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Abstract
One-class matrix factorization (MF) is an important technique for
recommender systems with implicit feedback. In one widely used
setting, a regression function is fit in a point-wise manner on ob-
served and some unobserved (user, item) entries. Recently, in AAAI
2019, Chen et al. [2] proposed a pair-wise ranking-based approach
for observed (user, item) entries to be compared against unobserved
ones. They concluded that the pair-wise setting performs consis-
tently better than the more traditional point-wise setting. How-
ever, after some detailed investigation, we explain by mathematical
derivations that their methodmay perform only similar to the point-
wise ones. We also identified some problems when reproducing
their experimental results. After considering suitable settings, we
rigorously compare point-wise and pair-wise one-class MFs, and
show that the pair-wise method is actually not better. Therefore, for
one-class MF, the more traditional and mature point-wise setting
should still be considered. Our findings contradict the conclusions
in [2] and serve as a call for cautionwhen researchers are comparing
between two machine learning methods.

CCS Concepts
• Information systems→ Recommender systems; Collabora-
tive filtering; Learning to rank; • Computing methodologies→
Learning from implicit feedback.
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1 Introduction
Recommender systems with implicit feedback are now widely de-
ployed in many real applications. Between a user 𝑖 and an item 𝑗 ,
some (𝑖, 𝑗) entries indicating that 𝑖 likes 𝑗 are observed, but the
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state of affairs for other entries, where 𝑖 may or may not like 𝑗 , is
unknown. One-class collaborative filtering (OCCF) was developed
to construct models for predicting unobserved (𝑖, 𝑗) entries.

One-classmatrix factorization (MF) is an important OCCFmethod
(e.g., [5, 7, 9, 10]) and proceeds as follows. Two latent matrices are
used, one for users and the other for items; the product between
both matrices indicates whether a given user likes an item. With
observed entries treated as positive and some unobserved entries
treated as negative, the most widely used setting of one-class MF is
one where the target positive/negative values are fitted to a regres-
sion function. In this work, we refer to this method as “point-wise
regression-based” one-class MF.

Researchers investigating methods for constructing one-class
MF models have extensively analyzed the method of selecting un-
observed entries as negative data. Works such as [14] have shown
that a better model is obtained if all unobserved entries are included
as negative instances for training instead of only a subset. How-
ever, the huge number of unobserved (user, item) entries results
in a prohibitively high training cost. Some studies (e.g., [5, 9, 14])
address this problem by showing that with some restrictions on, for
example, the loss function on unobserved entries, highly efficient
training algorithms can be developed.

In addition to the point-wise regression-based setting for one-
class MF, another popular setting is a ranking-based one (e.g., [13]).
In this approach, the aim is to have an observed (user, item) entry
be ranked higher than an unobserved one. We refer to such settings
as “pair-wise ranking-based” one-class MF because a pair of ob-
served and unobserved entries are compared. Unfortunately, such
approaches also have the same drawback of a prohibitive training
cost if all unobserved (user, item) entries are considered.

By extending techniques for the point-wise setting, Chen et al.
[2] recently addressed the computational cost problem for ranking-
based one-class MF. Their experiments showed that the ranking-
based setting performs consistently better than the point-wise set-
ting. The result suggests that to achieve the state-of-the-art perfor-
mance, a ranking-based one-class MF should be considered. How-
ever, for various reasons explained in this work, we are concerned
about their conclusions. Through detailed investigation, we show
that the ranking-based method, if not inferior, is not better than the
point-wise setting. Therefore, for one-class MF, the more traditional
and mature point-wise setting should still be the go-to method.

Our main contributions are summarized as follows.

• We clearly lay out the two settings (point-wise regression-based
and pair-wise ranking-based), and we provide a counterargument
to that of [2] about the superiority of the ranking-based setting.
By some novel mathematical derivations, we show that the pair-
wise ranking-based method by [2] is indeed close to a point-wise
setting. Therefore, their method may only perform similarly.
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• Through the process to reproduce the experimental results in
[2], we identify some possible issues in their settings. For ex-
ample, they seem to report cross validation results after hyper-
parameter tuning, but an independent test set should be used
for performance evaluation. More importantly, the point-wise
method employed in their comparison is not the most commonly
used one.

• After considering suitable settings, we rigorously compare point-
wise and pair-wise one-class MFs. Our results show that the
point-wise setting is highly competitive.

