
Revisiting One-Versus-One and One-Versus-Rest:
Insights into Imbalanced Multi-class Classification

Kuan-Ting Chen
Mohamed bin Zayed University of Artificial Intelligence

andyngewcz2d@gmail.com

Chih-Jen Lin
Mohamed bin Zayed University of Artificial Intelligence

chihjen.lin@mbzuai.ac.ae
National Taiwan University

cjlin@csie.ntu.edu.tw

Abstract—One-versus-one (OVO) and one-versus-rest (OVR)
are two widely adopted methods to decompose multi-class prob-
lems into several binary classification problems. It is well known
that, in the case of kernel SVM, the two methods yield similar
test accuracy. Thus, people generally assume that they differ
mainly in training time and model size. However, our research
reveals that if one considers an evaluation metric taking class
imbalance into account, these two methods may give notable
performance differences. To explore this phenomenon, we first
conduct a detailed analysis of kernel SVM and then extend our
study to neural networks. Additionally, we propose novel loss
functions for neural networks that effectively integrate the OVO
and OVR perspectives. Our experiments clearly demonstrate the
robustness of OVO in handling imbalanced multi-class classifica-
tion, highlighting its advantages over OVR in these challenging
scenarios.

Index Terms—multi-class classification, imbalance dataset,
one-versus-rest, one-versus-one

I. INTRODUCTION

Multi-class classification is essential for solving real-world
problems, such as disease diagnosis in healthcare and fault
detection in industrial systems. A common approach is to
decompose the multi-class task into several binary classifi-
cation problems [1]–[4], which can be effectively addressed
using binary classifiers like Support Vector Machine (SVM)
[5], Logistic Regression [6], and Naive Bayes, etc. Among
the decomposition methods for multi-class classification, one-
versus-rest (OVR) [7] and one-versus-one (OVO) [8] are two
widely used approaches. The OVR method trains a separate
classifier for each class to distinguish it from all other classes.
In contrast, the OVO method trains a classifier for each pair of
classes, focusing on separating the two selected classes. After
training the binary classifiers, their outputs are aggregated to
produce multi-class predictions.

The differences between OVR and OVO have been widely
studied, especially in terms of their performance and compu-
tational characteristics. In the context of kernel SVM, [9] con-
ducted extensive experiments comparing these two methods.
Their findings showed that OVR and OVO perform similarly in
terms of accuracy.1 Consistent observations were also reported
in [10]. As a result, this view has gained wide acceptance
and recognition in the community, making [9] a highly cited
conclusion. Consequently, it is generally assumed that the

1In linear SVM, [9] has shown that OVO can achieve higher accuracy.

main differences between the two methods lie in computational
aspects, such as model size and training time [9].

However, our findings challenge this prevailing paradigm.
We demonstrate that when evaluation metrics designed to
account for class imbalance, such as Macro-F1 score [11],
Balance Accuracy (BA) [12], and G-mean [13], are applied,
OVR and OVO exhibit notable performance differences. To
comprehensively investigate these differences between OVR
and OVO, we further extend our study to neural networks, a
popular choice in machine learning.

In neural networks, cross-entropy is widely used as the
standard loss function for multi-class classification. From
a different standpoint, we propose novel loss functions for
neural networks that effectively integrate the concepts of OVR
and OVO. Through theoretical analysis and experiments, we
demonstrate that the OVR loss closely aligns with cross-
entropy, while the OVO loss outperforms the OVR loss under
imbalance, revealing aspects that were previously overlooked.

In summary, our contributions are as follows:
• Our kernel SVM experiments challenge the belief that

OVR and OVO mainly differ in model size and training
time, and we observe similar findings in neural networks.

• We propose novel loss functions that incorporate the
concepts of OVR and OVO for our study on neural
networks.

This paper is organized as follows. Section II introduces
the OVR and OVO methods and their applications to kernel
SVMs. We also propose new loss functions that adapt these
concepts for use in neural networks. Section III describes the
experimental setup, covering datasets, data split, hyperparam-
eter search, and evaluation methods. Section IV presents the
experimental results along with a detailed analysis. Finally,
Section V provides the conclusions.

II. MULTI-CLASS DECOMPOSITION METHODS

In this section, we introduce two common decomposition
methods, OVR and OVO, followed by their applications
to kernel SVMs and neural networks. Consider a multi-
class classification problem with k classes, where the dataset
{(xn, yn)}Nn=1 consists of N instances. Each instance includes
a feature vector xn ∈ Rd with d features, and a class label
yn ∈ {1, 2, . . . , k} associated with xn.

Fig. 1: Example of decision boundaries in a three-class prob-
lem using OVR and OVO. The leftmost column shows multi-
class results, and the remaining columns display individual
binary classifiers.

A. One-Versus-Rest and One-Versus-One

For each class i, the OVR method trains a binary classifier
fi using all instances, where instances in class i are posi-
tives and the rest are negatives. Therefore, OVR produces k
binary classifiers for k classes. When making predictions, a
straightforward approach is to select the class with the largest
decision value because this decision value reflects the strongest
confidence among all classes. For an input instance xn, the
predicted class is:

class of xn ≡ arg max
i=1,...,k

fi(xn), (1)

where fi(xn) is the output of the binary classifier for class i.
In the OVO method, we train each classifier fi,j using only

instances from classes i and j (1 ≤ i < j ≤ k) to distinguish
between these two classes, and thus obtain k(k− 1)/2 binary
classifiers for all class pairs. Unlike the OVR method, which
assigns a single decision value to each class, OVO relies on
pairwise comparisons and cannot directly select the largest
decision value for prediction. Instead, majority voting [14],
as implemented in LIBSVM [15], is commonly used. At
inference time, if fi,j(xn) > 0, a vote is assigned to class
i; otherwise, class j receives the vote. The final prediction is
the class with the highest vote count:

class of xn ≡ arg max
i=1,...,k

votesi(xn), (2)

where votesi(xn) is the total votes received by class i.
Fig. 1 illustrates the overall decision boundaries of OVR

and OVO in a three-class problem, along with the decision
boundaries for every binary problem. In this OVR setting,
when class 1 is the target, classes 2 and 3 are merged
into a single “rest” class. This merging process causes class
imbalance and may lead to misclassifications between class 1
and the rest. In contrast, OVO trains on class pairs, and we
suspect this design may offer more balanced data for better
separation. Therefore, we study OVR and OVO in more detail.

