
Journal of Machine Learning Research 6 (2005) 1889–1918 Submitted 04/05; Revised 10/05; Published 11/05

Working Set Selection Using Second Order Information

for Training Support Vector Machines

Rong-En Fan b90098@csie.ntu.edu.tw

Pai-Hsuen Chen r90008@csie.ntu.edu.tw

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science, National Taiwan University

Taipei 106, Taiwan

Editor: Thorsten Joachims

Abstract

Working set selection is an important step in decomposition methods for training support
vector machines (SVMs). This paper develops a new technique for working set selection in
SMO-type decomposition methods. It uses second order information to achieve fast con-
vergence. Theoretical properties such as linear convergence are established. Experiments
demonstrate that the proposed method is faster than existing selection methods using first
order information.

Keywords: support vector machines, decomposition methods, sequential minimal opti-
mization, working set selection

1. Introduction

Support vector machines (SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995) are a useful
classification method. Given instances xi, i = 1, . . . , l with labels yi ∈ {1,−1}, the main
task in training SVMs is to solve the following quadratic optimization problem:

min
α

f(α) =
1

2
αT Qα − eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (1)

yT α = 0,

where e is the vector of all ones, C is the upper bound of all variables, Q is an l by l
symmetric matrix with Qij = yiyjK(xi,xj), and K(xi,xj) is the kernel function.

The matrix Q is usually fully dense and may be too large to be stored. Decomposition
methods are designed to handle such difficulties (e.g., Osuna et al., 1997; Joachims, 1998;
Platt, 1998; Chang and Lin, 2001). Unlike most optimization methods which update the
whole vector α in each step of an iterative process, the decomposition method modifies only
a subset of α per iteration. This subset, denoted as the working set B, leads to a small
sub-problem to be minimized in each iteration. An extreme case is the Sequential Minimal
Optimization (SMO) (Platt, 1998), which restricts B to have only two elements. Then in
each iteration one does not require any optimization software in order to solve a simple
two-variable problem. This method is sketched in the following:

c©2005 Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin.

Fan, Chen, and Lin

Algorithm 1 (SMO-type decomposition method)
1. Find α1 as the initial feasible solution. Set k = 1.

2. If αk is an optimal solution of (1), stop. Otherwise, find a two-element working set
B = {i, j} ⊂ {1, . . . , l}. Define N ≡ {1, . . . , l}\B and αk

B and αk
N to be sub-vectors

of αk corresponding to B and N , respectively.

3. Solve the following sub-problem with the variable αB:

min
αB

1

2

[

αT
B (αk

N)T
]

[

QBB QBN

QNB QNN

] [

αB

αk
N

]

−
[

eT
B eT

N

]

[

αB

αk
N

]

=
1

2
αT

BQBBαB + (−eB + QBNαk
N)T αB + constant

=
1

2

[

αi αj

]

[

Qii Qij

Qij Qjj

] [

αi

αj

]

+ (−eB + QBNαk
N)T

[

αi

αj

]

+ constant

subject to 0 ≤ αi, αj ≤ C, (2)

yiαi + yjαj = −yT
Nαk

N ,

where
[

QBB QBN

QNB QNN

]

is a permutation of the matrix Q.

4. Set αk+1
B to be the optimal solution of (2) and αk+1

N ≡ αk
N . Set k ← k + 1 and goto

Step 2.

Note that the set B changes from one iteration to another, but to simplify the notation, we
just use B instead of Bk.

Since only few components are updated per iteration, for difficult problems, the decom-
position method suffers from slow convergences. Better methods of working set selection
could reduce the number of iterations and hence are an important research issue. Existing
methods mainly rely on the violation of the optimality condition, which also corresponds to
first order (i.e., gradient) information of the objective function. Past optimization research
indicates that using second order information generally leads to faster convergence. Now
(1) is a quadratic programming problem, so second order information directly relates to the
decrease of the objective function. There are several attempts (e.g., Lai et al., 2003a,b) to
find working sets based on the reduction of the objective value, but these selection methods
are only heuristics without convergence proofs. Moreover, as such techniques cost more
than existing ones, fewer iterations may not lead to shorter training time. This paper de-
velops a simple working set selection using second order information. It can be extended
for indefinite kernel matrices. Experiments demonstrate that the training time is shorter
than existing implementations.

This paper is organized as follows. In Section 2, we discuss existing methods of working
set selection and propose a new strategy. Theoretical properties of using the new selection
technique are in Section 3. In Section 4 we extend the proposed selection method to other
SVM formulas such as ν-SVM. A detailed experiment is in Section 5. We then in Section
6 discuss and compare some variants of the proposed selection method. Finally, Section 7
concludes this research work. A pseudo code of the proposed method is in the Appendix.

1890

Working Set Selection for Training SVMs

2. Existing and New Working Set Selections

In this section, we discuss existing methods of working set selection and then propose a new
approach.

2.1 Existing Selections

Currently a popular way to select the working set B is via the “maximal violating pair:”

WSS 1 (Working set selection via the “maximal violating pair”)
1. Select

i ∈ arg max
t

{−yt∇f(αk)t | t ∈ Iup(α
k)},

j ∈ arg min
t
{−yt∇f(αk)t | t ∈ Ilow(αk)},

where

Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1}, and

Ilow(α) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1}.
(3)

2. Return B = {i, j}.

This working set was first proposed in Keerthi et al. (2001) and is used in, for example,
the software LIBSVM (Chang and Lin, 2001). WSS 1 can be derived through the Karush-
Kuhn-Tucker (KKT) optimality condition of (1): A vector α is a stationary point of (1) if
and only if there is a number b and two nonnegative vectors λ and µ such that

∇f(α) + by = λ − µ,

λiαi = 0, µi(C − αi) = 0, λi ≥ 0, µi ≥ 0, i = 1, . . . , l,

where ∇f(α) ≡ Qα − e is the gradient of f(α). This condition can be rewritten as

∇f(α)i + byi ≥ 0 if αi < C, (4)

∇f(α)i + byi ≤ 0 if αi > 0. (5)

Since yi = ±1, by defining Iup(α) and Ilow(α) as in (3), and rewriting (4)-(5) to

−yi∇f(α)i ≤ b, ∀i ∈ Iup(α), and

−yi∇f(α)i ≥ b, ∀i ∈ Ilow(α),

a feasible α is a stationary point of (1) if and only if

m(α) ≤ M(α), (6)

where
m(α) ≡ max

i∈Iup(α)
−yi∇f(α)i, and M(α) ≡ min

i∈Ilow(α)
−yi∇f(α)i.

Note that m(α) and M(α) are well defined except a rare situation where all yi = 1 (or
−1). In this case the zero vector is the only feasible solution of (1), so the decomposition
method stops at the first iteration.

Following Keerthi et al. (2001), we define a “violating pair” of the condition (6).

1891

Fan, Chen, and Lin

Definition 1 (Violating pair) If i ∈ Iup(α), j ∈ Ilow(α), and −yi∇f(α)i > −yj∇f(α)j,
then {i, j} is a “violating pair.”

From (6), indices {i, j} which most violate the optimality condition are a natural choice of
the working set. They are called a “maximal violating pair” in WSS 1. It is known that
violating pairs are important in the working set selection:

Theorem 2 (Hush and Scovel, 2003) Assume Q is positive semi-definite. SMO-type
methods have the strict decrease of the function value (i.e., f(αk+1) < f(αk),∀k) if and
only if B is a violating pair.

