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Abstract

This paper describes a Bayesian approximation method to obtain online ranking algorithms
for games with multiple teams and multiple players. Recently for Internet games large
online ranking systems are much needed. We consider game models in which a k-team
game is treated as several two-team games. By approximating the expectation of teams’
(or players’) performances, we derive simple analytic update rules. These update rules,
without numerical integrations, are very easy to interpret and implement. Experiments
on game data show that the accuracy of our approach is competitive with state of the art
systems such as TrueSkill, but the running time as well as the code is much shorter.

Keywords: Bayesian inference, rating system, Bradley-Terry model, Thurstone-Mosteller
model, Plackett-Luce model

1. Introduction

Many have proposed online updating algorithms for paired comparison experiments. These
online algorithms are especially useful when the number of teams to be ranked and the
number of games are very large. For the ranking of many sports, possibly the most promi-
nent ranking system in use today is Elo (1986). The Elo ranking system has been used
successfully by leagues organized around two-player games, such as world football league,
the US Chess Federation (USCF) or the World Chess Federation (FIDE), and a variety of
others. Glickman (1999) proposed the Glicko updating system, which improves over Elo by
incorporating the variability in parameter estimates. To the best of our knowledge, Glicko
is the first Bayesian ranking system. To begin, prior to a rating period, a player’s skill (θ) is
assumed to follow a Gaussian distribution which can be characterized by two numbers: the
average skill of the player (µ) and the degree of uncertainty in the player’s skill (σ). Then,
Glicko models the game outcomes by the Bradley-Terry model (Bradley and Terry, 1952)
and updates players’ skills after a rating period. Glickman (1999) also reported that the
Glicko system performs best when the number of games per player is around 5-10 in a rating
period. Though the Elo and Glicko ranking systems have been successful, they are designed
for two-player games. In video games a game often involves more than two players or teams.
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To address this problem, recently Microsoft Research developed TrueSkill (Herbrich et al.,
2007), a ranking system for Xbox Live. TrueSkill is also a Bayesian ranking system using
a Gaussian belief over a player’s skill, but it differs from Glicko in several ways. First, it
is designed for multi-team/multi-player games, and it updates skills after each game rather
than a rating period. Secondly, Glicko assumes that the performance difference follows the
logistic distribution (the model is termed the Bradley-Terry model), while TrueSkill uses
the Gaussian distribution (termed the Thurstone-Mosteller model). Moreover, TrueSkill
models the draws and offers a way to measure the quality of a game between any set of
teams. The way TrueSkill estimates skills is by constructing a graphical model and using
approximate message passing. In the easiest case, a two-team game, the TrueSkill update
rules are fairly simple. However, for games with multiple teams and multiple players, the
update rules are not possible to write down as they require an iterative procedure.

The present paper concerns the ranking of players from outcomes of multiple players
or games. We consider a k-team game as a single match and discuss the possibility of
obtaining efficient update algorithms. We introduce a Bayesian approximation method to
derive simple analytic rules for updating team strength in multi-team games. These update
rules avoid a numerical integration and are easy to interpret and implement. Strength of
players in a team are then updated by assuming that a team’s skill is the sum of skills of
ts members. Our framework can be applied by considering various ranking models. In this
paper, we demonstrate the use of the Bradley-Terry model, the Thurstone-Mosteller model,
and the Plackett-Luce model. Experiments on game data show that the accuracy of our
approach is competitive with the TrueSkill ranking system, but the running time as well as
the code are shorter. Our method is faster because we employ analytic update rules rather
than iterative procedures in TrueSkill.

The organization of this paper is as follows. In Section 2, we briefly review the modeling
of ranked data. Section 3 presents our approximation method and gives update equations
of using the Bradley-Terry model. Update rules of using other ranking models are given in
Section 4. As Glicko is also based on the Bradley-Terry model, for a comparison purpose
we describe its approximation procedures in Section 5. Experimental studies are provided
in Section 6. Section 7 concludes the paper. Some notation is given in Table 1.

2. Review of Models and Techniques

This section reviews existing methods for modeling ranked data and discusses approximation
techniques for Bayesian inference.

2.1 Modeling Ranked Data

Given the game outcome of k teams, we define r(i) as the rank of team i. If teams i1, . . . , id
are tied together, we have

r(i1) = · · · = r(id),

and let the team q ranked next have

r(q) = r(i1) + d.
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Notation Explanation

k number of teams participating in a game
ni number of players in team i
θij strength of the jth player in team i
N(µij , σ

2
ij) prior distribution of θij

Zij standardized quantity of θij ; see (45)
θi strength of team i; θi =

∑ni
j=1 θij

β2
i uncertainty about the performance of team i
Xi performance of team i (Xi ∼ N(θi, β

2
i ) for Thurstone-Mosteller model)

N(µi, σ
2
i ) prior distribution of θi

µi
∑ni

j=1 µij
σ2
i

∑ni
j=1 σ

2
ij

Zi standardized quantity of θi; see (24)
r(i) rank of team i in a game; smaller is better; see Section 2.1
r̄(i): index of the ith ranked team; “inverse” of r; see Section 2.1
ε draw margin (Thurstone-Mosteller model)
φ probability density function of a standard normal distribution; see (66)
Φ cumulative distribution function of a standard normal distribution
φk probability density function of a k-variate standard normal distribution
Φk cumulative distribution function of a k-variate standard normal distribution
κ a small positive value to avoid σ2

i becoming negative; see (28) and (44)
D the game outcome
E(·) expectation with respect to a random variable

Table 1: Notation

For example, if four teams participate in a game, their ranks may be

r(1) = 2, r(2) = 2, r(3) = 4, r(4) = 1, (1)

where teams 1 and 2 are both ranked the second. Then team 3, which ranked the next,
has r(3) = 4. We also need the “inverse” of r, so that r̄(i) indicates the index of the ith
ranked team. However, the function r is not one-to-one if ties occur, so the inverse is not
directly available. We choose r̄ to be any one-to-one mapping from {1, . . . , k} to {1, . . . , k}
satisfying

r(r̄(i)) ≤ r(r̄(i+ 1)), ∀i. (2)

For example, if r is as in Equation (1), then r̄ could be

r̄(1) = 4, r̄(2) = 1, r̄(3) = 2, r̄(4) = 3.

We may have r̄(2) = 2 and r̄(3) = 1 instead, though in this paper choosing any r̄ satisfying
(2) is enough.

A detailed account of modeling ranked data is by Marden (1995). For simplicity, in this
section we assume that ties do not occur though ties are handled in later sections. Two
most commonly used models for ranked data are the Thurstone-Mosteller model (Thur-
stone, 1927) and the Bradley-Terry model. Suppose that each team is associated with a

269



Weng and Lin

continuous but unobserved random variable Xi, representing the actual performance. The
observed ordering that team r̄(1) comes in first, team r̄(2) comes in second and so on is
then determined by the Xi’s:

Xr̄(1) > Xr̄(2) > · · · > Xr̄(k). (3)

Thurstone (1927) invented (3) and proposed using the normal distribution. The resulting
likelihood associated with (3) is

P (Xr̄(1) −Xr̄(2) > 0, . . . , Xr̄(k−1) −Xr̄(k) > 0), (4)

where Xr̄(i) − Xr̄(i+1) follows a normal distribution. In particular, if k = 2 and Xi fol-
lows N(θi, β

2
i ), where θi is the strength of team i and β2

i is the uncertainty of the actual
performance Xi, then

P (Xi > Xq) = Φ

 θi − θq√
β2
i + β2

q

 , (5)

where Φ denotes the cumulative distribution function of a standard normal density.

Numerous papers have addressed the ranking problem using models like (5). However,
most of them consider an off-line setting. That is, they obtain the likelihood using all
available data and maximize the likelihood. Such an approach is suitable if data are not
large. Recent attempts to extend this off-line approach to multiple players and multiple
teams include Huang et al. (2006). However, for large systems which constantly have results
being added/dropped, an online approach is more appropriate.

The Elo system is an online rating scheme which models the probability of game output
as (5) with βi = βq and, after each game, updates the strength θi by

θi ← θi +K(s− P (i wins)), (6)

where K is some constant, and s = 1 if i wins and 0 otherwise. This formula is a very
intuitive way to update strength after a game. More discussions of (6) can be seen in,
for example, Glickman (1999). The Elo system with the logistic variant corresponds to
the Bradley-Terry model (Bradley and Terry, 1952). The Bradley-Terry model for paired
comparisons has the form

P (Xi > Xq) =
vi

vi + vq
, (7)

where vi > 0 is the strength of team i. The model (7) dates back to Zermelo (1929) and can
be derived in several ways. For instance, it can be obtained from (3) by letting Xi follow a
Gumbel distribution with the cumulative distribution function

P (Xi ≤ x) = exp(−exp(−(x− θi))), where θi = log vi.

Then Xi −Xq follows a logistic distribution with the cumulative distribution function

P (Xi −Xq ≤ x) =
eθq

eθi−x + eθq
. (8)
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Figure 1: Winning probability P (Xi > Xq). Solid (blue): Gaussian distribution (5), Dashed
(black): logistic distribution (8).

Using x = 0 and P (Xi > Xq) = 1 − P (Xi ≤ Xq), we obtain (7). In fact, most currently
used Elo variants for chess data use a logistic distribution rather than Gaussian because it
is argued that weaker players have significantly greater winning chances than the Gaussian
model predicts.1 Figure 1 shows i’s winning probability P (Xi > Xq) against the skill
difference θi − θq for the two models (5) and (8). The (β2

i + β2
q )1/2 in (5) are set as

4/
√

2π ≈ 1.6 so that the two winning probability curves have the same slope at θi = θq.
Clearly, given that the two models closely match when two teams have about the same skill
levels, the logistic model gives a weak team i a higher winning chance than the Gaussian
model does.

In addition to Elo and Glicko, other online systems have been proposed. For example,
Menke and Martinez (2008) propose using Artificial Neural Networks. Though this approach
can handle multiple players per team, it aims to handle only two teams per game.