B. Kernel SVM for Multi-class Classification

For a direct comparison with [9], we employ kernel SVM
to construct binary classifiers for OVR and OVO methods.

In OVR, the binary classifier fi assigns each instance xn a
label yi(xn) = 1 if yn = i, and yi(xn) = −1 otherwise.
The output of fi is defined as fi(xn) = wTϕ(xn) + b,
where w and b are the weight vector and bias term, and the
function ϕ maps xn to a higher-dimensional space through a
nonlinear transformation. The optimization problem for fi in
kernel SVM is:

min
w,b

1

2
wTw + C

N∑
n=1

ξ(w, b; yi(xn),xn), (3)

where ξ(w, b; yi(xn),xn) is the loss function for each in-
stance xn with label yi(xn), and C is the regularization
parameter.

In OVO, each binary classifier fi,j labels instances from
class i as yi,j(xn) = 1 and instances from class j as
yi,j(xn) = −1, with output fi,j(xn) = wTϕ(xn) + b. The
corresponding kernel SVM optimization problem for fi,j is:

min
w,b

1

2
wTw + C

∑
n∈Oi∪Oj

ξ(w, b; yi,j(xn),xn), (4)

where
Oi = {n | yn = i} (5)

represents instances from class i.
After training k models for OVR and k(k− 1)/2 for OVO,

their binary predictions are respectively combined using (1)
and (2) to obtain the final multi-class decision.

Although OVO trains more models than OVR, each model
uses data from only two classes. This makes each problem
smaller and faster to train. As a result, the total training time
can be less than that of OVR (see [9] for more details).

C. Neural Network for Multi-class Classification

To comprehensively compare OVR and OVO, we extend our
study to neural networks due to their widespread use in modern
machine learning. Typically, neural networks for multi-class
classification employ a shared-weight architecture, where the
last layer produces outputs f1, f2, . . . , fk for each class.

To apply OVR and OVO on neural networks, although
we could train k independent binary networks for OVR and
k(k − 1)/2 for OVO, as done in kernel SVM, this setup
differs from common neural network settings and requires
high computational resources. Instead, we maintain a single
network that produces f1, f2, . . . , fk in the last layer and
design novel loss functions that seamlessly integrate OVR and
OVO concepts. This design enables direct comparison between
OVR and OVO without the computational burden of training
multiple networks.

A commonly used loss function in neural networks for
multi-class classification is the cross-entropy (CE) loss:

− 1

N

N∑
n=1

k∑
i=1

1{yn=i} log pi(xn), (6)

where

pi(xn) =
efi(xn)∑k
j=1 e

fj(xn)
(7)

is the probability of class i versus the rest and the indicator
function 1{yn=i} = 1 if yn = i, and 0 otherwise. The idea
behind CE loss is to consider all classes at once through
maximum log-likelihood optimization, but OVR and OVO rely
on binary comparisons. To reflect the designs of OVR and
OVO, we propose novel loss functions that maximize the log-
likelihood of the predicted probabilities for instances in their
corresponding binary settings.

For OVR, the loss in the binary problem for each class i
aims to maximize pi(xn) for Oi and 1−pi(xn) for the others.
We define the total OVR loss across all k classes as the average
negative log-likelihood over all instances:

−
k∑

i=1

1

N

(∑
n∈Oi

log pi(xn) +
∑
n/∈Oi

log(1− pi(xn))

)
. (8)

Instead of comparing class i versus the rest from the class
perspective, we prove in Appendix A-A that (8) is equivalent
to the following form from the instance perspective:

− 1

N

N∑
n=1

k∑
i=1

(
1{yn=i} log pi(xn)+

(1− 1{yn=i}) log(1− pi(xn))

)
. (9)

Interestingly, this OVR setting is similar to CE because the
first term of (9) is identical to (6), with only a difference in
the second term, as each binary comparison introduces the
negative instances.

In OVO, for each class pair (i, j), we can simply consider
classes i and j in the denominator of (7) to define the
probability of class i versus class j as:

pi,j(xn) =
efi(xn)

efi(xn) + efj(xn)
. (10)

The loss of each binary problem aims to maximize pi,j(xn)
for Oi and pj,i(xn) for Oj . The total OVO loss is calculated
as the negative log-likelihood averaged across all class pairs:

−
∑

i,j:i ̸=j

1

|Oi|+ |Oj |

(∑
n∈Oi

log pi,j(xn) +
∑
n∈Oj

log pj,i(xn)

)
.

(11)

Similar to the relation between (8) and (9), we derive in
Appendix A-B that (11) is:

−2

N∑
n=1

k∑
i=1

1{yn=i}
∑
j:j ̸=i

1

|Oi|+ |Oj |
log pi,j(xn). (12)

From (9) and (12), we can see the OVR and OVO concepts
at the instance level. OVR focuses on whether each instance
belongs to class i, while OVO performs k−1 comparisons per
instance by comparing class i to each other class j. Moreover,
we note a critical difference. In (8) and (11), the loss is
averaged over N instances in OVR and |Oi|+ |Oj | instances
in OVO for each binary problem. When class i is a minority
class, the fixed OVR scaling term 1/N averages the loss over

N − |Oi| ≈ N negatives, so the contribution of the |Oi|
instances in class i is limited. In contrast, the OVO scaling
term

1

|Oi|+ |Oj |
(13)

adapts to the number of instances in each pair. Since the
OVO loss includes only |Oj | negatives, class i becomes
more prominent in its associated binary task. Therefore, (13)
naturally acts as a weight in (12) and helps account for class
imbalance.

Our proposed loss functions provide a useful way to com-
pare OVR and OVO. The reason is that we fix everything
such as the network architecture and the setting in (1) for
prediction, except the loss function, in order to reflect the
OVR and OVO concepts. We can ensure that any observed
performance differences are solely due to the choice of the
loss function.