Interestingly, the maximal violating pair is related to first order approximation of f(α).
As explained below, {i, j} selected via WSS 1 satisfies

{i, j} = arg min
B:|B|=2

Sub(B), (7)

where

Sub(B) ≡ min
dB

∇f(αk)T
BdB (8a)

subject to yT
BdB = 0,

dt ≥ 0, if αk
t = 0, t ∈ B, (8b)

dt ≤ 0, if αk
t = C, t ∈ B, (8c)

−1 ≤ dt ≤ 1, t ∈ B. (8d)

Problem (7) was first considered in Joachims (1998). By defining dT ≡ [dT
B,0T

N], the
objective function (8a) comes from minimizing first order approximation of f(αk + d):

f(αk + d) ≈ f(αk) + ∇f(αk)Td

= f(αk) + ∇f(αk)T
BdB.

The constraint yT
BdB = 0 is from yT (αk +d) = 0 and yT αk = 0. The condition 0 ≤ αt ≤ C

leads to inequalities (8b) and (8c). As (8a) is a linear function, the inequalities −1 ≤ dt ≤
1, t ∈ B avoid that the objective value goes to −∞.

A first look at (7) indicates that we may have to check all
(

l
2

)

B’s in order to find an
optimal set. Instead, WSS 1 efficiently solves (7) in O(l) steps. This result is discussed in
Lin (2001a, Section II), where more general settings (|B| is any even integer) are considered.
The proof for |B| = 2 is easy, so we give it in Appendix A for completeness.

The convergence of the decomposition method using WSS 1 is proved in Lin (2001a,
2002).

2.2 A New Working Set Selection

Instead of using first order approximation, we may consider more accurate second order
information. As f is a quadratic,

f(αk + d) − f(αk) = ∇f(αk)Td +
1

2
dT∇2f(αk)d

= ∇f(αk)T
BdB +

1

2
dT

B∇
2f(αk)BBdB (9)

1892

Working Set Selection for Training SVMs

is exactly the reduction of the objective value. Thus, by replacing the objective function of
(8) with (9), a selection method using second order information is

min
B:|B|=2

Sub(B), (10)

where

Sub(B) ≡ min
dB

1

2
dT

B∇
2f(αk)BBdB + ∇f(αk)T

BdB (11a)

subject to yT
BdB = 0, (11b)

dt ≥ 0, if αk
t = 0, t ∈ B, (11c)

dt ≤ 0, if αk
t = C, t ∈ B. (11d)

Note that inequality constraints −1 ≤ dt ≤ 1, t ∈ B in (8) are removed, as later we will
see that the optimal value of (11) does not go to −∞. Though one expects (11) is better
than (8), minB:|B|=2 Sub(B) in (10) becomes a challenging task. Unlike (7)-(8), which can
be efficiently solved by WSS 1, for (10) and (11) there is no available way to avoid checking
all

(

l
2

)

B’s. Note that except the working set selection, the main task per decomposition
iteration is on calculating the two kernel columns Qti and Qtj , t = 1, . . . , l. This requires
O(l) operations and is needed only if Q is not stored. Therefore, each iteration can become
l times more expensive if an O(l2) working set selection is used. Moreover, from simple
experiments we know that the number of iterations is, however, not decreased l times.
Therefore, an O(l2) working set selection is impractical.

A viable implementation of using second order information is thus to heuristically check
several B’s only. We propose the following new selection:

WSS 2 (Working set selection using second order information)
1. Select

i ∈ arg max
t

{−yt∇f(αk)t | t ∈ Iup(α
k)}.

2. Consider Sub(B) defined in (11) and select

j ∈ arg min
t
{Sub({i, t}) | t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i}. (12)

3. Return B = {i, j}.

By using the same i as in WSS 1, we check only O(l) possible B’s to decide j. Alternatively,
one may choose j ∈ arg M(αk) and search for i by a way similar to (12)1. In fact, such a
selection is the same as swapping labels y first and then applying WSS 2, so the performance
should not differ much. It is certainly possible to consider other heuristics, and the main
concern is how good they are if compared to the one by fully checking all

(

l
2

)

sets. In
Section 7 we will address this issue. Experiments indicate that a full check does not reduce
iterations of using WSS 2 much. Thus WSS 2 is already a very good way of using second
order information.

1. To simplify the notations, we denote arg M(α) as arg mint∈Ilow(α) −yt∇f(α)t and arg m(α) as
arg maxt∈Iup(α) −yt∇f(α)t, respectively.

1893

Fan, Chen, and Lin

Despite the above issue of how to effectively use second order information, the real
challenge is whether the new WSS 2 can cause shorter training time than WSS 1. Now the
two selection methods differ only in selecting j, so we can also consider WSS 2 as a direct
attempt to improve WSS 1. The following theorem shows that one could efficiently solve
(11), so the working set selection WSS 2 does not cost a lot more than WSS 1.

Theorem 3 If B = {i, j} is a violating pair and Kii + Kjj − 2Kij > 0, then (11) has the
optimal objective value

−
(−yi∇f(αk)i + yj∇f(αk)j)

2

2(Kii + Kjj − 2Kij)
.

Proof Define d̂i ≡ yidi and d̂j ≡ yjdj . From yT
BdB = 0, we have d̂i = −d̂j and

1

2

[

di dj

]

[

Qii Qij

Qij Qjj

] [

di

dj

]

+
[

∇f(αk)i ∇f(αk)j

]

[

di

dj

]

=
1

2
(Kii + Kjj − 2Kij)d̂

2
j + (−yi∇f(αk)i + yj∇f(αk)j)d̂j . (13)

Since Kii + Kjj − 2Kij > 0 and B is a violating pair, we can define

aij ≡ Kii + Kjj − 2Kij > 0 and bij ≡ −yi∇f(αk)i + yj∇f(αk)j > 0. (14)

Then (13) has the minimum at

d̂j = −d̂i = −
bij

aij
< 0, (15)

and

the objective function (11a) = −
b2
ij

2aij
.

Moreover, we can show that d̂i and d̂j (di and dj) indeed satisfy (11c)-(11d). If

j ∈ Ilow(αk), αk
j = 0 implies yj = −1 and hence dj = yj d̂j > 0, a condition required

by (11c). Other cases are similar. Thus d̂i and d̂i defined in (15) are optimal for (11).

Note that if K is positive definite, then for any i 6= j, Kii + Kjj − 2Kij > 0. Using
Theorem 3, (12) in WSS 2 is reduced to a very simple form:

j ∈ arg min
t

{

−
b2
it

ait
| t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i

}

,

where ait and bit are defined in (14). If K is not positive definite, the leading coefficient aij

of (13) may be non-positive. This situation will be addressed in the next sub-section.
Note that (8) and (11) are used only for selecting the working set, so they do not have

to maintain the feasibility 0 ≤ αk
i + di ≤ C,∀i ∈ B. On the contrary, feasibility must

hold for the sub-problem (2) used to obtain αk+1 after B is determined. There are some
earlier attempts to use second order information for selecting working sets (e.g., Lai et al.,
2003a,b), but they always check the feasibility. Then solving sub-problems during the

1894

Working Set Selection for Training SVMs

selection procedure is more complicated than solving the sub-problem (11). Besides, these
earlier approaches do not provide any convergence analysis. In Section 6 we will investigate
the issue of maintaining feasibility in the selection procedure, and explain why using (11)
is better.

2.3 Non-Positive Definite Kernel Matrices

Theorem 3 does not hold if Kii + Kjj − 2Kij ≤ 0. For the linear kernel, sometimes K is
only positive semi-definite, so it is possible that Kii + Kjj − 2Kij = 0. Moreover, some
existing kernel functions (e.g., sigmoid kernel) are not the inner product of two vectors, so
K is even not positive semi-definite. Then Kii + Kjj − 2Kij < 0 may occur and (13) is a
concave objective function.