This paper is organized as follows. Sections 2-5 correspond to the
aforementioned three contributions, and Section 6 concludes this
work. The programs used for our experiments are at https://www.
csie.ntu.edu.tw/~cjlin/papers/ocmf_pointwise_pairwise, and the
main paper with supplementary materials in the end is available at
the same page.

2 MF Models for OCCF Problems
For an OCCF problem of𝑚 users and 𝑛 items, the data set includes
the information 𝑟𝑖 𝑗 ∈ {0, 1} between the user 𝑖 and the item 𝑗 , for
𝑖 ∈ {1, . . . ,𝑚} and 𝑗 ∈ {1, . . . , 𝑛}. If 𝑟𝑖 𝑗 = 1, we say that 𝑟𝑖 𝑗 is a
positive observed sample. Otherwise, 𝑟𝑖 𝑗 = 0 is an unobserved or
negative sample. In this section, we discuss various one-class MF
models for OCCF. Attention was given to the ranking-based model
in [2].

2.1 Regression-Based MF
Matrix factorization (MF) is an important method for OCCF model
construction. Two latent matrices are considered.

𝑊 =


𝒘𝑇1
.
.
.

𝒘𝑇𝑚

 ∈ R𝑚×𝑘 , 𝐻 =


𝒉𝑇1
.
.
.

𝒉𝑇𝑛

 ∈ R𝑛×𝑘 ,

where a small value
𝑘 ≪ min(𝑚,𝑛)

is the latent dimension. The goal is to find some𝑊 and 𝐻 that can
accurately capture whether user 𝑖 likes or dislikes item 𝑗 :

𝒘𝑇𝑖 𝒉 𝑗 ≈
{
1, if user 𝑖 likes item 𝑗,

0, otherwise.

To obtain𝑊 and 𝐻 , we typically solve an optimization problem

min
𝑊,𝐻

Loss(𝑊,𝐻 ) + Reg(𝑊,𝐻 ), (1)

where Loss(𝑊,𝐻 ) indicates the training loss and Reg(𝑊,𝐻 ) is the
regularization term. Nowwe have only the following set of observed
positive entries

Ω+ = {(𝑖, 𝑗) | 𝑟𝑖 𝑗 = 1}.
Training is difficult in one-class MF because in the absence of nega-
tive information, a loss such as the following squared loss∑︁

(𝑖, 𝑗 ) ∈Ω+
(1 −𝒘𝑇𝑖 𝒉 𝑗 )

2

fits observed positive entries and leads to a model that predicts
every (𝑖, 𝑗) entry as positive. A popular solution (e.g., [5, 7, 9, 10, 12])

involves considering some entries in a set Ω− as negative and uses
the following loss function.∑︁

(𝑖, 𝑗 ) ∈Ω+
(1 −𝒘𝑇𝑖 𝒉 𝑗 )

2 + 𝛼
∑︁

(𝑖, 𝑗 ) ∈Ω−
(𝛾0 −𝒘𝑇𝑖 𝒉 𝑗 )

2, (2)

where 𝛾0 is a value close to or equal to zero. This setting is based on
the assumption that among the so many items, a user may like only
a small subset. The weight coefficient 𝛼 is usually smaller than one
because a loss on each entry in Ω− is considered less important
than that in Ω+.1 Early works ([10, 12]) on one-class MF randomly
selected some entries not in Ω+ to be in the set Ω− . However,
subsequent works (e.g., [14]) have shown that considering all (user,
item) entries

Ω− = {(𝑖, 𝑗) | (𝑖, 𝑗) ∉ Ω+}.
often leads to a better model. However, this setting is expensive
because of a huge number of entries in Ω− . In particular,

|Ω− | ≈𝑚𝑛.

Thus, calculating the last term in (2) requires 𝑂 (𝑚𝑛𝑘) operations.
Several studies (e.g., [5, 9, 14]) have shown that the application
of special loss functions, such as squared functions, on Ω− can
yield considerable computational savings. We provide a simple
illustration by checking the following operation needed in (2).∑︁
(𝑖, 𝑗 )∉Ω+

(𝒘𝑇𝑖 𝒉 𝑗 )
2 = −

∑︁
(𝑖, 𝑗 ) ∈Ω+

(𝒘𝑇𝑖 𝒉 𝑗 )
2 +

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝒘𝑇𝑖

(
𝒉 𝑗𝒉

𝑇
𝑗

)
𝒘𝑖

= −
∑︁

(𝑖, 𝑗 ) ∈Ω+
(𝒘𝑇𝑖 𝒉 𝑗 )

2 +
𝑚∑︁
𝑖=1

𝒘𝑇𝑖

𝑛∑︁
𝑗=1

(
𝒉 𝑗𝒉

𝑇
𝑗

)
𝒘𝑖 .