III. EXPERIMENTAL SETUP

This section describes the evaluation metrics, datasets,
model settings, test set construction for evaluation, and hy-
perparameter search for assessing OVR and OVO under class
imbalance.

A. Evaluation Metrics

Although accuracy is a common metric, it reflects only
overall correctness and is often dominated by the majority
class. Therefore, accuracy may not be suitable in imbalanced
scenarios. Since [9] and [10] evaluate only accuracy, we
study additional metrics, including Macro-F1, G-mean, and
Balance Accuracy (BA). These metrics are computed based
on Precision and Recall, which are defined for each class i as:

Precisioni =
TPi

TPi + FPi
, (14)

Recalli =
TPi

TPi + FNi
, (15)

where TPi, FPi, FNi, and TNi denote the True Positives, False
Positives, False Negatives, and True Negatives for class i,
respectively.

The F1 score, defined as the harmonic mean of Precision
and Recall for each class, is given by:

F1i = 2 · Precisioni · Recalli
Precisioni + Recalli

, (16)

and the Macro-F1 score2 is defined as:

Macro-F1 =
1

k

k∑
i=1

F1i. (17)

Both G-mean and BA use Recall and are defined as:

G-mean =

(
k∏

i=1

Recalli

) 1
k

, (18)

2A related metric, Micro-F1, is the harmonic mean of Precision and Recall
calculated without class distinction. In multi-class settings, it is equivalent to
accuracy.

TABLE I: Data statistics. A higher IR (Imbalance Ratio)
indicates that a dataset is more imbalanced.

ID Dataset #Instances #Features #Classes IR

AUT Automobile 159 25 6 16.00
BAL Balance 625 4 3 5.88
CAR Car 1,728 6 4 18.62
CLE Cleveland 297 13 5 12.31
DER Dermatology 358 34 6 5.55
ECO Ecoli 336 7 8 71.50
FLA Flare 1,066 11 6 7.70
GLA Glass 214 9 6 8.44
HAY Hayes-roth 160 4 3 2.10
HCV Hcv 589 12 5 75.14
LYM Lymphography 148 18 4 40.50
NEW New-thyroid 215 5 3 5.00
SEG Segment 2,310 19 7 1.00
SHU Shuttle 2,175 9 5 853.00
THY Thyroid 720 21 3 39.18
VEH Vehicle 846 18 4 1.10
ZOO Zoo 101 16 7 10.25

Balance Accuracy =
1

k

k∑
i=1

Recalli. (19)

From (17)–(19), Macro-F1, G-mean, and BA evaluate each
class individually before producing their respective metrics.
This design may reduce biases from majority classes, so these
metrics are widely used for imbalanced datasets.

B. Datasets
We selected 17 datasets from the UCI Machine Learning

Repository [16], the LIBSVM repository,3 and the KEEL
Dataset repository [17]. We summarize the data statistics in
Table I. In addition to basic dataset properties, we report the
imbalance ratio (IR), defined as

IR =
maxi=1,...,k |Oi|
mini=1,...,k |Oi|

, (20)

which is the number of instances in the largest class divided
by the number in the smallest. Notably, most of the selected
datasets exhibit a high IR, indicating a significant class imbal-
ance.

Since KEEL provides stratified 5-fold splits, we directly
adopt them for all selected KEEL datasets. For the UCI dataset
HCV and the LIBSVM datasets SEG and VEH, where prede-
fined splits are unavailable, we applied the same stratification
method to generate 5-fold splits. This stratification setting
ensures that each fold maintains the original class distribution
by evenly distributing the instances of each class. We linearly
scaled each numerical feature to [0,1] and applied one-hot
encoding for categorical features.

C. Model Settings
For kernel SVM, we implemented OVR and OVO using

LIBSVM [15]. In the OVR setting, the model is optimized
with the Hinge loss defined as

ξ(w, b; yi(xn),xn) = max(0, 1− yi(xn)(w
Tϕ(xn) + b)),

(21)

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

where the nonlinear mapping function ϕ is defined by the RBF
kernel:

K(xi,xj) = ϕ(xi)
Tϕ(xj) = e−γ∥xi−xj∥2

, (22)

where γ is the kernel parameter. In the OVO setting, we
replace yi(xn) in (21) with yi,j(xn) to represent the binary
relationship between classes i and j.

For the neural network, we constructed a model with three
linear transformation layers. The first maps the input features
to 128 hidden units, and the second maps 128 hidden units
to 64. Both layers are sequentially followed by LayerNorm,
ReLU activation, and Dropout (rate = 0.1). The last layer out-
puts a k-dimensional vector, where each element f1, f2, . . . , fk
corresponds to the output of a class. In all experiments, we
use a batch size of 8 and optimize the loss with Adam [18]
optimizer. Early stopping is applied if validation performance
does not improve for 10 consecutive epochs, with training
limited to a maximum of 40 epochs.

D. Test Set Construction for Evaluation

For a reliable evaluation, we ensure that the test set remains
independent of hyperparameter search and model training,
and we report only the test results. For each dataset, we
sequentially hold out one fold from the 5-fold splits as the test
set, while the remaining four folds are used for hyperparameter
search and model training. The trained model then makes
predictions on the test set. After obtaining test predictions for
each fold, we combine all test predictions and evaluate the
performance using Accuracy, Macro-F1, G-Mean, and BA.

E. Hyperparameters Search

To search for the optimal hyperparameter using four folds,
we further divide these four folds into five subsets. In each
evaluation for a given hyperparameter setting, we train the
model on four subsets and evaluate the validation performance
on the remaining subset.

For kernel SVM, we perform this evaluation on each of
the five subsets used for hyperparameter search and compute
the overall validation performance. We search over the ker-
nel parameter γ = [24, 23, . . . , 2−10] and the regularization
parameter C = [212, 211, . . . , 2−2] to identify the best hyper-
parameter setting. The setting that achieves the best validation
performance is then selected to retrain the model.

For neural networks, we conduct hyperparameter search
over optimizer learning rates α = [10−5, 5× 10−5, 10−4, 5×
10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2]. Unlike kernel SVM,
we evaluate only a single subset instead of all five to reduce
the computational cost. The learning rate that achieves the best
validation performance is then selected to retrain the model.