Once B is decided, the same difficulty occurs for the sub-problem (2) to obtain αk+1.
Note that (2) differs from (11) only in constraints; (2) strictly requires the feasibility 0 ≤ αi+
di ≤ C,∀t ∈ B. Therefore, (2) also has a concave objective function if Kii +Kjj −2Kij < 0.
In this situation, (2) may possess multiple local minima. Moreover, there are difficulties
in proving the convergence of the decomposition methods (Palagi and Sciandrone, 2005;
Chen et al., 2006). Thus, Chen et al. (2006) proposed adding an additional term to (2)’s
objective function if aij ≡ Kii + Kjj − 2Kij ≤ 0:

min
αi,αj

1

2

[

αi αj

]

[

Qii Qij

Qij Qjj

] [

αi

αj

]

+ (−eB + QBNαk
N)T

[

αi

αj

]

+

τ − aij

4
((αi − αk

i)
2 + (αj − αk

j)
2)

subject to 0 ≤ αi, αj ≤ C, (16)

yiαi + yjαj = −yT
Nαk

N ,

where τ is a small positive number. By defining d̂i ≡ yi(αi − αk
i) and d̂j ≡ yj(αj − αk

j),
(16)’s objective function, in a form similar to (13), is

1

2
τ d̂2

j + bij d̂j , (17)

where bij is defined as in (14). The new objective function is thus strictly convex. If {i, j}

is a violating pair, then a careful check shows that there is d̂j < 0 which leads to a negative
value in (17) and maintains the feasibility of (16). Therefore, we can find αk+1 6= αk

satisfying f(αk+1) < f(αk). More details are in Chen et al. (2006).
For selecting the working set, we consider a similar modification: If B = {i, j} and aij

is defined as in (14), then (11) is modified to:

Sub(B) ≡ min
dB

1

2
dT

B∇
2f(αk)BBdB + ∇f(αk)T

BdB +
τ − aij

4
(d2

i + d2
j)

subject to constraints of (11).

(18)

Note that (18) differs from (16) only in constraints. In (18) we do not maintain the feasibility
of αk

t + dt, t ∈ B. We are allowed to do so because (18) is used only for identifying the
working set B.

1895

Fan, Chen, and Lin

By reformulating (18) to (17) and following the same argument in Theorem 3, the
optimal objective value of (18) is

−
b2
ij

2τ
.

Therefore, a generalized working set selection is as the following:

WSS 3
(Working set selection using second order information: any symmetric K)

1. Define ats and bts as in (14), and

āts ≡

{

ats if ats > 0,
τ otherwise.

(19)

Select

i ∈ arg max
t

{−yt∇f(αk)t | t ∈ Iup(α
k)},

j ∈ arg min
t

{

−
b2
it

āit
| t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i

}

. (20)

2. Return B = {i, j}.

In summary, an SMO-type decomposition method using WSS 3 for the working set selection
is:

Algorithm 2 (An SMO-type decomposition method using WSS 3)
1. Find α1 as the initial feasible solution. Set k = 1.

2. If αk is a stationary point of (1), stop. Otherwise, find a working set B = {i, j} by
WSS 3.

3. Let aij be defined as in (14). If aij > 0, solve the sub-problem (2). Otherwise, solve
(16). Set αk+1

B to be the optimal point of the sub-problem.

4. Set αk+1
N ≡ αk

N . Set k ← k + 1 and goto Step 2.

In the next section we study theoretical properties of using WSS 3.

3. Theoretical Properties

To obtain theoretical properties of using WSS 3, we consider the work (Chen et al., 2006),
which gives a general study of SMO-type decomposition methods. It considers Algorithm
2 but replaces WSS 3 with a general working set selection2:

WSS 4 (A general working set selection discussed in Chen et al., 2006)
1. Consider a fixed 0 < σ ≤ 1 for all iterations.

2. In fact, Chen et al. (2006) consider an even more general framework for selecting working sets, but for
easy description, we discuss WSS 4 here.

1896

Working Set Selection for Training SVMs

2. Select any i ∈ Iup(α
k), j ∈ Ilow(αk) satisfying

− yi∇f(αk)i + yj∇f(αk)j ≥ σ(m(αk) − M(αk)) > 0. (21)

3. Return B = {i, j}.

Clearly (21) ensures the quality of the selected pair by linking it to the maximal violating
pair. It is easy to see that WSS 3 is a special case of WSS 4: Assume B = {i, j} is the set
returned from WSS 3 and j̄ ∈ arg M(αk). Since WSS 3 selects i ∈ arg m(αk), with āij > 0
and āij̄ > 0, (20) in WSS 3 implies

−(−yi∇f(αk)i + yj∇f(αk)j)
2

āij
≤

−(m(αk) − M(αk))2

āij̄

.

Thus,

−yi∇f(αk)i + yj∇f(αk)j ≥

√

mint,s āt,s

maxt,s āt,s
(m(αk) − M(αk)),

an inequality satisfying (21) for σ =
√

mint,s āt,s/ maxt,s āt,s.
Therefore, all theoretical properties proved in Chen et al. (2006) hold here. They are

listed below.
It is known that the decomposition method may not converge to an optimal solution if

using improper methods of working set selection. We thus must prove that the proposed
selection leads to the convergence.

Theorem 4 (Asymptotic convergence (Chen et al., 2006, Theorem 3 and Corol-
lary 1))

Let {αk} be the infinite sequence generated by the SMO-type method Algorithm 2. Then
any limit point of {αk} is a stationary point of (1). Moreover, if Q is positive definite,
{αk} globally converges to the unique minimum of (1).

As the decomposition method only asymptotically approaches an optimum, in practice,
it is terminated after satisfying a stopping condition. For example, we can pre-specify a
small tolerance ǫ > 0 and check if the maximal violation is small enough:

m(αk) − M(αk) ≤ ǫ. (22)

Alternatively, one may check if the selected working set {i, j} satisfies

− yi∇f(αk)i + yj∇f(αk)j ≤ ǫ, (23)

because (21) implies m(αk)−M(αk) ≤ ǫ/σ. These are reasonable stopping criteria due to
their closeness to the optimality condition (6). To avoid an infinite loop, we must have that
under any ǫ > 0, Algorithm 2 stops in a finite number of iterations. The finite termination
of using (22) or (23) as the stopping condition is implied by (26) of Theorem 5 stated below.

Shrinking and caching (Joachims, 1998) are two effective techniques to make the decom-
position method faster. The former removes some bounded components during iterations,
so smaller reduced problems are considered. The latter allocates some memory space (called
cache) to store recently used Qij , and may significantly reduce the number of kernel evalu-
ations. The following theorem explains why these two techniques are useful in practice:

1897

Fan, Chen, and Lin

Theorem 5 (Finite termination and explanation of caching and shrinking tech-
niques (Chen et al., 2006, Theorems 4 and 6))

Assume Q is positive semi-definite.

1. The following set is independent of any optimal solution ᾱ:

I ≡ {i | −yi∇f(ᾱ)i > M(ᾱ) or − yi∇f(ᾱ)i < m(ᾱ)}. (24)

Problem (1) has unique and bounded optimal solutions at αi, i ∈ I.

2. Assume Algorithm 2 generates an infinite sequence {αk}. There is k̄ such that after
k ≥ k̄, every αk

i , i ∈ I has reached the unique and bounded optimal solution. It remains
the same in all subsequent iterations and ∀k ≥ k̄:

i 6∈ {t | M(αk) ≤ −yt∇f(αk)t ≤ m(αk)}. (25)

3. If (1) has an optimal solution ᾱ satisfying m(ᾱ) < M(ᾱ), then ᾱ is the unique
solution and Algorithm 2 reaches it in a finite number of iterations.