For comparisons involving k ≥ 3 teams per game, the Bradley-Terry model has been
generalized in various ways. The Plackett-Luce model (Marden, 1995) is one of such models.
This model, motivated by a k-horse race, has the form

P (r̄(1), . . . , r̄(k)) =
eθr̄1

eθr̄1 + · · ·+ eθr̄k
× eθr̄2

eθr̄2 + · · ·+ eθr̄k
× · · · × eθr̄k

eθr̄k
. (9)

An intuitive explanation of this model is a multistage ranking in which one first chooses the
most favorite, then chooses the second favorite out of the remaining, etc.

When k ≥ 3, as the Xr̄(i) −Xr̄(i+1)’s in (4) are dependent, the calculation of the joint
probability (4) involves a (k−1)-dimensional integration, which may be difficult to calculate.
Therefore, TrueSkill uses a factor graph and the approximate message passing (Kschischang
et al., 2001) to infer the marginal belief distribution over the skill of each team. In fact,
some messages in the factor graph are non Gaussian and these messages are approximated
via moment matching, using the Expectation Propagation algorithm (Minka, 2001).

1. According to http://en.wikipedia.org/wiki/Elo_rating_system, USCF and FIDE use formulas based
on the logistic distribution.
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2.2 Approximation Techniques for Bayesian Inference

From a Bayesian perspective, both the observed data and the model parameters are con-
sidered random quantities. Let D denote the observed data, and θ the unknown quantities
of interest. The joint distribution of D and θ is determined by the prior distribution P (θ)
and the likelihood P (D|θ):

P (D, θ) = P (D|θ)P (θ).

After observing D, Bayes theorem gives the distribution of θ conditional on D:

P (θ|D) =
P (θ,D)

P (D)
=

P (θ,D)∫
P (θ,D)dθ

.

This is the posterior distribution of θ, which is useful for estimation. Quantities about the
posterior distribution such as moments, untiles, etc can be expressed in terms of posterior
expectations of some functions g(θ); that is,

E[g(θ)|D] =

∫
g(θ)P (θ,D)dθ∫
P (θ,D)dθ

. (10)

The probability P (D), called evidence or marginal likelihood of the data, is useful for model
selection. Both P (θ|D) and P (D) are major objects of Bayesian inference.

The integrations involved in Bayesian inference are usually intractable. The approxi-
mation techniques can be divided into deterministic and nondeterministic methods. The
nondeterministic method refers to the Monte Carlo integration such as Markov Chain Monte
Carlo (MCMC) methods, which draw samples approximately from the desired distribution
and forms sample averages to estimate the expectation. However, when it comes to sequen-
tial updating with new data, the MCMC methods may not be computationally feasible,
the reason being that it does not make use of the analysis from the previous data; see, for
example, Section 2.8 in Glickman (1993).

The popular deterministic approaches include Laplace method, variational Bayes, ex-
pectation propagation, among others. The Laplace method is a technique for approximating
integrals: ∫

enf(x)dx ≈
(

2π

n

) k
2

| − ∇2f(x0)|−
1
2 enf(x0),

where x is k-dimensional, n is a large number, f : Rk → R is twice differentiable with
a unique global maximum at x0, and | · | is the determinant of a matrix. By writing
P (θ,D) = exp(logP (θ,D)), one can approximate the integral

∫
P (θ,D)dθ. This method

has been applied in Bayesian statistics; for example, see Tierney and Kadane (1986) and
Kass and Raftery (1995).

The variational Bayes methods are a family of techniques for approximating these in-
tractable integrals. They construct a lower bound on the marginal likelihood and then try
to optimize this bound. They also provide an approximation to the posterior distribution
which is useful for estimation.

The Expectation Propagation algorithm (Minka, 2001) is an iterative approach to ap-
proximate posterior distributions. It tries to minimize Kullback-Leibler divergence between
the true posterior and the approximated distribution. It can be viewed as an extension of
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assumed-density filtering to batch situation. The TrueSkill system (Herbrich et al., 2007)
is based on this algorithm.

Now we review an identity for integrals in Lemma 1 below, which forms the basis of
our approximation method. Some definitions are needed. A function f : Rk → R is called
almost differentiable if there exists a function ∇f : Rk → Rk such that

f(z + y)− f(z) =

∫ 1

0
yT∇f(z + ty)dt (11)

for z,y ∈ Rk. Of course, a continuously differentiable function f is almost differentiable
with ∇f equal to the gradient, and (11) is the indefinite integral in multi-dimensional case.

Given h : Rk → R, let h0 =
∫
h(z)dΦk(z) be a constant, hk(z) = h(z),

hj(z1, . . . , zj) =

∫
Rk−j

h(z1, . . . , zj ,w)dΦk−j(w), and (12)

gj(z1, . . . , zk) = ez
2
j /2
∫ ∞
zj

[hj(z1, . . . , zj−1, w)− hj−1(z1, . . . , zj−1)]e−w
2/2dw, (13)

for −∞ < z1, . . . , zk <∞ and j = 1, . . . , k. Then let

Uh = [g1, . . . , gk]
T and V h =

U2h+ (U2h)T

2
, (14)

where U2h is the k × k matrix whose jth column is Ugj and gj is as in (13).
Let Γ be a measure of the form:

dΓ(z) = f(z)φk(z)dz, (15)

where f is a real-valued function (not necessarily non-negative) defined on Rk.

Lemma 1 (W-Stein’s Identity) Suppose that dΓ is defined as in (15), where f is almost
differentiable. Let h be a real-valued function defined on Rk. Then,∫

h(z)dΓ(z) =

∫
f(z)dΦk(z) ·

∫
h(z)dΦk(z) +

∫
(Uh(z))T∇f(z)dΦk(z), (16)

provided all the integrals are finite.

Lemma 1 was given by Woodroofe (1989). The idea of this identity originated from
Stein’s lemma (Stein, 1981), but the latter considers the expectation with respect to a
normal distribution (i.e., the integral

∫
h(z)dΦk(z)), while the former studies the integration

with respect to a “nearly normal distribution” Γ in the sense of (15). Stein’s lemma is famous
and of interest because of its applications to James-Stein estimator (James and Stein, 1961)
and empirical Bayes methods.

The proof of this lemma is in Proposition 1 of Woodroofe (1989). For self-completeness,
we sketch it for the 1-dimensional case in Appendix A. Essentially the proof is based on
exchanging the order of integration (Fibini theorem), and it is the very idea for proving
Stein’s lemma. Due to this reason, Woodroofe termed (16) a version of Stein’s identity.
However, to distinguish it from Stein’s lemma, here we refer to it as W-Stein’s identity.

273



Weng and Lin

Now we assume that ∂f/∂zj , j = 1, . . . , k are almost differentiable. Then, by writing

(Uh(z))T∇f(z) =

k∑
i=1

gi(z)
∂f(z)

∂zi

and applying (16) with h and f replacing by gi and ∂f/∂zi, we obtain∫
gi
∂f

∂zi
dΦk(z) = Φk(gi)

∫
∂f

∂zi
dΦk(z) +

∫
(U(gi))

T∇
(
∂f

∂zi

)
dΦk(z), (17)

provided all the integrals are finite. Note that Φk(gi) in the above equation is a constant
defined as

Φk(gi) =

∫
gi(z)φk(z)dz.

By summing up both sides of (17) over i = 1, . . . , k, we can rewrite (16) as∫
h(z)f(z)dΦk(z) =

∫
f(z)dΦk(z) ·

∫
h(z)dΦk(z) + (ΦkUh)T

∫
∇f(z)dΦk(z)

+

∫
tr
[
(V h(z))∇2f(z)

]
dΦk(z); (18)

see Proposition 2 of Woodroofe and Coad (1997) and Lemma 1 of Weng and Woodroofe
(2000). Here ΦkUh = (Φk(g1), ...,Φk(gk))

T , “tr” denotes the trace of a matrix, and ∇2f
the Hessian matrix of f . An extension of this lemma is in Weng (2010).

Let Z = [Z1, . . . , Zk]
T be a k-dimensional random vector with the probability density

Cφk(z)f(z), (19)

where

C =

(∫
φk(z)f(z)dz

)−1

is the normalizing constant. Lemma 1 can be applied to obtain expectations of functions
of Z in the following corollary.

Corollary 2 Suppose that Z has probability density (19). Then,∫
fdΦk = C−1 and Eh(Z) =

∫
h(z)dΦk(z) + E

[
(Uh(Z))T

∇f(Z)

f(Z)

]
. (20)

Further, (18) and (20) imply

Eh(Z) =

∫
h(z)dΦk(z) + (ΦkUh)TE

[
∇f(Z)

f(Z)

]
+ E

[
tr

(
V h(Z)

∇2f(Z)

f(Z)

)]
. (21)

In particular, if h(z) = zi, then by (14) it follows Uh(z) = ei (a function from Rk to Rk);
and if h(z) = zizj and i < j, then Uh(z) = ziej , where {e1, · · · , ek} denote the standard
basis for Rk. For example, if k = 3 and h(z) = z1z2, then Uh(z) = [0, z1, 0]T and U2h(z) is
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the matrix whose (1, 2) entry is 1 and the rest entries are zeros; see Appendix B for details.
With these special h functions, (20) and (21) become

E[Z] = E

[
∇f(Z)

f(Z)

]
, (22)

E[ZiZq] = δiq + E

[
∇2f(Z)

f(Z)

]
iq

, i, q = 1, . . . , k, (23)

where δiq = 1 if i = q and 0 otherwise, and [·]iq indicates the (i, q) component of a matrix.

In the current context of online ranking, since the skill θ is assumed to follow a Gaussian
distribution, the update procedure is mainly for the mean and the variance. Therefore, (22)
and (23) will be useful. The detailed approximation procedure is in the next section.

3. Method

In this section, we first present our proposed method for updating team and individual
skills. Then, we give the detailed derivation for the Bradley-Terry model.

3.1 Approximating the Expectations

Let θi be the strength parameter of team i whose ability is to be estimated. Bayesian online
rating systems such as Glicko and TrueSkill start by assuming that θi has a prior distribution
N(µi, σ

2
i ) with µi and σ2

i known, next model the game outcome by some probability models,
and then update the skill (by either analytic or numerical approximations of the posterior
mean and variance of θi) at the end of the game. These revised mean and variance are
considered as prior information for the next game, and the updating procedure is repeated.

Equations (22) and (23) can be applied to online skill updates. To start, suppose that
team i has a strength parameter θi and assume that the prior distribution of θi is N(µi, σ

2
i ).