Since optimizing a different criterion in hyperparameter
search can affect the test performance, we conduct two sep-
arate searches: one optimized for validation accuracy and the
other for validation Macro-F1. The former does not account
for class imbalance, while the latter does.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

TABLE II: Average test results of kernel SVM optimized with
the chosen criterion (Accuracy or Macro-F1) in hyperparame-
ter search. OVO columns report the growth over OVR, defined
as (OVO/OVR- 1) × 100%.

Hyperparameter
Search Criterion

Test Performance

Accuracy Macro-F1 G-mean BA
OVR OVO OVR OVO OVR OVO OVR OVO

Accuracy 87.36 +0.7% 76.13 +2.8% 60.74 +9.4% 74.87 +3.9%
Macro-F1 87.28 +0.4% 77.35 +3.0% 65.95 +10.5% 76.20 +3.6%

TABLE III: Confusion matrix of the SHU dataset using kernel
SVM, with hyperparameters optimized for Macro-F1. We also
report F1 scores for each class.

Target
Class 1 2 3 4 5 F1

Pr
ed

ic
t

OVO

1 1,704 0 1 0 2 99.85
2 0 2 0 0 0 100.0
3 1 0 4 0 0 72.73
4 0 0 1 338 0 99.85
5 1 0 0 0 121 98.78

OVR

1 1,701 0 1 0 4 99.71
2 0 0 0 0 0 0.0
3 0 0 2 0 0 50.0
4 5 1 2 338 0 98.83
5 0 1 1 0 119 97.54

Total 1,706 2 6 338 123

IV. EXPERIMENTS AND ANALYSIS

Building on the experimental setup described above, this
section presents a comprehensive comparison of OVR and
OVO across kernel SVM and neural networks, with a par-
ticular focus on how class imbalance affects their relative
performance.

A. Results of Kernel SVM

Table II summarizes the average test performance of OVR
and OVO, with results for each dataset provided in Appendix
B-A. As shown in Table II, both methods achieve comparable
accuracy. This observation aligns with the findings of [9], a
highly cited study that compares OVR and OVO. However,
our results further indicate that OVO consistently outperforms
OVR in Macro-F1, G-mean, and BA.

The SHU dataset, which has the highest imbalance ratio
among the studied datasets, vividly illustrates this disparity.
The confusion matrix in Table III reveals that for the minority
classes 2 and 3, OVO achieves higher F1-scores, while OVR
misclassifies most of them as other classes.

B. Results of Neural Networks

We report the test results using OVR and OVO losses in
Table IV. For the CE loss, the results are similar to OVR,
and we provide them in Appendix B-B. While both methods
achieve comparable accuracy, OVO continues to outperform
OVR in Macro-F1, G-mean, and BA, as observed in kernel
SVM. Note that we use the same network architecture, so the
only difference lies in the loss functions designed to reflect

TABLE IV: Average test results of neural networks optimized
with the chosen criterion (Accuracy or Macro-F1) in hyper-
parameter search. OVO columns report the growth over OVR,
defined as (OVO/OVR- 1) × 100%.

Hyperparameter
Search Criterion

Test Performance

Accuracy Macro-F1 G-mean BA
OVR OVO OVR OVO OVR OVO OVR OVO

Accuracy 85.16 -0.04% 71.74 +2.8% 53.16 +11.6% 72.13 +1.4%
Macro-F1 85.34 +0.0% 73.41 +1.7% 53.78 +13.4% 72.34 +2.6%

TABLE V: Confusion matrix of the SHU dataset using neural
networks, with hyperparameters optimized for Macro-F1. We
also report F1 scores for each class.

Target
Class 1 2 3 4 5 F1

Pr
ed

ic
t

OVO

1 1,688 0 1 5 1 99.26
2 0 0 0 0 0 0.0
3 0 0 2 0 0 50.0
4 18 0 2 333 0 96.38
5 0 2 1 0 122 98.39

OVR

1 1,682 0 2 17 1 98.71
2 0 0 0 0 0 0.0
3 0 0 1 0 0 28.57
4 23 0 2 321 0 93.86
5 1 2 1 0 122 97.99

Total 1,706 2 6 338 123

OVR and OVO. Therefore, our results clearly show that OVO
handles class imbalance more effectively.

Similar to kernel SVM in Table III, we also check the
confusion matrix in Table V. While neither OVR nor OVO
successfully classifies any instance in minority class 2, OVO
achieves a higher F1-score for the minority class 3. Moreover,
OVR tends to favor the majority class by misclassifying more
instances from other classes as the most frequent class 1.

C. Results Across Different Imbalance Levels

In Tables II and IV, we compared OVR and OVO based
on their average performance across all datasets and observed
notable differences in metrics that account for class imbal-
ance. Since the datasets have varying levels of imbalance, as
indicated by their imbalance ratio (IR), we further examine
whether the performance gap between OVR and OVO becomes
more pronounced as IR increases.

We follow [19] to categorize our collected datasets into three
groups based on their IRs. Specifically, datasets with IR < 3
are classified as low imbalance, those with 3 ≤ IR < 9 as
medium imbalance, and those with IR ≥ 9 as high imbalance.
Accordingly, we group the datasets as follows:

• low imbalance: HAY, SEG, VEH
• medium imbalance: BAL, DER, FLA, GLA, NEW
• high imbalance: AUT, CAR, CLE, ECO, HCV, LYM, SHU,
THY, ZOO

For kernel SVM, Table VI reports the test results for
each group, using hyperparameters optimized for Accuracy
and Macro-F1. Interestingly, accuracy happens to be similar

TABLE VI: Average test results of kernel SVM under different
imbalance groups. OVO columns report the growth over OVR,
defined as (OVO/OVR- 1) × 100%

(a) Results using hyperparameters optimized for Accuracy.