4. If {αk} is an infinite sequence, then the following two limits exist and are equal:

lim
k→∞

m(αk) = lim
k→∞

M(αk) = m(ᾱ) = M(ᾱ), (26)

where ᾱ is any optimal solution.

Finally, the following theorem shows that Algorithm 2 is linearly convergent under some
assumptions:

Theorem 6 (Linear convergence (Chen et al., 2006, Theorem 8))
Assume problem (1) satisfies

1. Q is positive definite. Therefore, (1) has a unique optimal solution ᾱ.

2. The nondegenency condition. That is, the optimal solution ᾱ satisfies that

∇f(ᾱ)i + b̄yi = 0 if and only if 0 < ᾱi < C, (27)

where b̄ = m(ᾱ) = M(ᾱ) according to Theorem 5.

For the sequence {αk} generated by Algorithm 2, there are c < 1 and k̄ such that for all
k ≥ k̄,

f(αk+1) − f(ᾱ) ≤ c(f(αk) − f(ᾱ)).

This theorem indicates how fast the SMO-type method Algorithm 2 converges. For any
fixed problem (1) and a given tolerance ǫ, there is k̄ such that within

k̄ + O(log(1/ǫ))

iterations,
|f(αk) − f(ᾱ)| ≤ ǫ.

Note that O(log(1/ǫ)) iterations are necessary for decomposition methods according to the
analysis in Lin (2001b)3. Hence the result of linear convergence here is already the best
worst case analysis.

3. Lin (2001b) gave a three-variable example and explained that the SMO-type method using WSS 1 is
linearly convergent. A careful check shows that the same result holds for any method of working set
selection.

1898

Working Set Selection for Training SVMs

4. Extensions

The proposed WSS 3 can be directly used for training support vector regression (SVR) and
one-class SVM because they solve problems similar to (1). More detailed discussion about
applying WSS 4 (and hence WSS 3) to SVR and one-class SVM is in Chen et al. (2006,
Section IV).

Another formula which needs special attention is ν-SVM (Schölkopf et al., 2000), which
solves a problem with one more linear constraint:

min
α

f(α) =
1

2
αT Qα

subject to yT α = 0, (28)

eT α = ν,

0 ≤ αi ≤ 1/l, i = 1, . . . , l,

where e is the vector of all ones and 0 ≤ ν ≤ 1.
Similar to (6), α is a stationary point of (28) if and only if it satisfies

mp(α) ≤ Mp(α) and mn(α) ≤ Mn(α), (29)

where

mp(α) ≡ max
i∈Iup(α),yi=1

−yi∇f(α)i, Mp(α) ≡ min
i∈Ilow(α),yi=1

−yi∇f(α)i, and

mn(α) ≡ max
i∈Iup(α),yi=−1

−yi∇f(α)i, Mn(α) ≡ min
i∈Ilow(α),yi=−1

−yi∇f(α)i.

A detailed derivation is in, for example, Chen et al. (2006, Section VI).
In an SMO-type method for ν-SVM the selected working set B = {i, j} must satisfy

yi = yj . Otherwise, if yi 6= yj , then the two linear equalities make the sub-problem have
only one feasible point αk

B. Therefore, to select the working set, one considers positive (i.e.,
yi = 1) and negative (i.e., yi = −1) instances separately. Existing implementations such as
LIBSVM (Chang and Lin, 2001) check violating pairs in each part and select the one with
the largest violation. This strategy is an extension of WSS 1. By a derivation similar to
that in Section 2, the selection can also be from first or second order approximation of the
objective function. Using Sub({i, j}) defined in (11), WSS 2 in Section 2 is modified to

WSS 5 (Extending WSS 2 for ν-SVM)
1. Find

ip ∈ arg mp(α
k),

jp ∈ arg min
t
{Sub({ip, t}) | yt = 1, αt ∈ Ilow(αk),−yt∇f(αk)t < −yip∇f(αk)ip}.

2. Find

in ∈ arg mn(αk),

jn ∈ arg min
t
{Sub({in, t}) | yt = −1, αt ∈ Ilow(αk),−yt∇f(αk)t < −yin∇f(αk)in}.

1899

Fan, Chen, and Lin

Problem #data #feat. Problem #data #feat. Problem #data #feat.

image 1,300 18 breast-cancer 690 10 abalone∗ 1,000 8
splice 1,000 60 diabetes 768 8 cadata∗ 1,000 8
tree 700 18 fourclass 862 2 cpusmall∗ 1,000 12
a1a 1,605 119 german.numer 1,000 24 mg 1,385 6
australian 683 14 w1a 2,477 300 space ga∗ 1,000 6

Table 1: Data statistics for small problems (left two columns: classification, right column:
regression). ∗: subset of the original problem.

3. Check Sub({ip, jp}) and Sub({in, jn}). Return the set with a smaller value.

By Theorem 3 in Section 2, it is easy to solve Sub({ip, t}) and Sub({in, t}) in the above
procedure.

5. Experiments

In this section we aim at comparing the proposed WSS 3 with WSS 1, which selects the
maximal violating pair. As indicated in Section 2, they differ only in finding the second
element j: WSS 1 checks first order approximation of the objective function, but WSS 3
uses second order information.

5.1 Data and Experimental Settings

First, some small data sets (around 1,000 samples) including ten binary classification and
five regression problems are investigated under various settings. Secondly, observations are
further confirmed by using four large (more than 30,000 instances) classification problems.
Data statistics are in Tables 1 and 3.

Problems german.numer and australian are from the Statlog collection (Michie et al.,
1994). We select space ga and cadata from StatLib (http://lib.stat.cmu.edu/datasets).
The data sets image, diabetes, covtype, breast-cancer, and abalone are from the UCI ma-
chine learning repository (Newman et al., 1998). Problems a1a and a9a are compiled in
Platt (1998) from the UCI “adult” data set. Problems w1a and w8a are also from Platt
(1998). The tree data set was originally used in Bailey et al. (1993). The problem mg is
a Mackey-Glass time series. The data sets cpusmall and splice are from the Delve archive
(http://www.cs.toronto.edu/~delve). Problem fourclass is from Ho and Kleinberg (1996)
and we further transform it to a two-class set. The problem IJCNN1 is from the first problem
of IJCNN 2001 challenge (Prokhorov, 2001).

For most data sets each attribute is linearly scaled to [−1, 1]. We do not scale a1a, a9a,
w1a, and w8a as they take two values 0 and 1. Another exception is covtype, in which 44 of 54
features have 0/1 values. We scale only the other ten features to [0, 1]. All data are available
at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/. We use LIBSVM (version 2.71)
(Chang and Lin, 2001), an implementation of WSS 1, for experiments. An easy modification
to WSS 3 ensures that two codes differ only in the working set implementation. We set
τ = 10−12 in WSS 3.

1900

http://lib.stat.cmu.edu/datasets
http://www.cs.toronto.edu/~delve
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

Working Set Selection for Training SVMs

Different SVM parameters such as C in (1) and kernel parameters affect the training
time. It is difficult to evaluate the two methods under every parameter setting. To have
a fair comparison, we simulate how one uses SVM in practice and consider the following
procedure:

1. “Parameter selection” step: Conduct five-fold cross validation to find the best one
within a given set of parameters.

2. “Final training” step: Train the whole set with the best parameter to obtain the final
model.