Upon the completion of a game, their skills are characterized by the posterior mean and
variance of θ = [θ1, . . . , θk]

T . Let D denote the result of a game and Z = [Z1, . . . , Zk]
T with

Zi =
θi − µi
σi

, i = 1, . . . , k, (24)

where k is the number of teams. The posterior density of Z given the game outcome D is

P (z|D) = Cφk(z)f(z),

where f(z) is the probability of game outcome P (D|z). Thus, P (z|D) is of the form (19).
Subsequently we omit D in all derivations.

Next, we shall update the skill as the posterior mean and variance of θ. Equations (22),
(23) and the relation between Zi and θi in (24) give that

µnew
i =E[θi] = µi + σiE[Zi]

=µi + σiE

[
∂f(Z)/∂Zi

f(Z)

]
(25)
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and

(σnew
i )2 =Var[θi] = σ2

i Var[Zi]

=σ2
i

(
E[Z2

i ]− E[Zi]
2
)

=σ2
i

(
1 + E

[
∇2f(Z)

f(Z)

]
ii

− E
[
∂f(Z)/∂Zi

f(Z)

]2
)
. (26)

The relation between the current and the new skills are explained below. By chain rule and
the definition of Zi in (24), the second term on the right side of (25) can be written as

σiE

[
∂f(Z)/∂Zi

f(Z)

]
= E

[
∂f(Z)/∂θi
f(Z)

]
= E

[
∂ log f(Z)

∂θi

]
,

which is the average of the relative rate of change of f (the probability of game outcome)
with respect to strength θi. For instance, suppose that team 1 beats team 2. Then, the
larger θ1 is, the more likely we have such an outcome. Hence, f is increasing in θ1, and the
adjustment to team 1’s skill is the average of the relative rate of change of team 1’s winning
probability with respect to its strength θ1. On the other hand, a larger θ2 is less likely to
result in this outcome; hence, f is decreasing in θ2 and the adjustment to team 2’s skill will
be negative. Similarly, we can write the last two terms on the right side of (26) as

σ2
i

(
E

[
∇2f(Z)

f(Z)

]
ii

− E
[
∂f(Z)/∂Zi

f(Z)

]2
)

= E

[
∂2 log f(Z)

∂θ2
i

]
,

which is the average of the rate of change of ∂(log f)/∂θi with respect to θi.
We propose approximating expectations in (25) and (26) to obtain the update rules:

µi ← µi + Ωi, (27)

σ2
i ← σ2

i max(1−∆i, κ), (28)

where

Ωi = σi
∂f(z)/∂zi
f(z)

∣∣∣∣
z=0

(29)

and

∆i =− ∂2f(z)/∂2zi
f(z)

∣∣∣∣
z=0

+

(
∂f(z)/∂zi
f(z)

∣∣∣∣
z=0

)2

=− ∂

∂zi

(
∂f(z)/∂zi
f(z)

)∣∣∣∣
z=0

. (30)

We set z = 0 so that θ is replaced by µ. Such a substitution is reasonable as we expect that
the posterior density of θ to be concentrated on µ. Then the right-hand sides of (27)-(28)
are functions of µ and σ, so we can use the current values to obtain new estimates. Due
to the approximation (30), 1 −∆i may be negative. Hence in (28) we set a small positive
lower bound κ to avoid a negative σ2

i . Further, we find that the prediction results may be
affected by how fast the variance σ2

i is reduced in (28). More discussion on this issue is in
Section 3.5.
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3.2 Error Analysis of the Approximation

This section discusses the error induced by evaluating the expectations in (25) and (26) at a
single z = 0, and then suggests a correction by including the prior uncertainty of skill in the
variance of the actual performance. For simplicity, below we only consider a two-team game
using the Thurstone-Mosteller model. Another reason of using the Thurstone-Mosteller
model is that we can exactly calculate the posterior probability. To begin, suppose that the
variance of ith team’s actual performance is β2

i . Then, for the Thurstone-Mosteller model,
the joint posterior density of (θ1, θ2) is proportional to

φ

(
θ1 − µ1

σ1

)
φ

(
θ2 − µ2

σ2

)
Φ

(
θ1 − θ2√
β2

1 + β2
2

)
,

and the marginal posterior density of θ1 is proportional to∫ ∞
−∞

φ

(
θ1 − µ1

σ1

)
φ

(
θ2 − µ2

σ2

)
Φ

(
θ1 − θ2√
β2

1 + β2
2

)
dθ2

= φ

(
θ1 − µ1

σ1

)∫ ∞
−∞

φ

(
θ2 − µ2

σ2

)∫ θ1

−∞

1
√

2π(
√
β2

1 + β2
2)
e
− (y−θ2)2

2(β2
1+β2

2)dydθ2

= σ2φ

(
θ1 − µ1

σ1

)
Φ

(
θ1 − µ2√

β2
1 + β2

2 + σ2
2

)
, (31)

where the last two equalities are obtained by writing the function Φ(·) as an integral of φ
(see (66)) and then interchanging the orders of the double integral. From (31), the posterior
mean of θ1 given D is

E(θ1) =

∫∞
−∞ θ1φ( θ1−µ1

σ1
)Φ( θ1−µ2√

β2
1+β2

2+σ2
2

)dθ1∫∞
−∞ φ( θ1−µ1

σ1
)Φ( θ1−µ2√

β2
1+β2

2+σ2
2

)dθ1

. (32)

Again, by writing the function Φ(·) as an integral and interchanging the orders of the
integrals, we obtain that the numerator and the denominator of the right side of (32) are
respectively

Φ

 µ1 − µ2√∑2
i=1(β2

i + σ2
i )

µ1 +
σ2

1√∑2
i=1(β2

i + σ2
i )

φ( µ1−µ2√∑2
i=1(β2

i +σ2
i )

)

Φ( µ1−µ2√∑2
i=1(β2

i +σ2
i )

)


and

Φ

 µ1 − µ2√∑2
i=1(β2

i + σ2
i )

 .

Therefore, the exact posterior mean of θ1 is

E(θ1) = µ1 +
σ2

1√∑2
i=1(β2

i + σ2
i )

φ

(
µ1−µ2√∑2
i=1(β2

i +σ2
i )

)
Φ

(
µ1−µ2√∑2
i=1(β2

i +σ2
i )

) . (33)
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Now we check our estimation. According to (25), (27), and (29),

E(θ) =µ1 + σ1E

[
∂f(Z)/∂Z1

f(Z)

]
(34)

≈µ1 + σ1
∂f(z)/∂z1

f(z)

∣∣∣∣
z=0

, (35)

where

f(z) = Φ

(
θ1 − θ2√
β2

1 + β2
2

)
and zi =

θi − µi
σi

, i = 1, 2.

The derivation later in (93) shows that (35) leads to the following estimation for E(θ1):

µ1 +
σ2

1√
β2

1 + β2
2

φ

(
µ1−µ2√
β2

1+β2
2

)
Φ

(
µ1−µ2√
β2

1+β2
2

) . (36)

The only difference between (33) and (36) is that the former uses β2
1 + β2

2 + σ2
1 + σ2

2, while
the latter has β2

1 + β2
2 . Therefore, the approximation from (34) to (35) causes certain bias.

We can correct the error by substituting β2
i with β2

i + σ2
i when using our approximation

method. In practice, we use β2
i = β2 + σ2

i , where β2 is a constant.
The above arguments also apply to the Bradley-Terry model. We leave the details in

Appendix C.

3.3 Modeling Game Outcomes by Factorization

To derive update rules using (27)-(30), we must define f(z) and then calculate Ωi,∆i.
Suppose that there are k teams in a game. We shall consider models for which the f(z) in
(19) can be factorized as

f(z) =

m∏
q=1

fq(z) (37)

for some m > 0. If fq(z) involves only several elements of z, the above factorization may
lead to an easier gradient and Hessian calculation in (22) and (23). The expectation on the
right side of (22) involves the following calculation:

∂f/∂zi
f

=
∂ log

∏m
q=1 fq(z)

∂zi
=

m∑
q=1

∂ log fq(z)

∂zi

=

m∑
q=1

∂fq/∂zi
fq

. (38)

Then all we need is to ensure that calculating
∂fq/∂zi
fq

is feasible.

Clearly the Plackett-Luce model (9) has the form of (37). However, the Thurstone’s
model (3) with the Gaussian distribution can hardly be factorized into the form (37). The
main reason is that the probability (4) of a game outcome involves a (k − 1)-dimensional
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integration, which is intractable. One may address this problem by modeling a k-team game
outcome as (k − 1) two-team games (between all teams on neighboring ranks); that is,

f(z) =
k−1∏
i=1

P (outcome between teams ranked ith and (i+ 1)st). (39)

Alternatively, we may consider the game result of k teams as k(k − 1)/2 two-team games.
Then

f(z) =

k∏
i=1

k∏
q=i+1

P (outcome between team i and team q). (40)

Both (39) and (40) are of the form (37). In Section 3.5, we shall demonstrate the calculation
to obtain update rules. Subsequently we refer to (39) as the partial-pair approach, while
(40) as the full-pair approach.

3.4 Individual Skill Update

Now, we consider the case where there are multiple players in each team. Suppose that
the ith team has ni players, the jth player in the ith team has strength θij , and the prior
distribution of θij is N(µij , σ

2
ij). Let θi denote the strength of the ith team. As in Huang

et al. (2006) and Herbrich et al. (2007), we assume that a team’s skill is the sum of its
members’ skills. Thus,

θi =

ni∑
j=1

θij for i = 1, . . . , k, (41)

and the prior distribution of θi is

θi ∼ N(µi, σ
2
i ), where µi =

ni∑
j=1

µij and σ2
i =

ni∑
j=1

σ2
ij . (42)

Similar to (27)-(28), we propose updating the skill of the jth player in team i by

µij ← µij +
σ2
ij

σ2
i

Ωi, (43)

σ2
ij ← σ2

ij max

(
1−

σ2
ij

σ2
i

∆i, κ

)
, (44)

where Ωi and ∆i are defined in (29) and (30), respectively and κ is a small positive value to
ensure a positive σ2

ij . Equations (43) and (44) say that Ωi, the mean skill change of team

i, is partitioned to ni parts with the magnitude proportional to σ2
ij . These rules can be

obtained from the following derivation. Let Zij be the normalized quantity of the random
variable θij ; that is,

Zij = (θij − µij)/σij . (45)

As in (27), we could update µij by

µij ← µij + σij
∂f̄(z̄)/∂zij

f̄

∣∣∣∣
z̄=0

, (46)
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where f̄(z̄) is the probability of game outcomes and

z̄ = [z11, . . . , z1n1 , . . . , zk1, . . . , zknk ]T .