Imbalance
Group

Test Performance

Accuracy Macro-F1 G-mean BA
OVR OVO OVR OVO OVR OVO OVR OVO

Low 87.74 -0.13% 88.56 -0.12% 87.97 -0.15% 88.59 -0.16%
Medium 87.45 +0.54% 82.23 +2.02% 68.38 +15.87% 81.14 +3.11%

High 87.17 +1.17% 68.6 +4.66% 47.41 +10.19% 66.82 +6.23%

(b) Results using hyperparameters optimized for Macro-F1.

Imbalance
Group

Test Performance

Accuracy Macro-F1 G-mean BA
OVR OVO OVR OVO OVR OVO OVR OVO

Low 88.16 -0.91% 88.78 -0.68% 88.11 -0.66% 88.75 -0.65%
Medium 87.55 +0.57% 83.39 +1.89% 79.53 +3.43% 82.22 +2.85%

High 86.83 +0.81% 70.18 +5.29% 51.02 +23.03% 68.67 +5.96%

across different imbalance groups, but Macro-F1, G-Mean,
and BA decrease as imbalance increases. Moreover, for these
metrics, the performance gap between OVR and OVO in the
medium and high imbalance groups is much more pronounced
than in the low imbalance group. When hyperparameters are
optimized for Macro-F1, this gap widens even further in the
high imbalance group compared to the medium imbalance
group.

For neural networks, we provide the test results for each
group in Table VII under two different hyperparameter search
criteria. Similar to the trends in Table VI, Macro-F1, G-
Mean, and BA decline more sharply than accuracy as the
group becomes more imbalanced. Although OVR and OVO
perform similarly in the low and medium imbalance groups,
the performance gap between OVR and OVO is substantially
larger in the high imbalance group.

These findings across both kernel SVM and neural networks
further underscore the influence of imbalance severity on the
differences between OVR and OVO.

V. CONCLUSIONS

This study re-examines OVR and OVO, which have tradi-
tionally been considered comparable in accuracy within kernel
SVM, with differences primarily attributed to model size and
training time. However, our findings in both kernel SVM and
neural networks reveal that when metrics accounting for class
imbalance are considered, OVO surpasses OVR in preserving
the performance of minority classes. This advantage demon-
strates OVO’s greater robustness to class imbalance. For neural
networks, by novelly devising the loss functions to reflect OVR
and OVO, we facilitate rigorous comparisons while keeping
other components fixed. These contributions offer insights for
selecting OVR and OVO decomposition methods in multi-class
classification problems.

TABLE VII: Average test results of neural networks under
different imbalance groups. OVO columns report the growth
over OVR, defined as (OVO/OVR- 1) × 100%

(a) Results using hyperparameters optimized for Accuracy.

Imbalance
Group

Test Performance

Accuracy Macro-F1 G-mean BA
OVR OVO OVR OVO OVR OVO OVR OVO

Low 84.53 +0.14% 85.13 +0.79% 84.86 +0.13% 85.64 -0.07%
Medium 86.11 +0.00% 80.15 +0.62% 66.69 -2.10% 80.42 +0.29%

High 84.85 -0.13% 62.6 +5.19% 35.08 +35.26% 63.02 +2.82%

(b) Results using hyperparameters optimized for Macro-F1.

Imbalance
Group

Test Performance

Accuracy Macro-F1 G-mean BA
OVR OVO OVR OVO OVR OVO OVR OVO

Low 84.25 +0.89% 84.98 +0.91% 84.6 +0.50% 85.14 +0.61%
Medium 85.46 -1.16% 78.95 +0.46% 63.77 +3.37% 78.3 +0.83%

High 85.63 +0.35% 66.48 +2.95% 37.96 +32.38% 64.76 +4.59%

VI. ACKNOWLEDGMENTS

This work was supported in part by National Science and
Technology Council of Taiwan grant NSTC-113-2222-E-002-
005-MY3, and in part by the Featured Area Research Center
Program within the framework of the Higher Education Sprout
Project by the Ministry of Education (114L900901). The
authors thank the reviewers for their insightful and constructive
comments.

APPENDIX A
PROOFS

A. Neural Networks Loss Function for OVR

For OVR, we recall that pi(xn) is defined in (7). The loss in
the binary problem for each class i aims to maximize pi(xn)
for Oi and 1− pi(xn) for the others as:

ξi = − 1

|Oi|+ (N − |Oi|)
·

(∑
n∈Oi

log pi(xn)

+
∑
n/∈Oi

log(1− pi(xn))

)
, (23)

where

|Oi|+ (N − |Oi|) = N (24)

represents the total number of instances, including those in
Oi (positive class) and those outside Oi (negative class).
This normalization ensures that the loss is averaged over all
instances.

The total OVR loss across all k classes is:

LOVR =

k∑
i=1

ξi. (25)

By pluging (23) into (25), we have:

LOVR

= −
k∑

i=1

1

N

(∑
n∈Oi

log pi(xn) +
∑
n/∈Oi

log(1− pi(xn))

)

= −
k∑

i=1

1

N

(
N∑

n=1

1{n∈Oi} log pi(xn)

+

N∑
n=1

(1− 1{n∈Oi}) log(1− pi(xn))

)

= − 1

N

k∑
i=1

(
N∑

n=1

1{n∈Oi} log pi(xn)

+

N∑
n=1

(1− 1{n∈Oi}) log(1− pi(xn))

)

= − 1

N

N∑
n=1

(
k∑

i=1

1{n∈Oi} log pi(xn)

+

k∑
i=1

(1− 1{n∈Oi}) log(1− pi(xn))

)

= − 1

N

N∑
n=1

(
k∑

i=1

1{yn=i} log pi(xn)

+

k∑
i=1

(1− 1{yn=i}) log(1− pi(xn))

)

= − 1

N

N∑
n=1

k∑
i=1

(
1{yn=i} log pi(xn)

+ (1− 1{yn=i}) log(1− pi(xn))

)
. (26)

When comparing (6) with (26), we can notice that the first
term of (26) is identical to (6), with only a difference in
the second term, as each binary comparison introduces the
negative instances.