For each step we check time and iterations using the two methods of working set selection.
For some extreme parameters (e.g., very large or small values) in the “parameter selection”
step, the decomposition method converges very slowly, so the comparison shows if the
proposed WSS 3 saves time under difficult situations. On the other hand, the best parameter
usually locates in a more normal region, so the “final training” step tests if WSS 3 is
competitive with WSS 1 for easier cases.

The behavior of using different kernels is a concern, so we thoroughly test four commonly
used kernels:

1. RBF kernel:
K(xi,xj) = e−γ‖xi−xj‖

2
.

2. Linear kernel:
K(xi,xj) = xT

i xj .

3. Polynomial kernel:
K(xi,xj) = (γ(xT

i xj + 1))d.

4. Sigmoid kernel:
K(xi,xj) = tanh(γxT

i xj + d).

Note that this function cannot be represented as φ(xi)
T φ(xj) under some parameters.

Then the matrix Q is not positive semi-definite. Experimenting with this kernel tests
if our extension to indefinite kernels in Section 2.3 works well or not.

Parameters used for each kernel are listed in Table 2. Note that as SVR has an additional
parameter ǫ, to save the running time, for other parameters we may not consider as many
values as in classification.

It is important to check how WSS 3 performs after incorporating shrinking and caching
strategies. Such techniques may effectively save kernel evaluations at each iteration, so the
higher cost of WSS 3 is a concern. We consider various settings:

1. With or without shrinking.

2. Different cache size: First a 40MB cache allows the whole kernel matrix to be stored
in the computer memory. Second, we allocate only 100K, so cache misses may happen
and more kernel evaluations are needed. The second setting simulates the training of
large-scale sets whose kernel matrices cannot be stored.

1901

Fan, Chen, and Lin

Kernel Problem type log2 C log2 γ log2 ǫ d

RBF Classification −5, 15, 2 3,−15,−2
Regression −1, 15, 2 3,−15,−2 −8,−1, 1

Linear Classification −3, 5, 2
Regression −3, 5, 2 −8,−1, 1

Polynomial Classification −3, 5, 2 −5,−1, 1 2, 4, 1
Regression −3, 5, 2 −5,−1, 1 −8,−1, 1 2, 4, 1

Sigmoid Classification −3, 12, 3 −12, 3, 3 −2.4, 2.4, 0.6
Regression −3, 9, 3 γ = 1

#features
−8,−1, 3 −2.4, 2.4, 0.6

Table 2: Parameters used for various kernels: values of each parameter are from a uniform
discretization of an interval. We list the left, right end points and the space for
discretization. For example, −5, 15, 2 for log2 C means log2 C = −5,−3, . . . , 15.

5.2 Results

For each kernel, we give two figures showing results of “parameter selection” and “final
training” steps, respectively. We further separate each figure to two scenarios: without/with
shrinking, and present three ratios between using WSS 3 and using WSS 1:

ratio 1 ≡
iter. by Alg. 2 with WSS 3

iter. by Alg. 2 with WSS 1
,

ratio 2 ≡
time by Alg. 2 (WSS 3, 100K cache)

time by Alg. 2 (WSS 1, 100K cache)
,

ratio 3 ≡
time by Alg. 2 (WSS 3, 40M cache)

time by Alg. 2 (WSS 1, 40M cache)
.

Note that the number of iterations is independent of the cache size. For the “parameter
selection” step, time (or iterations) of all parameters is summed up before calculating the
ratio. In general the “final training” step is very fast, so the timing result may not be
accurate. Hence we repeat this step several times to obtain more reliable timing values.
Figures 1-8 present obtained ratios. They are in general smaller than one, so using WSS 3
is really better than using WSS 1. Before describing other results, we explain an interesting
observation: In these figures, if shrinking is not used, in general

ratio 1 ≤ ratio 2 ≤ ratio 3. (30)

Under the two very different cache sizes, one is too small to store the kernel matrix, but
the other is large enough. Thus, roughly we have

time per Alg. 2 iteration (100K cache) ≈ Calculating two Q columns + Selection,

time per Alg. 2 iteration (40M cache) ≈ Selection.

(31)

If shrinking is not used, the optimization problem is not reduced and hence

time by Alg. 2

iter. of Alg. 2
≈ cost per iteration ≈ constant. (32)

1902

Working Set Selection for Training SVMs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

Figure 1: Iteration and time ratios between WSS 3 and 1 using the RBF kernel for the
“parameter selection” step (top: without shrinking, bottom: with shrinking).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

Figure 2: Iteration and time ratios between WSS 3 and 1 using the RBF kernel for the
“final training” step (top: without shrinking, bottom: with shrinking).

1903

Fan, Chen, and Lin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

Figure 3: Iteration and time ratios between WSS 3 and 1 using the linear kernel for the
“parameter selection” step (top: without shrinking, bottom: with shrinking).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

Figure 4: Iteration and time ratios between WSS 3 and 1 using the linear kernel for the
“final training” step (top: without shrinking, bottom: with shrinking).

1904

Working Set Selection for Training SVMs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

Figure 5: Iteration and time ratios between WSS 3 and 1 using the polynomial kernel for
the “parameter selection” step (top: without shrinking, bottom: with shrinking).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

Figure 6: Iteration and time ratios between WSS 3 and 1 using the polynomial kernel for
the “final training” step (top: without shrinking, bottom: with shrinking).

1905

Fan, Chen, and Lin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

Figure 7: Iteration and time ratios between WSS 3 and 1 using the sigmoid kernel for the
“parameter selection” step (top: without shrinking, bottom: with shrinking).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
age

sp
lice

tre
e

a1a
austr

alia
n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a
abalone

ca
data

cp
usm

all

sp
ace

_ga

mg

Ra
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

Figure 8: Iteration and time ratios between WSS 3 and 1 using the sigmoid kernel for the
“final training” step (top: without shrinking, bottom: with shrinking).

1906

Working Set Selection for Training SVMs

RBF kernel Linear kernel
Shrinking No-Shrinking Shrinking No-Shrinking

Problem #data #feat. Iter. Time Iter. Time Iter. Time Iter. Time

a9a 32,561 123 0.73 0.92 0.75 0.93 0.86 0.92 0.88 0.95
w8a 49,749 300 0.48 0.72 0.50 0.81 0.47 0.90 0.53 0.79
IJCNN1 49,990 22 0.09 0.68 0.11 0.43 0.37 0.91 0.41 0.74
covtype∗ 100,000 54 0.37 0.90 0.37 0.76 0.19 0.59 0.22 0.52

Table 3: Large problems: Iteration and time ratios between WSS 3 and WSS 1 for the
16-point parameter selection. ∗: subset of a two-class data transformed from the
original multi-class problem.

Since WSS 3 costs more than WSS 1, with (31),

1 ≤
time per Alg. 2 iteration (WSS 3, 100K cache)

time per Alg. 2 iteration (WSS 1, 100K cache)

≤
time per Alg. 2 iteration (WSS 3, 40M cache)

time per Alg. 2 iteration (WSS 1, 40M cache)
.

This and (32) then imply (30). When shrinking is incorporated, the cost per iteration varies
and (32) may not hold. Thus, though the relationship (30) in general still holds, there are
more exceptions.

With the above analysis, our main observations and conclusions from Figures 1-8 are in
the following:

1. Using WSS 3 significantly reduces the number of iterations. The reduction is more
dramatic for the “parameter selection” step, where some points have slow convergence.

2. The new method is in general faster. Using a smaller cache gives better improvement.
When the cache is not enough to store the whole kernel matrix, kernel evaluations
are the main cost per iteration. Thus the time reduction is closer to the iteration
reduction. This property hints that WSS 3 is useful on large-scale sets for which
kernel matrices are too huge to be stored.