Since we assume a team’s strength is the sum of its members’, from (24), (41), (42), and
(45) we have

Zi =
θi − µi
σi

=

∑
j σijZij

σi
; (47)

hence, it is easily seen that f̄(z̄) is simply a reparametrization of f(z) (defined in Section
3.1):

f(z) = f

 n1∑
j=1

σ1jz1j

σ1
, . . . ,

nk∑
j=1

σkjzkj
σk

 = f̄(z̄)

With (47),
∂f̄(z̄)

∂zij
=
∂f(z)

∂zi
· ∂zi
∂zij

=
σij
σi

∂f(z)

∂zi

and (46) becomes

µij ← µij +
σ2
ij

σ2
i

· σi
∂f(z)/∂zi

f

∣∣∣∣
z=0

.

Following the definition of Ωi in (29) we obtain the update rule (43), which says that within
team i the adjustment to µij is proportional to σ2

ij . The update rule (44) for the individual
variance can be derived similarly.

3.5 Example: Bradley-Terry Model (Full-pair)

In this section, we consider the Bradley-Terry model and derive the update rules using
the full-pair setting in (40). Following the discussion in Equations. (7)-(8), the difference
Xi − Xq between two teams follows a logistic distribution. However, by comparing the
Thurstone-Mosteller model (5) and the Bradley-Terry model (7), clearly the Bradley-Terry
model lacks variance parameters β2

i and β2
q , which account for the performance uncertainty.

We thus extend the Bradley-Terry model to include variance parameters; see Appendix C.
The resulting model is

P (team i beats q) ≡ fiq(z) =
eθi/ciq

eθi/ciq + eθq/ciq
, (48)

where
c2
iq = β2

i + β2
q and θi = µi + σizi.

The parameter βi is the uncertainty about the actual performance Xi. However, in the
model specification, the uncertainty of Xi is not related to σi. Following the error analysis
of the approximation in Section 3.2 for the Thurstone-Mosteller model, we show in Appendix
C that σ2

i can be incorporated to
β2
i = σ2

i + β2,

where β2 is some positive constant.
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Algorithm 1 Update rules using the Bradley-Terry model with full-pair

1. Given a game result and the current µij , σ
2
ij ,∀i,∀j. Given β2 and κ > 0. Decide a

way to set γq in (50)

2. For i = 1, . . . , k, set

µi =

ni∑
j=1

µij , σ2
i =

ni∑
j=1

σ2
ij .

3. For i = 1, . . . , k,

3.1. Team skill update: obtain Ωi and ∆i in (27) and (28) by the following steps.

3.1.1. For q = 1, . . . , k, q 6= i,

ciq = (σ2
i + σ2

q + 2β2)1/2, p̂iq =
eµi/ciq

eµi/ciq + eµq/ciq
, (49)

δq =
σ2
i

ciq
(s− p̂iq), ηq = γq

( σi
ciq

)2
p̂iqp̂qi, where s =


1 if r(q) > r(i),

1/2 if r(q) = r(i),

0 if r(q) < r(i).

(50)

3.1.2. Calculate

Ωi =
∑
q:q 6=i

δq, ∆i =
∑
q:q 6=i

ηq.

3.2. Individual skill update

For j = 1, . . . , ni,

µij ← µij +
σ2
ij

σ2
i

Ωi, σ2
ij ← σ2

ij max

(
1−

σ2
ij

σ2
i

∆i, κ

)
.

There are several extensions to the Bradley-Terry model incorporating ties. In Glicko
(Glickman, 1999), a tie is treated as a half way between a win and a loss when constructing
the likelihood function. That is,

P (i draws with q) = (P (i beats q)P (q beats i))1/2

=
√
fiq(z)fqi(z).

(51)

By considering all pairs, the resulting f(z) is (40). To obtain update rules (27)-(28), we
need to calculate ∂f/∂zi. We see that terms related to zi in the product form of (40) are

P (outcome of i and q),∀q = 1, . . . , k, q 6= i. (52)
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With (38) and (51),

∂f/∂zi
f

(53)

=
∑

q:r(q)<r(i)

∂fqi/∂zi
fqi

+
∑

q:r(q)>r(i)

∂fiq/∂zi
fiq

+
1

2

∑
q:r(q)=r(i),q 6=i

(
∂fqi/∂zi
fqi

+
∂fiq/∂zi
fiq

)
.

Using (24) and (48), it is easy to calculate that

∂fqi
∂zi

=
−eθi/ciqeθq/ciq

ciq(eθi/ciq + eθq/ciq)2
· ∂θi
∂zi

=
−σi
ciq

fiqfqi (54)

and
∂fiq
∂zi

=
(eθi/ciq + eθq/ciq)eθi/ciq − eθi/ciqeθi/ciq

ciq(eθi/ciq + eθq/ciq)2
· σi =

σi
ciq
fiqfqi.

Therefore, an update rule following (27) and (29) is

µi ← µi + Ωi, (55)

where

Ωi = σ2
i

 ∑
q:r(q)<r(i)

−p̂iq
ciq

+
∑

q:r(q)>r(i)

p̂qi
ciq

+
1

2

∑
q:r(q)=r(i),q 6=i

(
−p̂iq
ciq

+
p̂qi
ciq

) (56)

and

p̂iq ≡
eµi/ciq

eµi/ciq + eµq/ciq
(57)

is an estimate of P (team i beats team q). Since p̂iq + p̂qi = 1, (56) can be rewritten as

Ωi =
∑
q:q 6=i

σ2
i

ciq
(s− p̂iq), where s =


1 if r(q) > r(i),
1
2 if r(q) = r(i),

0 if r(q) < r(i).

(58)

To apply (26) and (30) for updating σi, we use (53) to obtain

∂

∂zi

(
∂f/∂zi
f

)
=

∑
q:r(q)<r(i)

∂

∂zi

(
∂fqi/∂zi
fqi

)
+

∑
q:r(q)>r(i)

∂

∂zi

(
∂fiq/∂zi
fiq

)
(59)

+
1

2

∑
q:r(q)=r(i),q 6=i

(
∂

∂zi

(
∂fqi/∂zi
fqi

)
+

∂

∂zi

(
∂fiq/∂zi
fiq

))
.

From (54),

∂

∂zi

(
∂fqi/∂zi
fqi

)
=
∂(−fiq/ciq)

∂zi
= −σ

2
i

c2
iq

fiqfqi
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and similarly

∂

∂zi

(
∂fiq/∂zi
fiq

)
= −σ

2
i

c2
iq

fiqfqi. (60)

From (30), by setting z = 0, ∆i should be the sum of (60) over all q 6= i. However, we
mentioned in the end of Section 3.1 that controlling the reduction of σ2

i is sometimes im-
portant. In particular, σ2

i should not be reduced too fast. Hence we introduce an additional
parameter γq so that the update rule is

σ2
i ← σ2

i max

1−
∑
q:q 6=i

γqξq, κ

 ,

where

ξq =
σ2
i

c2
iq

p̂iqp̂qi

is from (60) and γq ≤ 1 is decided by users; further discussions on the choice of γq are in
Section 6. Algorithm 1 summarizes the procedure.

The formulas (55) and (58) resemble the Elo system. The Elo treats θi as nonrandom
and its update rule is in (6):

θi ← θi +K(s− p∗iq),

where K is a constant (e.g., K = 32 in the USCF system for amateur players) and

p∗iq =
10θi/400

10θi/400 + 10θq/400

is the approximate probability that i beats q; see Equations. (11) and (12) in Glickman
(1999). Observe that p∗iq is simply a variance free and reparameterized version of p̂iq in (57).
As for Glicko, it is a Bayesian system but designed for paired comparisons over a rating
period. Detailed comparisons with Glicko are in Section 5.

4. Update Rules Using Other Ranking Models

If we assume different distributions of the team performance Xi or model the game results
by other ways than the Bradley-Terry model, the same framework in Sections 3.1-3.3 can
still be applied. In this section, we present several variants of our proposed method.

4.1 Bradley-Terry Model (Partial-pair)

We now consider the partial-pair approach in (39). With the definition of r̄ in (2), the
function f(z) can be written as

f(z) =

k−1∏
a=1

f̄r̄(a)r̄(a+1)(z), (63)
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Algorithm 2 Update rules using the Bradley-Terry model with partial-pair

The procedure is the same as Algorithm 1 except Step 3:

3. Let r̄(a), a = 1, . . . , k be indices of teams ranked from the first to the last

For a = 1, . . . , k,

3.1. Team skill update: let i ≡ r̄(a) and obtain Ωi and ∆i in (27) and (28) by the
following steps.

3.1.1. Define a set Q as

Q ≡


{r̄(a+ 1)} if a = 1,

{r̄(a− 1)} if a = k,

{r̄(a− 1), r̄(a+ 1)} otherwise.

(61)

For q ∈ Q
Calculate δq, ηq by the same way as (49)-(50) of Algorithm 1.

3.1.2. Calculate
Ωi =

∑
q∈Q

δq and ∆i =
∑
q∈Q

ηq. (62)

3.2 Individual skill update: same as Algorithm 1.

where we define f̄r̄(a)r̄(a+1)(z) as follows:

i ≡ r̄(a), q ≡ r̄(a+ 1),

f̄iq =

{
fiq if r(i) < r(q),√
fiqfqi if r(i) = r(q).

(64)

Note that fiq and fqi are defined in (48) of Section 3.5. Since the definition of r̄ in (2) ensures
r(i) ≤ r(q), in (64) we do not need to handle the case of r(i) > r(q). By a derivation similar
to that in Section 3.5, we obtain update rules in Algorithm 2. Clearly, Algorithm 2 differs
from Algorithm 1 in only Step 3. The reason is that ∂f(z)/∂zi is only related to game
outcomes between r̄(a) and teams of adjacent ranks, r̄(a− 1) and r̄(a+ 1). In (61), we let
Q be the set of these teams. Thus, Q contains at most two elements, and Ωi and ∆i in (62)
are calculated using δq and ηq with q ∈ Q. Details of the derivation are in Appendix D.