B. Neural Networks Loss Function for OVO

For OVO, we recall that pi,j(xn) is defined in (10). For
each class pair (i, j), we aim to maximize pi,j(xn) for Oi

and pj,i(xn) for Oj as:

ξi,j = − 1

|Oi|+ |Oj |
·

(∑
n∈Oi

log pi,j(xn)+
∑
n∈Oj

log pj,i(xn)

)
.

(27)
The total OVO loss over all class pairs is:

LOVO =
∑

i,j:i ̸=j

ξi,j . (28)

By pluging (27) into (28), we have:

LOVO = −
∑

i,j:i ̸=j

1

|Oi|+ |Oj |

(∑
n∈Oi

log pi,j(xn)

+
∑
n∈Oj

log pj,i(xn)

)

= −2
∑

i,j:i̸=j

1

|Oi|+ |Oj |
∑
n∈Oi

log pi,j(xn)

= −2

k∑
i=1

k∑
j=1

1{i ̸=j}
1

|Oi|+ |Oj |
∑
n∈Oi

log pi,j(xn)

= −2

k∑
i=1

k∑
j=1

∑
n∈Oi

1{i̸=j}
1

|Oi|+ |Oj |
log pi,j(xn)

= −2

k∑
i=1

∑
n∈Oi

k∑
j=1

1{i̸=j}
1

|Oi|+ |Oj |
log pi,j(xn)

= −2

k∑
i=1

∑
n∈Oi

∑
j:j ̸=i

1

|Oi|+ |Oj |
log pi,j(xn)

= −2

k∑
i=1

N∑
n=1

1{n∈Oi}
∑
j:j ̸=i

1

|Oi|+ |Oj |
log pi,j(xn)

= −2

N∑
n=1

k∑
i=1

1{n∈Oi}
∑
j:j ̸=i

1

|Oi|+ |Oj |
log pi,j(xn)

= −2

N∑
n=1

k∑
i=1

1{yn=i}
∑
j:j ̸=i

1

|Oi|+ |Oj |
log pi,j(xn).

APPENDIX B
FULL EXPERIMENTAL RESULTS

A. Results of Kernel SVM

For kernel SVM, we present the test results for each dataset
in Tables VIII and IX, where the former optimizes Accuracy
and the latter optimizes Macro-F1 in hyperparameter search.

B. Results of Neural Networks

For neural networks, we present the test results of OVR
and OVO losses in Tables X and XI under two different
hyperparameter search criteria. Additionally, we report the
test results of CE and OVR losses in Tables XII and XIII.
While the formulations of CE and OVR shown in (6) and (9)
are similar, their performance depends on the hyperparameter
optimization criterion. When hyperparameters are optimized
for Accuracy, CE and OVR perform comparably. However,
when optimized for Macro-F1, OVR outperforms CE in terms
of Macro-F1, G-Mean, and BA. This performance gap may
reflect the difference between (6) and (9). Since each binary
comparison in OVR considers both positive and negative
instances, positive instances from a given class can serve as
negative instances for all other classes. As a result, when OVR
is used, the minority class still contributes to model updates
via negative instances. In contrast, CE considers only positive
instances during training. This may result in worse predictive

TABLE VIII: Test results of kernel SVM optimized with
Accuracy in hyperparameter search.

Accuracy Macro-F1 G-mean BA
ID OVR OVO OVR OVO OVR OVO OVR OVO

AUT 74.21 79.87 70.29 70.23 70.20 65.65 70.52 68.91
BAL 98.08 99.84 94.77 99.60 91.77 99.32 92.40 99.32
CAR 98.84 99.94 96.70 99.96 97.12 99.98 97.14 99.98
CLE 58.92 59.60 27.69 28.39 0.00 0.00 29.80 30.02
DER 97.77 97.21 97.57 96.93 97.25 96.58 97.36 96.74
ECO 84.52 83.33 63.15 62.20 0.00 0.00 62.31 61.61
FLA 75.52 74.30 59.39 58.49 0.00 38.32 60.35 58.91
GLA 68.69 71.03 63.32 68.21 57.70 65.77 60.32 67.15
HAY 80.00 80.62 82.41 82.98 81.35 81.99 82.41 82.92
HCV 93.89 91.68 59.11 60.51 43.56 54.11 57.53 59.67
LYM 83.78 87.16 58.85 65.15 0.00 0.00 55.11 62.70
NEW 97.21 97.21 96.09 96.23 95.19 96.14 95.27 96.16
SEG 96.93 97.06 96.93 97.06 96.87 97.00 96.93 97.06
SHU 99.63 99.72 86.17 94.24 75.29 91.89 79.35 92.98
THY 94.72 95.42 67.07 73.11 56.34 66.96 61.76 70.09
VEH 86.29 85.22 86.35 85.30 85.68 84.53 86.43 85.37
ZOO 96.04 97.03 88.41 92.37 84.20 91.57 87.86 92.86

Avg. 87.36 88.01 76.13 78.29 60.74 66.46 74.87 77.79

TABLE IX: Test results of kernel SVM optimized with Macro-
F1 in hyperparameter search.

Accuracy Macro-F1 G-mean BA
ID OVR OVO OVR OVO OVR OVO OVR OVO

AUT 74.84 80.50 76.93 79.07 74.36 78.54 75.64 79.67
BAL 98.40 99.84 95.72 99.60 93.35 99.32 93.76 99.32
CAR 98.67 99.71 96.46 99.33 96.06 99.81 96.12 99.81
CLE 56.23 54.55 29.35 28.14 19.13 17.38 29.85 28.42
DER 97.77 97.21 97.57 96.93 97.25 96.58 97.36 96.74
ECO 83.93 83.63 62.78 61.58 0.00 0.00 61.83 62.17
FLA 73.83 74.02 61.34 62.35 49.34 51.39 61.09 61.65
GLA 70.56 71.96 66.56 69.76 62.50 67.87 63.64 68.94
HAY 81.25 80.62 83.07 82.98 81.79 81.99 82.90 82.92
HCV 92.70 91.68 57.39 58.94 46.19 49.91 55.38 58.04
LYM 84.46 86.49 79.63 81.19 77.14 72.54 79.60 74.38
NEW 97.21 97.21 95.74 96.23 95.19 96.14 95.27 96.16
SEG 96.93 97.06 96.93 97.06 96.87 97.00 96.93 97.06
SHU 99.31 99.72 69.22 94.24 0.00 91.89 65.96 92.98
THY 95.28 95.42 71.43 73.11 62.07 66.96 65.79 70.09
VEH 86.29 84.40 86.35 84.50 85.68 83.60 86.43 84.54
ZOO 96.04 96.04 88.41 89.43 84.20 87.89 87.86 89.29

Avg. 87.28 87.65 77.35 79.67 65.95 72.87 76.20 78.95

performance compared to OVR for the minority class under
class imbalance.