(3)

In the third term of (3), because 𝑘 is small,
𝑛∑︁
𝑗=1

𝒉 𝑗𝒉
𝑇
𝑗 ∈ R𝑘×𝑘

can be computed at a computational cost of 𝑂 (𝑛𝑘2) and stored at a
memory cost of 𝑂 (𝑘2). Subsequently, the summation over 𝑖 can be
conducted in 𝑂 (𝑚𝑘2). The two independent summations resolve
the problem of having 𝑂 (𝑚𝑛) operations over all (𝑖, 𝑗) entries.

The aforementioned derivation can be extended to solutions to
the optimization problem (1). Consider a popular setting to alterna-
tively update𝑊 and 𝐻 . If the squared regularization

Reg(𝑊,𝐻 ) = 𝜆 ©«
𝑚∑︁
𝑖=1

∥𝒘𝑖 ∥22 +
𝑛∑︁
𝑗=1

∥𝒉 𝑗 ∥22
ª®¬ (4)

is considered, where 𝜆 is the regularization hyper-parameter, and
the loss in (2) is applied, then the sub-problem of fixing either𝑊
or 𝐻 is a least-square regression problem. Thus, the optimization
procedure becomes an alternating least square (ALS) one. It has
been proved that one ALS iteration for updating𝑊 and 𝐻 costs

𝑂

(
|Ω+ |𝑘2 + (𝑚 + 𝑛)𝑘3

)
. (5)

The details are presented in Supplementary Materials A.1 of [14].

1Some works even consider entry-dependent cost 𝛼𝑖 𝑗 , although we use a single value
𝛼 here for simplicity.
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Table 1: Results from [2], where the mean and standard deviation of NDCG@200 and Recall@200 are multiplied by 100. They
use SRRMF to denote their ranking-based method of minimizing the sum of (6) and (9). The existing method of using point-wise
settings as the loss function is called WRMF, while BPR is the method of using (8).

MovieLens Amazon Books Netflix
NDCG@200 Recall@200 NDCG@200 Recall@200 NDCG@200 Recall@200

SRRMF 51.77 ± 0.03 71.65 ± 0.06 9.77 ± 0.03 27.48 ± 0.06 43.97 ± 0.01 59.91 ± 0.03
WRMF 49.74 ± 0.05 69.15 ± 0.07 9.14 ± 0.02 24.52 ± 0.06 42.24 ± 0.01 57.65 ± 0.03
BPR 47.10 ± 0.09 69.91 ± 0.03 6.34 ± 0.09 18.59 ± 0.07 32.92 ± 0.12 51.79 ± 0.06

2.2 Ranking-Based MF by [2]
Chen et al. [2] critiqued the setting in (2), stating that 𝛾0 is difficult
to explain and decide. Therefore, they used a ranking-based loss
instead

1
2

𝑚∑︁
𝑖=1

∑︁
𝑠∈Ω+

𝑖

∑︁
𝑡∉Ω+

𝑖

(
(1 − 0) − (𝒘𝑇𝑖 𝒉𝑠 −𝒘𝑇𝑖 𝒉𝑡 )

)2
, (6)

where Ω+
𝑖
includes items observed by user 𝑖

Ω+
𝑖 = { 𝑗 | 𝑟𝑖 𝑗 = 1}.

From (6), we aim to have

1 ≈ 𝒘𝑇𝑖 𝒉𝑠 −𝒘𝑇𝑖 𝒉𝑡 . (7)

This means that between an observed (𝑖, 𝑠) entry and an unobserved
(𝑖, 𝑡) entry,𝒘𝑇

𝑖
𝒉𝑠 should be larger than𝒘𝑇

𝑖
𝒉𝑡 .2

Ranking-based losses have been applied to OCCF (such as in
[4, 11]). A popular one is Bayesian Personalized Ranking (BPR) by
[13], which puts the ranking difference to a logistic loss.