4.2 Thurstone-Mosteller Model (Full-pair and Partial-pair)

In this section, we consider the Thurstone-Mosteller model by assuming that the actual
performance of team i is

Xi ∼ N(θi, β
2
i ),
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where β2
i = σ2

i +β2 as in Section 3.5. The performance difference Xi−Xq follows a normal
distribution N(θi − θq, c2

iq) with c2
iq = σ2

i + σ2
q + 2β2. If one considers partial pairs

P (team i beats team q) = P (Xi > Xq) = Φ

(
θi − θq
ciq

)
and uses (51) to obtain P (i draws with q), then a derivation similar to that for the Bradley-
Terry model leads to certain update rules. Instead, here we follow Herbrich et al. (2007) to
let ε be the draw margin that depends on the game mode and assume that the probabilities
that i beats q and a draw occurs are respectively

P (team i beats team q) = P (Xi > Xq + ε) = Φ

(
θi − θq − ε

ciq

)
and

P (team i draws with q) = P (|Xi −Xq| < ε)

=Φ

(
ε− (θi − θq)

ciq

)
− Φ

(
−ε− (θi − θq)

ciq

)
.

(65)

We can then obtain f(z) using the full-pair setting (40). The way to derive update rules is
similar to that for the Bradley-Terry model though some details are different. We summarize
the procedure in Algorithm 3. Detailed derivations are in Appendix E.

Interestingly, if k = 2 (i.e., two teams), then the update rules (if i beats q) in Algorithm
3 are reduced to

µi ←µi +
σ2
i

ciq
V

(
µi − µq
ciq

,
ε

ciq

)
,

µq ←µq −
σ2
q

ciq
V

(
µi − µq
ciq

,
ε

ciq

)
,

where the function V is defined in (67). These update rules are the same as the case of
k = 2 in the TrueSkill system (see http://research.microsoft.com/en-us/projects/

trueskill/details.aspx).
As a comparison, we note that TrueSkill considers partial-pair and obtains players’ skills

by a factor graph and the approximate message passing. In fact, some messages in the factor
graph are non Gaussian and these messages are approximated via moment matching, using
the Expectation Propagation algorithm (Minka, 2001). Their algorithm is effective, but
simple update rules are not available for the cases of multiple teams/players.

4.3 Plackett-Luce Model

We now discuss the situation of using the Plackett-Luce model. If ties are not allowed, an
extension of the Plackett-Luce model (9) incorporating variance parameters is

f(z) =

k∏
q=1

fq(z) =

k∏
q=1

(
eθq/c∑
s∈Cq e

θs/c

)
, (70)
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Algorithm 3 Update rules using Thurstone-Mosteller model with full-pair

The procedure is the same as Algorithm 1 except Step 3.1.1:

3.1.1 For q = 1, . . . , k; q 6= i,

δq =
σ2
i

ciq
×


V (

µi−µq
ciq

, ε
ciq

) if r(q) > r(i),

Ṽ (
µi−µq
ciq

, ε
ciq

) if r(q) = r(i),

−V (
µq−µi
ciq

, ε
ciq

) if r(q) < r(i),

ηq =
( σi
ciq

)2 ×

W (

µi−µq
ciq

, ε
ciq

) if r(q) > r(i),

W̃ (
µi−µq
ciq

, ε
ciq

) if r(q) = r(i),

W (
µq−µi
ciq

, ε
ciq

) if r(q) < r(i),

where

ciq = (σ2
i + σ2

q + 2β2)1/2,

φ(x) =
1√
2π
e−x

2/2, Φ(x) =

∫ x

−∞
φ(u)du, (66)

V (x, t) = φ(x− t)/Φ(x− t), W (x, t) = V (x, t)(V (x, t) + (x− t)), (67)

Ṽ (x, t) = − φ(t− x)− φ(−t− x)

Φ(t− x)− Φ(−t− x)
, (68)

W̃ (x, t) =
(t− x)φ(t− x)− (−(t+ x))φ(−(t+ x))

Φ(t− x)− Φ(−t− x)
+ Ṽ (x, t)2. (69)

where

zi =
θi − µi
σi

, c =

(
k∑
i=1

(σ2
i + β2)

)1/2

and Cq = {i : r(i) ≥ r(q)}.

Instead of the same c in eθq/c, similar to the Bradley-Terry model, we can define cq to sum
up σ2

i , i ∈ Cq. However, here we take the simpler setting of using the same c. Note that
fq(z) corresponds to the probability that team q is the winner among teams in Cq. In (9),
f(z) is represented using r̄(1), . . . , r̄(k), but (70) is a reformulation using r(1), . . . , r(k).

We extend this model to allow ties. If teams i1, . . . , id are tied together, then r(i1) =
· · · = r(id). A generalization of the tie probability (51) gives the likelihood based on these
d stages as:

(
eθi1/c∑

s:r(s)≥r(i1) e
θs/c
× · · · × eθid/c∑

s:r(s)≥r(id) e
θs/c

)1/d

. (71)

286



A Bayesian Approximation Method for Online Ranking

Algorithm 4 Update rules using the Plackett-Luce model

The procedure is the same as Algorithm 1 except Step 3:

3. Find and store

c =

(
k∑
i=1

(σ2
i + β2)

)1/2

,

Aq = |{s : r(s) = r(q)}|, q = 1, . . . , k∑
s∈Cq

eθs/c, q = 1, . . . , k, where Cq = {i : r(i) ≥ r(q)}.

For i = 1, . . . , k,

3.1. Team skill update: obtain Ωi and ∆i in (27) and (28) by the following steps.

3.1.1. For q = 1, . . . , k,

δq =
σ2
i

cAq
×


1− p̂i,Cq if q = i,

−p̂i,Cq if r(q) ≤ r(i), q 6= i,

0 if r(q) > r(i),

ηq =
γqσ

2
i

c2Aq
×

{
p̂i,Cq(1− p̂i,Cq) if r(q) ≤ r(i),
0 if r(q) > r(i),

where

p̂i,Cq =
eθi/c∑

s∈Cq e
θs/c

.

3.1.2 Same as Algorithm 1.

3.2 Same as Algorithm 1.

We can explain (71) as follows. Now d factors in (71) all correspond to the likelihood of the
same rank, so we multiply them and take the dth root. The new f(z) becomes

f(z) =

k∏
q=1

fq(z) =

k∏
q=1

(
eθq/c∑
s∈Cq e

θs/c

)1/Aq

, (72)

where

Aq = |{s : r(s) = r(q)}| and fq(z) =

(
eθq/c∑
s∈Cq e

θs/c

)1/Aq

, q = 1, . . . , k.

If ties do not occur, Aq = 1, so (72) goes back to (70). By calculations shown in Appendix
F, the update rules are in Algorithm 4.
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Algorithm 5 Update rules of Glicko with a single game

1. Given a game result and the current µ1, µ2, σ
2
1, σ

2
2. Set

q =
log 10

400
. (73)

2. For i = 1, 2

g(σ2
i ) =

1√
1 +

3q2σ2
i

π2

. (74)

3. For i = 1, 2, set j 6= i and

p∗j =
1

1 + 10−g(σ
2
j )(µi−µj)/400

, (δ2
i )
∗ =

[
q2(g(σ2

j ))
2p∗j (1− p∗j )

]−1
.

4. Update rule: For i = 1, 2, set j 6= i

µi ← µi +
q

1
σ2
i

+ 1
(δ2
i )∗

g(σ2
j )(sij − p∗j ), where sij =


1 if i wins,

1/2 if draw,

0 if i loses,

σ2
i ←

(
1

σ2
i

+
1

(δ2
i )
∗

)−1

.

5. Description of Glicko

Since our Algorithm 1 and the Glicko system are both based on the Bradley-Terry model,
it is of interest to compare these two algorithms. We describe the derivation of Glicko in
this section. Note that notation in this section may be slightly different from other sections
of this paper.

Consider a rating period of paired comparisons. Assume that prior to a rating period
the distribution of a player’s strength θ is N(µ, σ2), with µ and σ2 known. Assume that,
during the rating period, the player plays nj games against opponent j, where j = 1, . . . ,m,
and that the jth opponent’s strength θj follows N(µj , σ

2
j ), with µj and σ2

j known. Let sjk be
the outcome of the kth game against opponent j, with sjk = 1 if the player wins, sjk = 0.5
if the game results in a tie, and sjk = 0 if the player loses. Let D be the collection of game
results during this period. The interest lies in the marginal posterior distribution of θ given
D:

P (θ|D) =

∫
· · ·
∫
P (θ1, . . . , θm|D)P (θ|θ1, . . . , θm, D)dθ1 · · · dθm, (75)

where P (θ|θ1, . . . , θm, D) is the posterior distribution of θ conditional on opponents’ strengths,

P (θ|θ1, . . . , θm, D) ∝ φ(θ|µ, σ2)P (D|θ, θ1, . . . , θm). (76)
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Here P (D|θ, θ1, . . . , θm) is the likelihood for all parameters. The approximation procedure
is described in steps (I)-(V) below, where step (I) is from Section 3.3 of Glickman (1999)
and steps (II)-(IV) are summarized from his Appendix A.

(I) Glickman (1999) stated that “The key idea is that the marginal posterior distribu-
tion of a player’s strength is determined by integrating out the opponents’ strengths over
their prior distribution rather than over their posterior distribution.” That is, the pos-
terior distribution of opponents’ strengths P (θ1, . . . , θm|D) is approximated by the prior
distribution

φ(θ1|µ1, σ
2
1) · · ·φ(θm|µm, σ2

m).

Then, together with (75) and (76) it follows that, approximately

P (θ|D) ∝ φ(θ|µ, σ2)

∫
· · ·
∫
φ(θ1|µ1, σ

2
1) · · ·φ(θm|µm, σ2

m)P (D|θ, θ1, . . . , θm)dθ1 · · · dθm

∝ φ(θ|µ, σ2)
m∏
j=1

{∫ [ nj∏
k=1

(
(10(θ−θj)/400)sjk

1 + 10(θ−θj)/400

)
φ(θj |µj , σ2

j )

]
dθj

}
︸ ︷︷ ︸

P (D|θ)

, (77)

where the last line follows by treating terms in the likelihood that do not depend on θ
(which correspond to games played between other players) as constant. We denote a term
in (77) as P (D|θ) for subsequent analysis.