REFERENCES

[1] T.-K. Huang, R. C. Weng, and C.-J. Lin, “Generalized Bradley-Terry
models and multi-class probability estimates,” Journal of Machine
Learning Research, vol. 7, pp. 85–115, 2006. [Online]. Available:
http://www.csie.ntu.edu.tw/∼cjlin/papers/generalBT.pdf

[2] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems
via error-correcting output codes,” Journal of Artificial Intelligence
Research, vol. 2, pp. 263–286, 1995.

[3] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to
binary: a unifying approach for margin classifiers,” Journal of Machine
Learning Research, vol. 1, pp. 113–141, 2001.

[4] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin DAGs for
multiclass classification,” in Advances in Neural Information Processing
Systems, vol. 12. MIT Press, 2000, pp. 547–553.

[5] C. Cortes and V. Vapnik, “Support-vector network,” Machine Learning,
vol. 20, pp. 273–297, 1995.

TABLE X: Test results of neural networks optimized with
Accuracy in hyperparameter search.

Accuracy Macro-F1 G-mean BA
ID OVR OVO OVR OVO OVR OVO OVR OVO

AUT 68.55 64.78 56.85 61.23 0.00 60.44 56.65 62.87
BAL 95.20 95.84 89.16 90.22 89.84 89.58 90.32 90.22
CAR 99.48 99.54 98.61 99.14 98.60 99.01 98.61 99.02
CLE 58.25 58.59 31.19 36.33 18.78 27.73 32.90 37.41
DER 97.49 97.49 97.18 97.30 97.06 97.29 97.15 97.35
ECO 77.98 80.36 54.38 57.41 0.00 0.00 54.40 57.82
FLA 75.23 74.58 62.40 60.49 50.64 45.35 62.05 60.30
GLA 65.42 65.42 55.92 59.24 0.00 0.00 56.60 61.00
HAY 75.62 75.62 77.54 79.14 77.96 77.69 78.75 78.18
HCV 92.87 89.30 56.50 49.20 49.93 36.36 57.98 46.83
LYM 78.38 83.78 47.82 79.78 0.00 71.43 52.44 73.04
NEW 97.21 97.21 96.11 96.01 95.90 94.21 96.00 94.38
SEG 95.58 96.54 95.61 96.51 95.47 96.43 95.58 96.54
SHU 97.79 98.48 58.15 64.47 0.00 0.00 58.53 62.59
THY 94.31 91.81 70.05 55.62 62.01 44.20 65.65 54.32
VEH 82.39 81.80 82.25 81.76 81.14 80.80 82.59 82.01
ZOO 96.04 96.04 89.82 89.43 86.42 87.89 90.00 89.29

Avg. 85.16 85.13 71.74 73.72 53.16 59.32 72.13 73.13

TABLE XI: Test results neural networks optimized with
Macro-F1 in hyperparameter search.

Accuracy Macro-F1 G-mean BA
ID OVR OVO OVR OVO OVR OVO OVR OVO

AUT 71.70 69.81 59.39 63.77 0.00 60.64 59.63 62.83
BAL 94.40 95.52 85.61 88.65 80.74 86.43 83.53 87.73
CAR 98.50 99.19 95.93 98.74 93.75 99.53 93.89 99.53
CLE 55.89 57.58 29.67 31.65 0.00 21.78 30.55 32.59
DER 96.93 95.25 96.65 94.62 96.47 94.18 96.60 94.58
ECO 80.95 80.65 59.53 57.14 0.00 0.00 59.30 58.04
FLA 73.36 73.17 60.63 62.42 48.76 55.00 60.15 62.44
GLA 66.82 61.68 57.57 55.50 0.00 0.00 58.26 55.83
HAY 76.25 76.88 78.14 79.19 78.26 78.32 78.68 78.67
HCV 93.72 95.25 59.25 70.80 44.59 64.40 59.15 68.13
LYM 83.11 83.78 79.55 76.61 71.53 76.76 73.04 79.19
NEW 95.81 96.74 94.28 95.35 92.86 94.00 92.98 94.16
SEG 96.36 96.67 96.36 96.65 96.27 96.57 96.36 96.67
SHU 97.75 98.62 63.83 68.81 0.00 0.00 61.88 66.00
THY 95.00 93.47 69.80 61.08 59.81 46.23 63.98 56.84
VEH 80.14 81.44 80.44 81.40 79.27 80.17 80.38 81.64
ZOO 94.06 95.05 81.35 87.32 71.97 82.94 81.43 86.43

Avg. 85.34 85.34 73.41 74.69 53.78 61.00 72.34 74.19

[6] D. R. Cox, “The regression analysis of binary sequences,” Journal of
the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2,
pp. 215–232, 1958.

[7] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. Jackel,
Y. LeCun, U. A. Müller, E. Säckinger, P. Simard, and V. Vapnik,
“Comparison of classifier methods: a case study in handwriting digit
recognition,” in International Conference on Pattern Recognition, 1994,
pp. 77–87.

[8] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited:
a stepwise procedure for building and training a neural network,” in Neu-
rocomputing: Algorithms, Architectures and Applications, J. Fogelman,
Ed. Springer-Verlag, 1990.

[9] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multi-class
support vector machines,” IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[10] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,”
Journal of Machine Learning Research, vol. 5, pp. 101–141, 2004.

[11] J. M. Tague, “Information retrieval experiment,” in The pragmatics
of information retrieval experimentation, K. S. Jones, Ed. London:
Butterworths, 1981, ch. 5, pp. 59–102.

http://www.csie.ntu.edu.tw/~cjlin/papers/generalBT.pdf

TABLE XII: Test results using OVR and CE losses in neural
networks optimized with Accuracy in hyperparameter search.