𝑚∑︁
𝑖=1

∑︁
𝑠∈Ω+

𝑖

∑︁
𝑡∉Ω+

𝑖

− log𝜎 (𝒘𝑇𝑖 𝒉𝑠 −𝒘𝑇𝑖 𝒉𝑡 ), where 𝜎 (𝑥) =
1

1 + 𝑒−𝑥 . (8)

Because the summation involves 𝑂 (𝑚𝑛) entries, the aforemen-
tioned problem with a high computational cost is still present. Cur-
rently, BPR is primarily trained using stochastic gradient methods,
but convergence seems to be slow, as demonstrated in the experi-
ments in [14]. This may be because each stochastic gradient step
involves only few (user, item) entries, and many steps are required
for a sufficient number of entries to be covered.

Recall that in (2), if a special loss function such as the squared
function is used in the summation over all entries, efficient algo-
rithms can be developed to avoid a computational cost proportional
to𝑂 (𝑚𝑛). Based on this idea, the main contribution of [2] is to con-
sider the squared function in (6) and develop an efficient algorithm.
We further note that Chen et al. [2] considered a ranking-based
regularization term

Reg(𝑊,𝐻 ) = 𝜆

4

𝑚∑︁
𝑖=1

∑︁
𝑠,𝑡∉Ω+

𝑖

(𝒘𝑇𝑖 𝒉𝑠 −𝒘𝑇𝑖 𝒉𝑡 )
2 . (9)

They did so because they thought that “each user’s estimated pref-
erence for unobserved items should be close to zero, implying some
similarity among unobserved items.”

By minimizing the sum of (6) and (9), each of which is a squared
term, Chen et al. [2] developed an ALS method to alternatively

2Chen et al. [2] mentioned other ranking-based losses, although they focused on (6).

update𝑊 and 𝐻 . The complexity of updating𝑊 and 𝐻 once is the
same as (5).

Chen et al. [2] conducted experiments on different one-class
MF models. We partially present their results in Table 1. Clearly,
their ranking-based approach is consistently the best. The results
seem to suggest that to apply one-class MF, one should consider a
ranking-based setting. However, we think that this conclusion is
unwarranted for the following reasons.

• In the literature of general learning to rank, where objects are in
multiple ranks, point-wise and pair-wise approaches are primar-
ily used [1]. A point-wise approach directly approximates the
given score by, for example, a regression loss. The setting in (2)
is an example. On the other hand, a pair-wise approach aims to
rank one entry ahead of another according to their scores, where
the setting of (6) is an example. Previous works have shown that
in some situations, simple point-wise models are highly com-
petitive (e.g., the discussion in Section 6.3 of [1]). The one-class
problem we are handling has only two scores 0 and 1, and it is
thus unclear whether the pair-wise ranking-based approach is
required.

• Chen et al. [2] stated that the value 𝛾0 in (2) is difficult to decide.
However, this is not the case because this value can often be
decided by a validation procedure.

• We find that the design of (6) is different from many other
ranking-based losses. In machine learning, if we hope that

𝒘𝑇𝑖 𝒉𝑠 > 𝒘𝑇𝑖 𝒉𝑡 for any 𝑠 ∈ Ω+
𝑖 and 𝑡 ∉ Ω+

𝑖 , (10)

the loss function is often designed to satisfy the following prop-
erty.

loss

{
> 0, if𝒘𝑇

𝑖
𝒉𝑠 < 𝒘𝑇

𝑖
𝒉𝑡 ,

≈ 0, otherwise.
(11)

The logistic loss in (8) is an example, while another popular way
is the hinge loss

max(0, 1 −𝒘𝑇𝑖 𝒉𝑠 +𝒘
𝑇
𝑖 𝒉𝑡 ),

or its square (squared hinge loss). However, the loss in (6) does
not satisfy the property in (11). Instead, it still resembles a point-
wise setting through a direct approximation of𝒘𝑇

𝑖
𝒉𝑠 −𝒘𝑇

𝑖
𝒉𝑡 in

(7). In Section 3, we mathematically prove that in fact (6) is not
very different from the standard point-wise setting in (2).
An interesting question is why Chen et al. [2] did not consider,
for example, the squared hinge loss. An apparent reason is that
techniques in (3) for reducing the 𝑂 (𝑚𝑛) computational cost no
longer work.
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Table 2: Statistics of data sets.