(II) P (D|θ) in (77) is the likelihood integrated over the opponents’ prior strength dis-
tribution. Then, (77) becomes

P (θ|D) ∝ φ(θ|µ, σ2)P (D|θ). (78)

In this step, P (D|θ) is approximated by a product of logistic cumulative distribution func-
tions:

P (D|θ) ≈
m∏
j=1

nj∏
k=1

∫
(10(θ−θj)/400)sjk

1 + 10(θ−θj)/400
φ(θj |µj , σ2

j )dθj . (79)

(III) In this step, P (D|θ) is further approximated by a normal distribution. First, one
approximates each logistic cdf in the integrand of (79) by a normal cdf with the same mean
and variance so that the integral can be evaluated in a closed form to a normal cdf. This
yields the approximation

∫
(10(θ−θj)/400)sjk

1 + 10(θ−θj)/400
φ(θj |µj , σ2

j )dθj ≈

(
10g(σ

2
j )(θ−µj)/400

)sjk
1 + 10g(σ

2
j )(θ−µj)/400

,

where g(σ2
j ) is defined in (74). Therefore, the (approximate) marginal likelihood in (79) is

P (D|θ) ≈
m∏
j=1

nj∏
k=1

(
10g(σ

2
j )(θ−µj)/400

)sjk
1 + 10g(σ

2
j )(θ−µj)/400

. (80)
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Second, by central limit theorem we approximate this marginal likelihood (80) by a
normal density φ(θ|θ̂, δ2), where θ̂ is the mode of this marginal likelihood and δ2 is minus
of inverse of Hessian of the log marginal likelihood evaluated at θ̂. Then, together with (78)
we obtain an approximation:

P (θ|D) ∝ φ(θ|µ, σ2)φ(θ|θ̂, δ2)

∝ φ

(
θ
∣∣ µ
σ2 + θ̂

δ2

1
σ2 + 1

δ2

,

(
1

σ2
+

1

δ2

)−1
)
.

Therefore, the update of µ and σ2 (i.e., posterior mean and variance) is:

σ2 ←
(

1

σ2
+

1

δ2

)−1

and µ ←
µ
σ2 + θ̂

δ2

1
σ2 + 1

δ2

= µ+
1
δ2

1
σ2 + 1

δ2

(θ̂ − µ). (81)

Note that we obtain θ̂ by equating the derivative of logP (D|θ) to zero, and approximating
δ2 by substituting µ for θ̂. The expression of approximation for δ2 is

δ2 ≈
(
q2

m∑
j=1

nj(g(σ2
j ))

2pj(µ)(1− pj(µ))
)−1

, (82)

where q is defined in (73), g(σ2
j ) is defined in (74) and

pj(µ) =
1

1 + 10−g(σ
2
j )(µ−µj)/400

, (83)

which is an approximate probability that the player beats opponent j.
(IV) Finally, θ̂ − µ in (81) is approximated as follows. From (80) it follows that

d

dθ
logP (D|θ) ≈

m∑
j=1

nj∑
k=1

log 10

400

{
g(σ2

j )

(
sjk −

1

1 + 10−g(σ
2
j )(θ−µj)/400

)}
. (84)

If we define

h(θ) =

m∑
j=1

nj∑
k=1

g(σ2
j )

1 + 10−g(σ
2
j )(θ−µj)/400

, (85)

then setting the right-hand side of (84) to zero gives

h(θ̂) =
m∑
j=1

nj∑
k=1

g(σ2
j )sjk. (86)

Then, a Taylor series expansion of h(θ) around µ gives

h(θ̂) ≈ h(µ) + (θ̂ − µ)h′(µ), (87)

where

h′(µ) = q
m∑
j=1

nj∑
k=1

(g(σ2
j ))

2pj(µ))(1− pj(µ)) = q
m∑
j=1

nj(g(σ2
j ))

2pj(µ))(1− pj(µ)) (88)
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Game type # games # players BT-full BT-partial PL TM-full TrueSkill

Free for All 5,943 60,022 30.59% 32.40% 31.74% 44.65% 30.82%
Small Teams 27,539 4,992 33.97% 33.97% 33.97% 36.46% 35.23%
Head to Head 6,227 1,672 32.53% 32.53% 32.53% 32.41% 32.44%
Large Teams 1,199 2,576 37.30% 37.30% 37.30% 39.37% 38.15%

Table 2: Data description and prediction errors by various methods. The method with the
smallest error is bold-faced. The column “TrueSkill” is copied from a table in Herbrich
et al. (2007). Note that we use the same way as TrueSkill to calculate prediction errors.

Game type BT-full PL TM-full

Free for All 31.24% 31.73% 33.13%
Small Teams 33.84% 33.84% 36.50%
Head to Head 32.55% 32.55% 32.74%
Large Teams 37.30% 37.30% 39.13%

Table 3: Prediction errors using γq = 1/k in (50), where k is the number of teams in a
game.

with pj(µ) defined in (83). Using (86), h(µ) by (85), and (88), we can apply (87) to obtain

an estimate of θ̂ − µ. Then with (82), (81) becomes

µ ← µ+
q

1
σ2 + 1

δ2

m∑
j=1

nj∑
k=1

g(σ2
j )(sjk − pj(µ)).

However, when there is only one game, P (D|θ) in (80) would have just one term (because
m = 1 and n1 = 1), and it is a monotone function. Therefore, the mode θ̂ of P (D|θ) would
be either∞ or −∞ and the central limit theorem can not be applied. Although this problem
seems to disappear when the approximation in step (IV) is employed, the justification of
the whole procedure may be weak. In fact, the Glicko system treats a collection of games
within a “rating period” to have simultaneous occurrences, and it works best when the
number of games in a rating period is moderate, say an average of 5-10 games per player
in a rating period.2 The Glicko algorithm for a single game is in Algorithm 5.

6. Experiments

We conduct experiments to assess the performance of our algorithms and TrueSkill on the
game data set used by Herbrich et al. (2007). The data are generated by Bungie Studios
during the beta testing of the Xbox title Halo 2.3 The set contains data from four different
game types:
• Free for All: up to 8 players in a game. Each team has a single player.
• Small Teams: up to 12 players in 2 teams.4

2. According to http://math.bu.edu/people/mg/glicko/glicko.doc/glicko.html.
3. Credits for the use of the Halo 2 Beta Data set are given to Microsoft Research Ltd. and Bungie.
4. Herbrich et al. (2007) indicate that for “Small Teams,” each team has no more than 4 players, and for

“Large Teams,” each has no more than 8. However, we find a few exceptions.
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• Head to Head: 2 players in a game. Each player is considered as a team.
• Large Teams: up to 16 players in 2 teams.

The numbers of games and players are given in Table 2. In the following, let BT, TM, and
PL denote Bradley-Terry, Thurstone-Mosteller, and Plackett-Luce models, respectively;
BT-full and BT-partial denote BT with full-pair and partial-pair, and similarly for TM-
full and TM-partial. The TrueSkill code is obtained at http://blogs.technet.com/apg/

archive/2008/06/16/trueskill-in-f.aspx.

6.1 Implementation and Evaluation

Below we discuss initial values and parameters. Generally we follow the setting in Herbrich
et al. (2007).
• Initial µi = 25 and σ2

i = (25/3)2, ∀i.
• The additional variance of performance β2 = (25/6)2.
• ε = 0.1 is the draw margin in (65) for the Thurstone-Mosteller model.
• κ = 0.0001 is the positive lower bound in (28) to avoid negative σ2

i . The result is
insensitive to this parameter as in general 1−∆i is larger than κ.
• γq in (50) is set as σi/ciq for BT-full. The same γq is applied to BT-partial and

TM-full. For PL, we use γq = σi/c. The use of γq is further discussed later in this
section.

The update rules for the Thurstone-Mosteller model need to calculate the cumulative
distribution function Φ(x), which is not available in most programming languages. We
adopt the same way as in TrueSkill to implement the function Φ(x). Moreover, if the
Thurstone-Mosteller model is used, some numerical difficulties may occur. When x − t in
(67) is small,

φ(x− t) ≈ 0 and Φ(x− t) ≈ 0, (89)

so the calculation of V (x, t) via φ(x − t)/Φ(x − t) is inaccurate. We employ the same
safeguard as in TrueSkill:

If Φ(x− t) ≤ 2.222758749× 10−162, then V (x, t) is assigned as −x+ t.

Note that −x+ t is the limit of V (x, t) when x− t→ −∞. We also need some safeguards
in calculating Ṽ and W̃ .

We implement our methods in both C and F#. The F# code is used for the running time
comparison with TrueSkill, which is also written in F#. On the same computer, TrueSkill
takes 13 seconds to run the “Free for All” data, but BT-full needs only 1.2 seconds. Our
method is more efficient because it uses analytic update rules. In contrast, TrueSkill requires
an iterative procedure. Moreover, it is simpler to implement our update rules. Using F#,
our code takes less than 100 lines, but TrueSkill needs more than 500 lines. Sources used
for experiments in this paper are available at

http://www.csie.ntu.edu.tw/~cjlin/papers/online_ranking

For the evaluation of prediction results, following Herbrich et al. (2007), we consider the
error of using the current µ to predict the outcome of the next game. We check only team
pairs whose ranks are different. For example, if there are three teams A, B, and C and the
rank of one game is (1, 1, 2), then only the two pairs (A,C) and (B,C) count. Further, if

292

http://blogs.technet.com/apg/archive/2008/06/16/trueskill-in-f.aspx
http://blogs.technet.com/apg/archive/2008/06/16/trueskill-in-f.aspx
http://www.csie.ntu.edu.tw/~cjlin/papers/online_ranking


A Bayesian Approximation Method for Online Ranking

Game type BT-full BT-partial PL TM-full TrueSkill

Free for All 35.44% 36.70% 36.31% 46.11% 35.58%

Table 4: Prediction errors (difficult cases). Team pairs with rank differences no more than
two are considered. We consider only “Free for All” because the TrueSkill code provided
by authors does not handle multi-player teams and we have not conducted suitable modi-
fications. Moreover, under our selection rule, all games in “Head to Head” will be selected
and results are the same as Table 2. Hence this set is not included either.

