

where l+i (β) and l−i (β) are defined in (3.17) and (3.18).
Next we calculate ATβAβQβ and ATβAβQv. From

(ATβAβ)i,j =
∑
s

(Aβ)Ti,s(Aβ)s,j =
∑
s

(Aβ)s,i(Aβ)s,j ,

and each row of Aβ only contains two non-zero elements,
we have

(ATβAβ)i,j =

l+i (β) + l−i (β) if i = j,

−1 if i 6= j, and

(i, j) or (j, i) ∈ SV(β),

0 otherwise.

Consequently,

(ATβAβQv)i =
∑l

j=1
(ATβAβ)i,j(Qv)j

=
(
l+i (β) + l−i (β)

)
(Qv)i −

∑
j:(j,i) or (i,j)∈SV(β)

(Qv)j .

Finally we have

QATβAβQv

= Q

(
l+1 (β) + l−1 (β)

)
(Qv)1 −

(
γ+

1 (β,v) + γ−1 (β,v)
)

...(
l+l (β) + l−l (β)

)
(Qv)l −

(
γ+
l (β,v) + γ−l (β,v)

)
 ,

where

γ+
i (β,v) ≡

∑
j:(j,i)∈SV(β)

(Qv)j ,

γ−i (β,v) ≡
∑

j:(i,j)∈SV(β)
(Qv)j .

It has been shown in [14] that γ+
i (β,v) and γ−i (β,v) can

be calculated by the same technique of order-statistic
trees for l+i (β) and l−i (β).

	Introduction
	Existing Methods
	SVM Approach
	Structural SVM Approach
	Reformulation from Representer Theorem

	Methods and Technical Solutions
	Regularization Term
	Loss Term
	Implementation Issues and Discussion

	Empirical Evaluation
	An Implementation of the Proposed Method
	Data Sets and Evaluation Criteria
	Settings for Experiments
	Comparison Results

	Conclusions
	Optimality of bold0mu mumu wwwwww Defined in (3.16)
	Calculation of First and Second Order Information of (3.12) and (3.13)