Chen et al. [2] Our reproduction
Data set Users Items Observed entries Users Items Observed entries

MovieLens 69,838 8,939 9,983,739 69,838 8,939 9,983,739
Amazon Books 158,650 128,939 4,701,968 158,650 128,939 4,701,968

Netflix 463,770 17,764 100,396,329 463,770 17,768 100,396,376

From the above concerns, it is important to re-investigate the ex-
periments in [2].

3 Relation Between Pair-Wise Ranking-Based
and Point-Wise Regression-Based MF Models

We mentioned that the loss in (6) differs from other ranking-based
losses in that it does not satisfy the property in (10). From the use
of a squared function, in this section, we show that (6) is in fact
very related to the standard point-wise approach in (2).

To connect (6) to (2), in Appendix 7.1, we derive the following
result.

(6) = 𝐿𝑝 (𝑊,𝐻 ) +
𝑚∑︁
𝑖=1

∑︁
𝑠∈Ω+

𝑖

∑︁
𝑡∉Ω+

𝑖

(
1 −𝒘𝑇𝑖 𝒉𝑠

) (
𝒘𝑇𝑖 𝒉𝑡

)
, (12)

where

𝐿𝑝 (𝑊,𝐻 ) =
∑︁

(𝑖, 𝑗 ) ∈Ω+
𝛽𝑖 (1 −𝒘𝑇𝑖 𝒉 𝑗 )

2 +
∑︁

(𝑖, 𝑗 )∉Ω+
𝛼𝑖 (0 −𝒘𝑇𝑖 𝒉 𝑗 )

2 (13)

is an extension of the point-wise setting (2) with the following
coefficients

𝛽𝑖 =
𝑛 − |Ω+

𝑖
|

2
and 𝛼𝑖 =

|Ω+
𝑖
|

2
, ∀𝑖 .

Now we define 𝐿𝑟 (𝑊,𝐻 ) as the function in (6). We show that an
optimal solution of 𝐿𝑝 (𝑊,𝐻 ) may be close to a solution of mini-
mizing 𝐿𝑟 (𝑊,𝐻 ). From (12), we calculate the gradient with respect
to𝒘𝑖 , ∀𝑖 = 1, . . . ,𝑚.

𝜕𝐿𝑟

𝜕𝒘𝑖

=
𝜕𝐿𝑝

𝜕𝒘𝑖
−

∑︁
𝑠∈Ω+

𝑖

𝒉𝑠 ·
∑︁
𝑡∉Ω+

𝑖

𝒘𝑇𝑖 𝒉𝑡 +
∑︁
𝑠∈Ω+

𝑖

(
1 −𝒘𝑇𝑖 𝒉𝑠

)
·
∑︁
𝑡∉Ω+

𝑖

𝒉𝑡 .
(14)

If (𝑊 ∗, 𝐻∗) minimizes 𝐿𝑝 (𝑊,𝐻 ), then

𝜕𝐿𝑝 (𝑊 ∗, 𝐻∗)
𝜕𝒘𝑖

= 0. (15)

Furthermore, from (13), (𝑊 ∗, 𝐻∗) tends to satisfy(
𝒘∗
𝑖

)𝑇 𝒉∗𝑠 ≈ 1, ∀𝑠 ∈ Ω+
𝑖 and

(
𝒘∗
𝑖

)𝑇 𝒉∗𝑡 ≈ 0, ∀𝑡 ∉ Ω+
𝑖 . (16)

Then, (14), (15), and (16) imply that

𝜕𝐿𝑟 (𝑊 ∗, 𝐻∗)
𝜕𝒘𝑖

≈ 0.

The situation for the gradient with respect to 𝒉 𝑗 , 𝑗 = 1, . . . , 𝑛, is
similar. Therefore, (𝑊 ∗, 𝐻∗) may be close to a stationary point of
minimizing 𝐿𝑟 (𝑊,𝐻 ). We can thus conjecture that minimizing the
point-wise form in (13) leads to a solution that well optimizes the
pair-wise form in (6).

4 Reproducing Results in [2]
The discussions in Sections 2 and 3 underscore the importance of
rigorously comparing point-wise and pair-wise one-class MFs. Our
first step is to investigate experimental settings in [2] and reproduce
their results.