Avg. Occurances Num. Pairs BT-full TrueSkill

≤5 23,567 38.74% 39.15%
≤10 69,145 36.22% 36.41%
≤20 148,654 34.54% 34.52%
≤40 276,203 32.64% 32.64%

No restriction 595,500 30.59% 30.74%

(a) Free for All

Num. Pairs BT-full TrueSkill

2,367 38.70% 38.36%
3,748 35.17% 34.61%
4,852 33.29% 33.02%
5,501 32.61% 32.61%
5,715 32.53% 32.49%

(b) Head to Head

Table 5: Prediction errors for competitions where players have only played few games.
Games with the average number of players’ past appearances no more than the value in the
first column are considered. The last row includes all games. The second column indicates
the number of total team pairs used for the evaluation. The 30.74% and 32.49% rates by
TrueSkill are slightly different from 30.82% and 32.44% in Table 2, respectively, because
the former is from running the F# code provided by TrueSkill authors, but the latter is
copied from Herbrich et al. (2007).

before the game we have µA = µC and the game output shows rank(A) < rank(C), it is
considered a wrong prediction. This situation seldom happens as µ is a real-valued vector,
but it does occur in early games because all players’ µ were set equally in the beginning.
We have confirmed with TrueSkill authors that these detailed settings are the same as what
they used in Herbrich et al. (2007). The prediction error rate is the fraction of total team
pairs (from the second to the last game) that are wrongly predicted.

6.2 Comparison on Prediction Errors

We report the prediction error in Table 2 and make the following observations. First, BT-
full, BT-partial, and PL have the same error rate except “Free for All.” This result is
reasonable as when every game involves only two teams, using full pairs, partial pairs or the
Plackett-Luce model does not make any difference. Second, when the number of teams is
more than two (i.e., Free for All), BT-full is better than BT-partial. The same observation
holds when comparing TM-full and TM-partial (numbers not shown). A possible explana-
tion is that the full-pair approach uses more information. Third, using the Bradley-Terry
model yields superior results to the Thurstone-Mosteller model. The error of using TM-full
on “Free for All” is very high. Besides, numerical problems discussed in (89) do not occur
for the Bradley-Terry model. Fourth, TM-full, which uses the same likelihood model as
TrueSkill, is consistently worse than TrueSkill, indicating that the much faster, single-pass
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approximation may come at the expense of less accurate prediction. Finally, our proposed
method for BT-full and PL is competitive with TrueSkill.

The reason why TM-full performs poorly for “Free for All” in Table 2 might be that
σi quickly goes to zero and µi becomes a huge positive/negative value. The parameter γq
in (50) can help to control how fast the variance σ2

i is reduced. In Table 2, γq is set as
σi/ciq. Table 3 gives results of using γq = 1/k, where k is the number of teams in a game.
For “Free for All,” k is around 8, so γq is quite small. Clearly, a slower reduction of σ2

i

significantly improves the performance of TM-full, while the results of BT-full and PL do
not change much.

We conduct a further comparison using only team pairs which are more difficult for
prediction. For “Free for All,” the team pairs whose ranks in a game are closer can be
viewed as difficult cases for prediction. We take all pairs with rank differences no more
than two and compare the prediction errors by our methods and TrueSkill. The results,
shown in Table 4, are consistent with those in Table 2.

After a team (or player) has played many games, the obtained ability becomes more
accurate. To check the performance when teams have only played few games, we select
games where the average number of players’ past appearances is small. We present results
in Table 5. Clearly if players in a game have only played few games, the prediction is more
difficult.

We also implement the single game version of Glicko (Algorithm 5) for “Head to Head”
and find the prediction error to be 33.88%, a bit worse than those in Table 2. Such a result
is expected as Glicko is not designed to update skills after each single game.

Finally, we discuss how to apply our proposed technique in practice. Following the
experimental results and the numerical concerns, TM is not recommended. Further as
BT-full is slightly better than BT-partial, it seems that to factorize a multi-team game
to several two-team games, we should use as much information as possible. Therefore, in
applying our approximation, BT-full and PL may be the first choice. As TM-full uses the
same likelihood as TrueSkill and performs worse, our approximation, while very simple,
may be more sensitive to the likelihood used.

7. Discussion and Conclusions

Huang and Frey (2008) propose a graphical model, cumulative distribution network (CDF),
which can be used for online ranking. They experiment with the same data used by Herbrich
et al. (2007) and report superior results. However, they use a full covariance matrix over
all skills of all players. This setting provides more information for accurate predictions, but
may not be practical for large-scale systems.

Guiver and Snelson (2009) apply Power EP (expectation propagation) to perform Bayesian
inference for parameters of the Plackett-Luce model. They conduct experiments in an of-
fline setting on NASCAR 2002 car racing results and the MovieLens data set. It is worth
studying the performance in online setting. We leave it for future work.

In summary, this paper approximates the expectation of teams’ performances to derive
simple update rules for online ranking. The proposed method is efficient and can be easily
applied to large-scale systems with multiple teams and multiple players. While the approxi-
mation of the expectation is only a kind of heuristics, experiments show that its application
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to BT-full and PL models is competitive with state of the art approaches such as TrueSkill.
Further, the implementation is simpler and the running time is shorter.

Acknowledgments

The authors thank Ralf Herbrich and Thore Graepel of Microsoft Research Cambridge for
providing their F# codes (Free for All and Head to Head) and for answering many questions.

Appendix A. A Sketch of the Proof for Lemma 1

We borrow a few lines from Woodroofe (1989) to sketch the proof for (16) in the 1-
dimensional case. Let ′ denote the differentiation and Φh denote

∫
R h(z)dΦ(z). By as-

sumptions in Lemma 1, we have f(z) =
∫ z
−∞ f

′(y)dy and∫
R
h(z)dΓ(z)−

∫
R
f(z)dΦ(z) ·

∫
R
h(z)dΦ(z)

=

∫
R
f(z)φ(z)[h(z)− Φh]dz =

∫
R

{∫ z

−∞
f ′(y)dy

}
φ(z)[h(z)− Φh]dz

=

∫
R

{∫ ∞
y

φ(z)[h(z)− Φh]dz
}
f ′(y)dy =

∫
R
Uh(y)f ′(y)φ(y)dy,

where the interchange of orders of integration is justified by assumed integrability conditions.

Appendix B. An Example on Calculating Uh and V h in (14)

We take k = 3 and h(z) = z1z2 to illustrate the calculation of Uh and V h. First by (12)
we obtain

h0 =

∫
z1z2dΦ3(z) = 0,

h1(z1) =

∫
h(z1, w1, w2)dΦ2(w1, w2) =

∫
z1w1dΦ2(w1, w2) = 0,

h2(z1, z2) =

∫
h(z1, z2, w)dΦ1(w) =

∫
z1z2dΦ(w) = z1z2,

h3(z1, z2, z3) = h(z1, z2, z3) = z1z2.

Next from (13) it follows that

g1(z) = ez
2
1/2

∫ ∞
z1

[h1(w)− h0]e−w
2/2dw = 0,

g2(z) = ez
2
2/2

∫ ∞
z2

[h2(z1, w)− h1(z1)]e−w
2/2dw = ez

2
2/2

∫ ∞
z2

z1we
−w2/2dw = z1,

g3(z) = ez
2
3/2

∫ ∞
z3

[h3(z1, z2, w)− h2(z1, z2)]e−w
2/2dw = 0;
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hence, by (14) we have Uh(z) = (g1, g2, g3)T = (0, z1, 0)T . Applying the same steps to gi
gives Ug1 = Ug3 = [0, 0, 0]T and Ug2 = [1, 0, 0]T . Therefore, by (14) we obtain

V h =
1

2

(
U2h+ (U2h)T

)
=

1

2

0 1 0
0 0 0
0 0 0

+

0 0 0
1 0 0
0 0 0

 =

0 1
2 0

1
2 0 0
0 0 0

 .
Appendix C. A Bradley-Terry Model with Variance Parameters

Our approach is motivated by the relation between the normal model (5) and the Bradley-
Terry model (7). To begin, we reparametrize vi in (7) as eθi/c and similarly for vq so that
(7) can be written as

P (Xi > Xq) =
e(θi−θq)/c

1 + e(θi−θq)/c
. (90)

Next, observe that the cumulative distribution function of a logistic distribution with mean
0 and variance (cπ/

√
3)2 is

F (x) =
ex/c

(1 + ex/c)
,

which can be approximated by the cumulative distribution function of a normal distribution
with the same mean and variance. Therefore,

e(θi−θq)/c

1 + e(θi−θq)/c
≈

∫ θi−θq

−∞

1√
2π(cπ)/

√
3
e−u

2/(2(cπ/
√

3)2)du

= Φ

(
θi − θq
cπ/
√

3

)
. (91)

The idea of approximating the logistic distribution in an integral by a Gaussian one has
appeared in Aitchison and Begg (1976), Glickman (1993), and references therein. By com-
paring (91) with (5), it suggests to take c2 ∝ (β2

i + β2
q ) and then replace vi and vq in (7)

with eθi/c and eθq/c. In summary, we have shown that (90) can be obtained by assuming
that each team has a performance uncertainty parameter β2

i , and that when teams i and q
compete, their actual performance follow Gumbel distributions with cumulative distribution
function

P (Xi ≤ x) = exp(−exp(−(x− θi
c

))),

where c2 = β2
i + β2

q . Note that this model presumes that a team’s actual performance
depends on the team it competes with.