3. The implementation without shrinking gives better timing improvement than that
with, even though they have similar iteration reduction. Shrinking successfully reduces
the problem size and hence the memory use. Then similar to having enough cache, the
time reduction does not match that of iterations due to the higher cost on selecting
the working set per iteration. Therefore, results in Figures 1-8 indicate that with
effective shrinking and caching implementations, it is difficult to have a new selection
rule systematically surpassing WSS 1. The superior performance of WSS 3 thus makes
important progress in training SVMs.

Next we experiment with large classification sets by a similar procedure. As the parame-
ter selection is time consuming, we first use 10% training instances to identify a small region
of good parameters. Then a 16-point search using the whole set is performed. The cache

1907

Fan, Chen, and Lin

size is 350M except 800M for covtype. We experiment with RBF and linear kernels. Table
3 gives iteration and time ratios of conducting the 16-point parameter selection. Similar to
results for small problems, the number of iterations using WSS 3 is much smaller than that
of using WSS 1. The training time of using WSS 3 is also shorter.

6. Maintaining Feasibility in Sub-problems for Working Set Selections

In Section 2, both the linear sub-problem (8) and quadratic sub-problem (11) do not require
αk +d to be feasible. One may wonder if enforcing the feasibility gives a better working set
and hence leads to faster convergence. In this situation, the quadratic sub-problem becomes

Sub(B) ≡ min
dB

1

2
dT

B∇
2f(αk)BBdB + ∇f(αk)T

BdB

subject to yT
BdB = 0, (33)

−αk
t ≤ dt ≤ C − αk

t ,∀t ∈ B.

For example, from some candidate pairs, Lai et al. (2003a,b) select the one with the smallest
value of (33) as the working set. To check the effect of using (33), here we replace (11) in
WSS 2 with (33) and compare it with the original WSS 2.

From (9), a nice property of using (33) is that Sub(B) equals the decrease of the objective
function f by moving from αk to another feasible point αk+d. In fact, once B is determined,
(33) is also the sub-problem (2) used in Algorithm 1 to obtain αk+1. Therefore, we use the
same sub-problem for both selecting the working set and obtaining the next iteration αk+1.
One may think that such a selection method is better as it leads to the largest function
value reduction while maintaining the feasibility. However, solving (33) is more expensive
than (11) since checking the feasibility requires additional effort. To be more precise, if
B = {i, j}, using d̂j = −d̂i = yjdj = −yidi and a derivation similar to (13), we now must

minimize 1
2 āij d̂

2
j + bij d̂j under the constraints

− αk
j ≤ dj = yj d̂j ≤ C − αk

j and − αk
i ≤ di = −yid̂j ≤ C − αk

i . (34)

As the minimum of the objective function happens at −bij/āij , to have a solution satisfying
(34), we multiply it by −yi and check the second constraint. Next, by dj = −yiyjdi, we
check the first constraint. Equation (20) in WSS 3 is thus modified to

j ∈ arg min
t

{

1

2
āitd̂

2
t + bitd̂t | t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i,

d̂t = yt max(−αk
t , min(C − αk

t ,−ytyi max(−αk
i , min(C − αk

i , yibit/āit))))
}

.

(35)

Clearly (35) requires more operations than (20).

In this section, we prove that under some minor assumptions, in final iterations, solving
(11) in WSS 2 is the same as solving (33). This result and experiments then indicate that
there is no need to use the more sophisticated sub-problem (33) for selecting working sets.

1908

Working Set Selection for Training SVMs

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

im
ag

e

sp
lic

e

tre
e

a1
a

au
str

ali
an

br
ea

st-
ca

nc
er

dia
be

te
s

fo
ur

cla
ss

ge
rm

an
.n

um
er

w1a ab
alo

ne

ca
da

ta

cp
us

m
all

sp
ac

e_
ga

m
g

R
a
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

(a) The “parameter selection” step without shrinking

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

im
ag

e

sp
lic

e

tre
e

a1
a

au
str

ali
an

br
ea

st-
ca

nc
er

dia
be

te
s

fo
ur

cla
ss

ge
rm

an
.n

um
er

w1a ab
alo

ne

ca
da

ta

cp
us

m
all

sp
ac

e_
ga

m
g

R
a
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

(b) The “final training” step without shrinking

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

im
ag

e

sp
lic

e

tre
e

a1
a

au
str

ali
an

br
ea

st-
ca

nc
er

dia
be

te
s

fo
ur

cla
ss

ge
rm

an
.n

um
er

w1a ab
alo

ne

ca
da

ta

cp
us

m
all

sp
ac

e_
ga

m
g

R
a
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

(c) The “parameter selection” step with shrinking

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

im
ag

e

sp
lic

e

tre
e

a1
a

au
str

ali
an

br
ea

st-
ca

nc
er

dia
be

te
s

fo
ur

cla
ss

ge
rm

an
.n

um
er

w1a ab
alo

ne

ca
da

ta

cp
us

m
all

sp
ac

e_
ga

m
g

R
a
tio

Data sets

time (40M cache)
time (100K cache)

total #iter

(d) The “final training” step with shrinking

Figure 9: Iteration and time ratios between using (11) and (33) in WSS 2. Note that the
ratio (y-axis) starts from 0.6 but not 0.

6.1 Solutions of (11) and (33) in final iterations

Theorem 7 Let {αk} be the infinite sequence generated by the SMO-type decomposition
method using WSS 2. Under the same assumptions of Theorem 6, there is k̄ such that for
k ≥ k̄, WSS 2 returns the same working set by replacing (11) with (33).

Proof Since K is assumed to be positive definite, problem (1) has a unique optimal solution
ᾱ. Using Theorem 4,

lim
k→∞

αk = ᾱ. (36)

Since {αk} is an infinite sequence, Theorem 5 shows that m(ᾱ) = M(ᾱ). Hence we can
define the following set

I ′ ≡ {t | −yt∇f(ᾱ)t = m(ᾱ) = M(ᾱ)}.

1909

Fan, Chen, and Lin

As ᾱ is a non-degenerate point, from (27),

δ ≡ min
t∈I′

(ᾱt, C − ᾱt) > 0.

Using 1) Eq. (36), 2) ∇f(ᾱ)i = ∇f(ᾱ)j ,∀i, j ∈ I ′, and 3) Eq. (25) of Theorem 5, there is
k̄ such that for all k ≥ k̄,

|αk
i − ᾱi| <

δ

2
,∀i ∈ I ′, (37)

| − yi∇f(αk)i + yj∇f(αk)j |

Kii + Kjj − 2Kij
<

δ

2
,∀i, j ∈ I ′, Kii + Kjj − 2Kij > 0, (38)

and
all violating pairs come from I ′. (39)

For any given index pair B, let Sub(11)(B) and Sub(33)(B) denote the optimal objective
values of (11) and (33), respectively. If B̄ = {i, j} is a violating pair selected by WSS 2 at
the kth iteration, (37)-(39) imply that di and dj defined in (15) satisfy

0 < αk+1
i = αk

i + di < C and 0 < αk+1
j = αk

j + dj < C. (40)

Therefore, the optimal dB̄ of (11) is feasible for (33). That is,

Sub(33)(B̄) ≤ Sub(11)(B̄). (41)

Since (33)’s constraints are stricter than those of (11), we have

Sub(11)(B) ≤ Sub(33)(B),∀B. (42)

From WSS 3,

j ∈ arg min
t
{Sub(11)({i, t}) | t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i}.

With (41) and (42), this j satisfies

j ∈ arg min
t
{Sub(33)({i, t}) | t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i}.