Accuracy Macro-F1 G-mean BA
ID CE OVR CE OVR CE OVR CE OVR

AUT 69.81 68.55 57.27 56.85 0.00 0.00 55.88 56.65
BAL 95.84 95.20 89.53 89.16 85.85 89.84 87.39 90.32
CAR 99.19 99.48 98.18 98.61 97.56 98.60 97.60 98.61
CLE 55.89 58.25 28.08 31.19 0.00 18.78 29.16 32.90
DER 96.09 97.49 95.31 97.18 95.17 97.06 95.27 97.15
ECO 82.14 77.98 58.42 54.38 0.00 0.00 59.76 54.40
FLA 74.48 75.23 61.35 62.40 45.62 50.64 60.85 62.05
GLA 65.89 65.42 57.01 55.92 0.00 0.00 56.31 56.60
HAY 82.50 75.62 84.70 77.54 84.11 77.96 84.44 78.75
HCV 94.23 92.87 63.03 56.50 54.76 49.93 60.91 57.98
LYM 83.78 78.38 58.99 47.82 0.00 0.00 61.05 52.44
NEW 94.42 97.21 92.11 96.11 89.77 95.90 89.97 96.00
SEG 96.49 95.58 96.48 95.61 96.40 95.47 96.49 95.58
SHU 98.39 97.79 64.38 58.15 0.00 0.00 62.62 58.53
THY 93.75 94.31 64.91 70.05 55.58 62.01 63.31 65.65
VEH 80.14 82.39 79.86 82.25 78.44 81.14 80.36 82.59
ZOO 96.04 96.04 89.82 89.82 86.42 86.42 90.00 90.00

Avg. 85.83 85.16 72.91 71.74 51.16 53.16 72.43 72.13

TABLE XIII: Test results using OVR and CE losses in neural
networks optimized with Macro-F1 in hyperparameter search.

Accuracy Macro-F1 G-mean BA
ID CE OVR CE OVR CE OVR CE OVR

AUT 72.33 71.70 59.43 59.39 0.00 0.00 59.51 59.63
BAL 96.16 94.40 91.57 85.61 93.11 80.74 93.27 83.53
CAR 98.96 98.50 97.56 95.93 97.97 93.75 97.99 93.89
CLE 57.24 55.89 28.21 29.67 0.00 0.00 31.56 30.55
DER 97.49 96.93 97.28 96.65 97.21 96.47 97.29 96.60
ECO 80.36 80.95 58.67 59.53 0.00 0.00 59.13 59.30
FLA 73.17 73.36 60.70 60.63 47.14 48.76 60.50 60.15
GLA 64.95 66.82 55.43 57.57 0.00 0.00 55.85 58.26
HAY 78.12 76.25 79.70 78.14 79.91 78.26 80.23 78.68
HCV 92.70 93.72 56.03 59.25 42.72 44.59 57.10 59.15
LYM 81.08 83.11 55.21 79.55 0.00 71.53 53.88 73.04
NEW 93.95 95.81 91.45 94.28 88.11 92.86 88.44 92.98
SEG 96.97 96.36 96.99 96.36 96.92 96.27 96.97 96.36
SHU 98.76 97.75 58.89 63.83 0.00 0.00 59.33 61.88
THY 94.44 95.00 65.44 69.80 52.34 59.81 58.47 63.98
VEH 82.98 80.14 82.79 80.44 81.63 79.27 83.17 80.38
ZOO 95.05 94.06 87.04 81.35 82.94 71.97 86.43 81.43

Avg. 85.57 85.34 71.91 73.41 50.59 53.78 71.71 72.34

[12] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The
balanced accuracy and its posterior distribution,” in Proceedings of the
20th International Conference on Pattern Recognition, 2010, pp. 3121–
3124.

[13] E. R. Fernandes and A. C. de Carvalho, “Evolutionary inversion of class
distribution in overlapping areas for multi-class imbalanced learning,”
Information Sciences, vol. 494, pp. 141–154, 2019.

[14] J. H. Friedman, “Another approach to polychotomous classification,”
Department of Statistics, Stanford University, Tech. Rep., 1996.
[Online]. Available: http://www-stat.stanford.edu/∼jhf/ftp/poly.pdf

[15] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 27:1–27:27, 2011, software available at http://www.
csie.ntu.edu.tw/∼cjlin/libsvm.

[16] A. Asuncion and D. J. Newman, “UCI machine learning
repository,” 2007. [Online]. Available: http://www.ics.uci.edu/∼mlearn/
MLRepository.html

[17] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. Garcı́a,
“KEEL data-mining software tool: Data set repository, integration of
algorithms and experimental analysis framework,” Journal of Multiple-

Valued Logic and Soft Computing, vol. 17, no. 2-3, pp. 255–287, 2011.
[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proceedings of International Conference on Learning Representations
(ICLR), 2015.

[19] A. Fernández, S. Garcı́a, M. J. del Jesus, and F. Herrera, “A study of
the behaviour of linguistic fuzzy rule based classification systems in the
framework of imbalanced data-sets,” Fuzzy Sets and Systems, vol. 159,
no. 18, pp. 2378–2398, 2008.

http://www-stat.stanford.edu/~jhf/ftp/poly.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

	Introduction
	Multi-class Decomposition Methods
	One-Versus-Rest and One-Versus-One
	Kernel SVM for Multi-class Classification
	Neural Network for Multi-class Classification

	Experimental Setup
	Evaluation Metrics
	Datasets
	Model Settings
	Test Set Construction for Evaluation
	Hyperparameters Search

	Experiments and Analysis
	Results of Kernel SVM
	Results of Neural Networks
	Results Across Different Imbalance Levels

	Conclusions
	Acknowledgments
	Appendix A: Proofs
	Neural Networks Loss Function for OVR
	Neural Networks Loss Function for OVO

	Appendix B: Full Experimental Results
	Results of Kernel SVM
	Results of Neural Networks

	References