Regarding the error induced by evaluating the expectations in (25) and (26), we can
apply the same analysis in Section 3.2 to the Bradley-Terry model. Here we give details.
By (48), the joint posterior density of (θ1, θ2) is proportional to

φ

(
θ1 − µ1

σ1

)
φ

(
θ2 − µ2

σ2

)
eθ1/c12

eθ1/c12 + eθ2/c12
.
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Next, by an approximation like (91), the marginal posterior density of θ1 is approximately
proportional to

φ

(
θ1 − µ1

σ1

)∫
φ

(
θ2 − µ2

σ1

)∫ θ1

−∞

1√
2π(αc12)

e
− y−θ2

2(αc12)2 dydθ2

≈ φ

(
θ1 − µ1

σ1

)
Φ

(
θ1 − µ2√

(αc12)2 + σ2
2

)

≈ φ

(
θ1 − µ1

σ1

)
eθ1/c

′
12

eθ1/c
′
12 + eθ2/c

′
12
,

where α = π/
√

3 as in (91) and (c′12)2 = α2c2
12 + σ2

2. As in the previous paragraph, we can
calculate the posterior mean of θ1, and again the result suggests that the bias induced by
our approximation method can be reduced by substituting β2

i with β2
i + σ2

i .

Appendix D. Derivations of Update Rules for the Bradley-Terry Model
(Partial-pair)

To calculate ∂f/∂zi, if i = r̄(a), then in (63) there are only two terms related to i:

f̄r̄(a−1)r̄(a)(z) and f̄r̄(a)r̄(a+1)(z).

Define Q as in (61). Then,

∂f/∂zi
f

=
∑

q:q∈Q,r(q)<r(i)

∂fqi/∂zi
fqi

+

∑
q:q∈Q,r(q)>r(i)

∂fiq/∂zi
fiq

+
1

2

∑
q:q∈Q,r(q)=r(i),q 6=i

(
∂fqi/∂zi
fqi

+
∂fiq/∂zi
fiq

)
.

Next,

∂

∂zi

(
∂f/∂zi
f

)
=

∑
q:q∈Q,r(q)<r(i)

∂

∂zi

(
∂fqi/∂zi
fqi

)
+

∑
q:q∈Q,r(q)>r(i)

∂

∂zi

(
∂fiq/∂zi
fiq

)

+
1

2

∑
q:q∈Q,r(q)=r(i),q 6=i

(
∂

∂zi

(
∂fqi/∂zi
fqi

)
+

∂

∂zi

(
∂fiq/∂zi
fiq

))
.

These two results are almost the same as (53) and (59) used for the full-pair case. Hence
δq and ηq are calculated by the same way as in Algorithm 1, but for Ωi and ∆i, instead of
taking the sum over all q = 1, . . . , k; q 6= i, in (62) we sum up only elements in the set Q.

Appendix E. Derivations of Update Rules for the Thurstone-Mosteller
Model

Define

fiq(z) ≡ P (team i beats team q) = Φ

(
θi − θq − ε

ciq

)
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and

f̄iq(z) ≡ P (team i draws with team q)

=Φ

(
ε− (θi − θq)

ciq

)
− Φ

(
−ε− (θi − θq)

ciq

)
,

where θi = σizi + µi. Then

P (outcome of team i and q) =


fiq(z) if r(i) > r(q),

fqi(z) if r(i) < r(q),

f̄iq(z) if r(i) = r(q).

Similar to the derivation for the Bradley-Terry model in (52) and (53),

∂f/∂zi
f

=
∑

q:r(q)<r(i)

∂fqi/∂zi
fqi

+
∑

q:r(q)>r(i)

∂fiq/∂zi
fiq

+
∑

q:r(q)=r(i)

∂f̄iq/∂zi

f̄iq
.

Using the relation between φ and Φ in (66),

∂

∂θi
Φ

(
θi − θq − ε

ciq

)
= φ

(
θi − θq − ε

ciq

)
1

ciq
. (92)

Therefore,

∂fiq/∂zi
fiq

=
1

ciq

φ(
θi−θq−ε
ciq

)

Φ(
θi−θq−ε
ciq

)
· ∂θi
∂zi

=
σi
ciq
V

(
θi − θq
ciq

,
ε

ciq

)
, (93)

where the function V is defined in (67). Similarly,

∂fqi
∂zi

=
−σi
ciq

V

(
θq − θi
ciq

,
ε

ciq

)
.

For f̄iq(θ),

∂f̄iq
∂zi

=
−σi
ciq

(
φ(
ε− (θi − θq)

ciq
)− φ(

−ε− (θi − θq)
ciq

)

)
,

so

∂f̄iq/∂zi

f̄iq
=
−σi
ciq

φ(
ε−(θi−θq)

ciq
)− φ(

−ε−(θi−θq)
ciq

)

Φ(
ε−(θi−θq)

ciq
)− Φ(

−ε−(θi−θq)
ciq

)
=
σi
ciq
Ṽ

(
θi − θq
ciq

,
ε

ciq

)
, (94)

where the function Ṽ is defined in (68). Then the update rule is

µi ←µi + σi
∂f(z)/∂zi

f

∣∣∣∣
z=0

←µi + σ2
i

( ∑
q:r(q)<r(i)

−1

ciq
V

(
µq − µi
ciq

,
ε

ciq

)
+

∑
q:r(q)>r(i)

1

ciq
V

(
µi − µq
ciq

,
ε

ciq

)

+
∑

q:r(q)=r(i),q 6=i

1

ciq
Ṽ

(
µi − µq
ciq

,
ε

ciq

))
.
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To update σ, similar to (59), we have

∂

∂zi

(
∂f/∂zi
f

)
=

∑
q:r(q)<r(i)

∂

∂zi

(
∂fqi/∂zi
fqi

)
+

∑
q:r(q)>r(i)

∂

∂zi

(
∂fiq/∂zi
fiq

)

+
∑

q:r(q)=r(i),q 6=i

∂

∂zi

(
∂f̄iq/∂zi

f̄iq

)
.

Using (93) and the fact that dφ(x)/dx = −xφ(x)

∂

∂zi

∂fiq/∂zi
fiq

=
σi
ciq

∂(φ/Φ)

∂θi
· ∂θi
∂zi

=
σ2
i

ciq

Φ dφ
dθi
− φ dΦ

dθi

Φ2

=
σ2
i

ciq

(
−
(
θi − θq − ε

ciq

)
· V
(
θi − θq
ciq

,
ε

ciq

)
1

ciq
− 1

ciq
V

(
θi − θq
ciq

,
ε

ciq

)2
)

(95)

=− σ2
i

c2
iq

W

(
θi − θq
ciq

,
ε

ciq

)
,

where the function W is defined in (67). Similarly,

∂

∂zi

∂fqi/∂zi
fqi

= −σ
2
i

ciq
W

(
θq − θi
ciq

,
ε

ciq

)
. (96)

If r(i) = r(q), then we use (92) and (94) to calculate

∂

∂zi

(
∂f̄iq/∂zi

f̄iq

)
=
−σ2

i

ciq

A−B(
Φ(

ε−(θi−θq)
ciq

)− Φ(
−ε−(θi−θq)

ciq
)
)2 ,

where

A =
1

ciq

(
Φ(
ε− (θi − θq)

ciq
)− Φ(

−ε− (θi − θq)
ciq

)

)
×(

ε− (θi − θq)
ciq

φ(
ε− (θi − θq)

ciq
)− −ε− (θi − θq)

ciq
φ(
−ε− (θi − θq)

ciq
)

)
and

B =
−1

ciq

(
φ(
ε− (θi − θq)

ciq
)− φ(

−ε− (θi − θq)
ciq

)

)2

.

Hence

∂

∂zi

(
∂f̄iq/∂zi

f̄iq

)

=
−σ2

i

c2
iq

 ε−(θi−θq)
ciq

φ(
ε−(θi−θq)

ciq
)− −ε−(θi−θq)

ciq
φ(
−ε−(θi−θq)

ciq
)

Φ(
ε−(θi−θq)

ciq
)− Φ(

−ε−(θi−θq)
ciq

)
+ Ṽ

(
θi − θq
ciq

,
ε

ciq

)2
 (97)

=
−σ2

i

c2
iq

W̃

(
θi − θq
ciq

,
ε

ciq

)
,

299



Weng and Lin

where the function W̃ is defined in (69). Combining (95), (96), and (97), the update rule
for σ2

i is

σ2
i ←σ2

i

(
1−

( ∑
q:r(q)<r(i)

σ2
i

c2
iq

W (
µq − µi
ciq

,
ε

ciq
) +

∑
q:r(q)>r(i)

σ2
i

c2
iq

W (
µi − µq
ciq

,
ε

ciq
)

∑
q:r(q)=r(i),q 6=i

σ2
i

c2
iq

W̃ (
µi − µq
ciq

,
ε

ciq
)

))
.

Appendix F. Derivations of Update Rules for the Plackett-Luce Model

Using f(z) and fq(z) defined in (72),

fq(z) =

(
eθq/c∑
s∈Cq e

θs/c
,

)1/Aq

,

so

∂fq/∂zi
fq

=
∂ log fq
∂zi

=
1

Aq

(
∂(θq/c)

∂θi
−
∂ log(

∑
s∈Cq e

θs/c)

∂θi

)
∂θi
∂zi

=
σi
cAq


1− eθi/c∑

s∈Cq e
θs/c

if q = i,

− eθi/c∑
s∈Cq e

θs/c
if r(q) ≤ r(i), q 6= i,

0 if r(q) > r(i).

(98)

From (38), the update rule is
µi ← µi + Ωi,

where

Ωi =σi

k∑
q=1

∂fq(z)/∂zi
fq(z)

∣∣∣∣
z=0

=
σ2
i

c

 1

Ai

(
1− eµi/c∑

s∈Ci e
µs/c

)
+

∑
q:q 6=i,r(q)≤r(i)

− 1

Aq

eµi/c∑
s∈Cq e

µs/c

 .

To update σ, similar to (59), we must calculate

∂

∂zi

(
∂fq/∂zi
fq

)
, ∀q. (99)

From (98), if i ∈ Cq, then

(99) =− σi
cAq

(
∂

∂θi

eθi/c∑
s∈Cq e

θs/c

)
· ∂θi
∂zi

=
σ2
i

c2Aq

(
∑

s∈Cq e
θs/c)eθi/c − (eθi/c)2

(
∑

s∈Cq e
θs/c)2

=
σ2
i

c2Aq

eθi/c∑
s∈Cq e

θs/c

(
1− eθi/c∑

s∈Cq e
θs/c

)
.
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The update rule for σ2
i is

σ2
i ← σ2

i

1−
∑

q:r(q)≤r(i)

1

c2Aq

eµi/c∑
s∈Cq e

µs/c

(
1− eµi/c∑

s∈Cq e
µs/c

) .
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