Therefore, replacing (11) in WSS 3 with (33) does not affect the selected working set.

This theorem indicates that the two methods of working set selection in general lead to
a similar number of iterations. As (11) does not check the feasibility, the implementation
of using it should be faster.

6.2 Experiments

Under the framework WSS 2, we conduct experiments to check if using (11) is really faster
than using (33). The same data sets in Section 5 are used under the same setting. For
simplicity, we consider only the RBF kernel.

1910

Working Set Selection for Training SVMs

Similar to figures in Section 5, here Figure 9 presents iteration and time ratios between
using (11) and (33):

iter. by using (11)

iter. by using (33)
,
time by using (11) (100K cache)

time by using (33) (100K cache)
,
time by using (11) (40M cache)

time by using (33) (40M cache)
.

Without shrinking, clearly both approaches have very similar numbers of iterations.
This observation is expected due to Theorem 7. Then as (33) costs more than (11) does,
the time ratio is in general smaller than one. Especially when the cache is large enough
to store all kernel elements, selecting working sets is the main cost and hence the ratio is
lower.

With shrinking, in Figures 9(c) and 9(d), the iteration ratio is larger than one for
several problems. Surprisingly, the time ratio, especially that of using a small cache, is even
smaller than that without shrinking. In other words, (11) better incorporates the shrinking
technique than (33) does. To analyze this observation, we check the number of removed
variables along iterations, and find that (11) leads to more aggressive shrinking. Then the
reduced problem can be stored in the small cache (100K), so kernel evaluations are largely
saved. Occasionally the shrinking is too aggressive so some variables are wrongly removed.
Then recovering from mistakes causes longer iterations.

Note that our shrinking implementation is by removing bounded elements not in the
set (25). Thus, the smaller the interval [M(αk), m(αk)] is, the more variables are shrunk.
In Figure 10, we show the relationship between the maximal violation m(αk)−M(αk) and
iterations. Clearly using (11) reduces the maximal violation more quickly than using (33).
A possible explanation is that (11) has less restriction than (33): In early iterations, if a set
B = {i, j} is associated with a large violation −yi∇f(αk)i +yj∇f(αk)j , then dB defined in
(15) has large components. Hence though it minimizes the quadratic functions (9), αk

B +dB

is easily infeasible. To solve (33), one thus changes αk
B + dB back to the feasible region

as (35) does. As a reduced step is taken, the corresponding Sub(B) may not be smaller
than those of using other sets. On the other hand, (11) does not require αk

B + dB to be
feasible, so a large step is taken. The resulting Sub(B) thus may be small enough so that
B is selected. Therefore, using (11) tend to select working sets with large violations and
hence may more quickly reduce the maximal violation.

Discussion here shows that (11) is better than (33). They lead to similar numbers of
iterations, but the cost per iteration is less by using (11). Moreover, (11) better incorporates
the shrinking technique.

6.3 Sub-problems Using First Order Information

Under first order approximation, we can also modify the sub-problem (8) to the following
form, which maintains the feasibility:

Sub(B) ≡ min
dB

∇f(αk)T
BdB

subject to yT
BdB = 0, (43)

0 ≤ αi + di ≤ C, i ∈ B.

1911

Fan, Chen, and Lin

 0

 5

 10

 15

 20

 25

 0 10000 20000 30000 40000 50000 60000 70000

(11)
(33)

(a) tree

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 200 400 600 800 1000 1200 1400 1600

(11)
(33)

(b) splice

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(11)
(33)

(c) diabetes

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000 25000 30000

(11)
(33)

(d) german.numer

Figure 10: Iterations (x-axis) and maximal violations (y-axis) of using (11) and (33).

Section 2 discusses that a maximal violating pair is an optimal solution of minB:|B|=2 Sub(B),
where Sub(B) is (8). If (43) is used instead, Simon (2004) has shown an O(l) procedure to
obtain a solution. Thus the time complexity is the same as that of using (8).

Note that Theorem 7 does not hold for these two selection methods. In the proof, we
use the small changes of αk

i in final iterations to show that certain αk
i never reaches bounds

0 and C. Then the sub-problem (2) to find αk+1 is indeed the best sub-problem obtained
in the procedure of working set selection. Now no matter (8) or (43) is used for selecting
the working set, we still use (2) to find αk+1. Therefore, we cannot link the small change
between αk and αk+1 to the optimal dB in the procedure of working set selection. Without
an interpretation like Theorem 7, the performance difference between using (8) and (43)
remains unclear and is a future research issue.

7. Discussion and Conclusions

In Section 2, the selection (10) of using second order information may involve checking
(

l
2

)

pairs of indices. This is not practically viable, so in WSS 2 we heuristically fix i ∈ arg m(αk)
and examine O(l) sets to find j. It is interesting to see how well this heuristic performs
and whether we can make further improvements. By running the same small classification
problems used in Section 6, Figure 11 presents the iteration ratio between using two selection
methods:

iter. by Alg. 2 and checking
(

l
2

)

pairs

iter. by Alg. 2 and WSS 2
.

1912

Working Set Selection for Training SVMs

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

im
age

sp
lic

e
tre

e
a1a

austr
alia

n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a

Ra
tio

Data sets

parameter selection
final training

(a) RBF kernel

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

im
age

sp
lic

e
tre

e
a1a

austr
alia

n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a

Ra
tio

Data sets

parameter selection
final training

(b) Linear kernel

Figure 11: Iteration ratios between using two selection methods: checking all
(

l
2

)

pairs and
WSS 2. Note that the ratio (y-axis) starts from 0.4 but not 0.

We do not use shrinking and consider both RBF and linear kernels. Figure 11 clearly shows
that a full check of all index pairs causes fewer iterations. However, as the average of ratios
for various problems is between 0.7 and 0.8, this selection reduces iterations of using WSS 2
by only 20% to 30%. Therefore, WSS 2, an O(l) procedure, successfully returns a working
set nearly as good as that by an O(l2) procedure. In other words, the O(l) sets heuristically
considered in WSS 2 are among the best in all

(

l
2

)

candidates.

Experiments in this paper fully demonstrate that using the proposed WSS 2 (and hence
WSS 3) leads to faster convergence (i.e., fewer iterations) than using WSS 1. This result
is reasonable as the selection based on second order information better approximates the
objective function in each iteration. However, this argument explains only the behavior
per iteration, but not the global performance of the decomposition method. A theoretical
study showing that the proposed selection leads to better convergence rates is a difficult
but interesting future issue.

In summary, we have proposed a new and effective working set selection WSS 3. The
SMO-type decomposition method using it asymptotically converges and satisfies other useful
theoretical properties. Experiments show that it is better than a commonly used selection
WSS 1, in both the training time and iterations.

WSS 3 has replaced WSS 1 in the software LIBSVM (after version 2.8).

1913

Fan, Chen, and Lin

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via the grant
NSC 93-2213-E-002-030.

Appendix A. WSS 1 Solves Problem (7): the Proof

For any given {i, j}, we can substitute d̂i ≡ yidi and d̂j ≡ yjdj to (8), so the objective
function becomes

(−yi∇f(αk)i + yj∇f(αk)j)d̂j . (44)

As di = dj = 0 is feasible for (8), the minimum of (44) is zero or a negative number. If

−yi∇f(αk)i > −yj∇f(αk)j , using the condition d̂i + d̂j = 0, the only possibility for (44) to

be negative is d̂j < 0 and d̂i > 0. From (3), (8b), and (8c), this corresponds to i ∈ Iup(α
k)

and j ∈ Ilow(αk). Moreover, the minimum occurs at d̂j = −1 and d̂i = 1. The situation of
−yi∇f(αk)i < −yj∇f(αk)j is similar.

Therefore, solving (7) is essentially the same as

min
{

min
(

yi∇f(αk)i − yj∇f(αk)j , 0
)

∣

∣ i ∈ Iup(α
k), j ∈ Ilow(αk)

}

= min
(

−m(αk) + M(αk), 0
)

.

Hence, if there are violating pairs, the maximal one solves (7).

Appendix B. Pseudo Code of Algorithm 2 and WSS 3

B.1 Main Program (Algorithm 2)

Inputs:

y: array of {+1, -1}: class of the i-th instance

Q: Q[i][j] = y[i]*y[j]*K[i][j]; K: kernel matrix

len: number of instances

// parameters

eps = 1e-3 // stopping tolerance

tau = 1e-12

// main routine

initialize alpha array A to all zero

initialize gradient array G to all -1

while (1) {

(i,j) = selectB()

if (j == -1)

break

// working set is (i,j)

a = Q[i][i]+Q[j][j]-2*y[i]*y[j]*Q[i][j]

if (a <= 0)

a = tau

1914

Working Set Selection for Training SVMs

b = -y[i]*G[i]+y[j]*G[j]

// update alpha

oldAi = A[i], oldAj = A[j]

A[i] += y[i]*b/a

A[j] -= y[j]*b/a

// project alpha back to the feasible region

sum = y[i]*oldAi+y[j]*oldAj

if A[i] > C

A[i] = C

if A[i] < 0

A[i] = 0

A[j] = y[j]*(sum-y[i]*A[i])

if A[j] > C

A[j] = C

if A[j] < 0

A[j] = 0

A[i] = y[i]*(sum-y[j]*A[j])

// update gradient

deltaAi = A[i] - oldAi, deltaAj = A[j] - oldAj

for t = 1 to len

G[t] += Q[t][i]*deltaAi+Q[t][j]*deltaAj

}

B.2 Working Set Selection Subroutine (WSS 3)

// return (i,j)

procedure selectB

// select i

i = -1

G_max = -infinity

G_min = infinity

for t = 1 to len {

if (y[t] == +1 and A[t] < C) or

(y[t] == -1 and A[t] > 0) {

if (-y[t]*G[t] >= G_max) {

i = t

G_max = -y[t]*G[t]

}

}

}

// select j

j = -1

obj_min = infinity

for t = 1 to len {

if (y[t] == +1 and A[t] > 0) or

(y[t] == -1 and A[t] < C) {

b = G_max + y[t]*G[t]

1915

Fan, Chen, and Lin

if (-y[t]*G[t] <= G_min)

G_min = -y[t]*G[t]

if (b > 0) {

a = Q[i][i]+Q[t][t]-2*y[i]*y[t]*Q[i][t]

if (a <= 0)

a = tau

if (-(b*b)/a <= obj_min) {

j = t

obj_min = -(b*b)/a

}

}

}

}

if (G_max-G_min < eps)

return (-1,-1)

return (i,j)

end procedure

References

R. R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang. Automatic recog-
nition of usgs land use/cover categories using statistical and neural networks classifiers.
In SPIE OE/Aerospace and Remote Sensing, Bellingham, WA, 1993. SPIE.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for opti-
mal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 144–152. ACM Press, 1992.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Pai-Hsuen Chen, Rong-En Fan, and Chih-Jen Lin. A study on SMO-type decomposition
methods for support vector machines. IEEE Transactions on Neural Networks, 17:893–
908, July 2006. URL http://www.csie.ntu.edu.tw/~cjlin/papers/generalSMO.pdf.

Corina Cortes and Vladimir Vapnik. Support-vector network. Machine Learning, 20:273–
297, 1995.

Tin Kam Ho and Eugene M. Kleinberg. Building projectable classifiers of arbitrary com-
plexity. In Proceedings of the 13th International Conference on Pattern Recognition, pages
880–885, Vienna, Austria, August 1996.

Don Hush and Clint Scovel. Polynomial-time decomposition algorithms
for support vector machines. Machine Learning, 51:51–71, 2003. URL
http://www.c3.lanl.gov/~dhush/machine_learning/svm_decomp.ps.

Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Schölkopf,
Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods
- Support Vector Learning, Cambridge, MA, 1998. MIT Press.

1916

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/papers/generalSMO.pdf
http://www.c3.lanl.gov/~dhush/machine_learning/svm_decomp.ps

Working Set Selection for Training SVMs

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to
Platt’s SMO algorithm for SVM classifier design. Neural Computation, 13:637–649, 2001.

D. Lai, N. Mani, and M. Palaniswami. Increasing the step of the Newtonian decomposition
method for support vector machines. Technical Report MECSE-29-2003, Dept. Electrical
and Computer Systems Engineering Monash University, Australia, 2003a.

D. Lai, N. Mani, and M. Palaniswami. A new method to select working sets for faster
training for support vector machines. Technical Report MESCE-30-2003, Dept. Electrical
and Computer Systems Engineering Monash University, Australia, 2003b.

Chih-Jen Lin. On the convergence of the decomposition method for support vector
machines. IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001a. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/conv.ps.gz.

Chih-Jen Lin. Asymptotic convergence of an SMO algorithm without any as-
sumptions. IEEE Transactions on Neural Networks, 13(1):248–250, 2002. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/q2conv.pdf.

Chih-Jen Lin. Linear convergence of a decomposition method for support vector machines.
Technical report, Department of Computer Science, National Taiwan University, 2001b.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/linearconv.pdf.

D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Sta-
tistical Classification. Prentice Hall, Englewood Cliffs, N.J., 1994. Data available at
http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repos-
itory of machine learning databases. Technical report, University of Cal-
ifornia, Irvine, Dept. of Information and Computer Sciences, 1998. URL
http://www.ics.uci.edu/~mlearn/MLRepository.html.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to
face detection. In Proceedings of CVPR’97, pages 130–136, New York, NY, 1997. IEEE.

Laura Palagi and Marco Sciandrone. On the convergence of a modified version of SVMlight

algorithm. Optimization Methods and Software, 20(2-3):315–332, 2005.

John C. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola,
editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998.
MIT Press.

Danil Prokhorov. IJCNN 2001 neural network competition. Slide presentation in IJCNN’01,
Ford Research Laboratory, 2001. http://www.geocities.com/ijcnn/nnc_ijcnn01.pdf
.

B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algo-
rithms. Neural Computation, 12:1207–1245, 2000.

1917

http://www.csie.ntu.edu.tw/~cjlin/papers/conv.ps.gz
http://www.csie.ntu.edu.tw/~cjlin/papers/q2conv.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/linearconv.pdf
http://www.ncc.up.pt/liacc/ML/statlog/datasets.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

Fan, Chen, and Lin

Hans Ulrich Simon. On the complexity of working set selection. In Proceedings of the 15th
International Conference on Algorithmic Learning Theory (ALT 2004), 2004.

1918

	Introduction
	Existing and New Working Set Selections
	Existing Selections
	A New Working Set Selection
	Non-Positive Definite Kernel Matrices

	Theoretical Properties
	Extensions
	Experiments
	Data and Experimental Settings
	Results

	Maintaining Feasibility in Sub-problems for Working Set Selections
	Solutions of (11) and (33) in final iterations
	Experiments
	Sub-problems Using First Order Information

	Discussion and Conclusions
	WSS 1 Solves Problem (7): the Proof
	Pseudo Code of Algorithm 2 and WSS 3
	Main Program (Algorithm 2)
	Working Set Selection Subroutine (WSS 3)