4.1 Data Set Generation and Partition
Chen et al. [2] used the data sets “MovieLens” [6], “Amazon Books”3
and “Netflix”4 in their experiments. Some modifications are needed
for a one-class setting. The procedure was described in their paper,
but the processed sets were not available. We carefully followed
their descriptions to generate data sets with statistics listed in the
right column of Table 2. As a comparison, statistics from [2] are
given in the left column of the same table. Clearly, statistics of our
generated sets were the same as or close to theirs. Therefore, al-
though sets in [2] were unavailable, we have reasonably reproduced
them. More details of the data generation are in Appendix 7.2.

Subsequently, we discuss the partition of each set to training
and test subsets because a test set is needed for evaluating a model.
Moreover, a machine learning model often involves some hyper-
parameters, which are selected by a validation procedure. Therefore,
the training set is further split to training and validation sets, and
hyper-parameters that lead to the best validation performance are
chosen. Chen et al. [2] did not provide details about their data
partitions. All they have stated were that “We do cross validation
experiment of 5 times on each data set for ourmethod and baselines.”
Thus, we applied the following procedure.

(1) The data set is randomly split to 90% for training and 10%
for testing.

(2) We applied five-fold CV on the training set to select hyper-
parameters.

Note that we must address some issues in evaluating validation and
test sets; see the description in Section 5.

4.2 Other Settings in [2]
To reproduce their results, we carefully check the following details.

• Initialization of MF models. Although the corresponding de-
tails are not mentioned in [2], we combed through their code and
found that the scaled Gaussian sampling

N(0, 1) × 1
10

was used on each component of the MF model𝑊 and 𝐻 .

3http://jmcauley.ucsd.edu/data/amazon/
4https://www.kaggle.com/netflix-inc/netflix-prize-data

http://jmcauley.ucsd.edu/data/amazon/
https://www.kaggle.com/netflix-inc/netflix-prize-data
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Table 3: Reproducing the results in Table 4 of [2]. The pair-wise method by [2] and the point-wise method by solving (17) are
called SRRMF and WRMF-(17), respectively.

SRRMF WRMF-(17)
NDCG@200 Diff. Recall@200 Diff. NDCG@200 Diff. Recall@200 Diff.

MovieLens
Chen et al. 51.77 71.65 49.74 69.15

Results on test set 43.57 -8.20 74.58 2.93 42.16 -7.58 73.55 4.40
CV results on all data 51.34 -0.43 71.54 -0.11 49.78 0.04 72.49 3.34

Amazon Books
Chen et al. 9.77 27.48 9.14 24.52

Results on test set 8.31 -1.46 27.68 0.20 7.90 -1.24 24.94 0.42
CV results on all data 9.73 -0.04 27.32 -0.16 9.18 0.04 24.56 0.04

Netflix
Chen et al. 43.97 59.91 42.24 57.65

Results on test set 38.01 -5.96 61.46 1.55 36.01 -6.23 61.58 3.93
CV results on all data 43.75 -0.22 59.89 -0.02 42.42 0.18 57.99 0.34

• Evaluation metrics. Chen et al. [2] considered NDCG@200 and
Recall@200. The choice of 200 is surprising because in many prac-
tical applications a smaller number of items are recommended to
users. Although we followed suit in using a value of 200 in repro-
ducing their results, we also considered NDCG@𝐾 and Recall@𝐾
with small 𝐾 values in subsequent experiments.

• Implementation of the pair-wise methodWe use the code5
of [2] for their method SRRMF of minimizing the sum of (6) and
(9). Note that they ran a fixed number of 10 ALS iterations to
update𝑊 and 𝐻 in the training process. This choice seems to
be arbitrary, but such details are important in our attempt to
reproduce their results.

• The compared point-wise MF model. Chen et al. [2] denoted
the point-wisemethod used in their experiments asWRMF (weighted
regularized MF) and cited the work by [5] in their experiment sec-
tion. Thus, an optimization problem (2) seems to be considered.
Because Chen et al. [2] did not release the implementation of
the point-wise method, we communicated with them for further
details. Interestingly, they directed us to [8], which is a work in
discrete MF. After some investigation,6 we conclude that the fol-
lowing continuous relaxation is the point-wise method compared
in [2]:

min
𝑊,𝐻,
𝐵𝑏 ,𝐷𝑏 ,
𝐵𝑑 ,𝐷𝑑

∑︁
(𝑖, 𝑗 ) ∈Ω+

(1 −𝒘𝑇𝑖 𝒉 𝑗 )
2 + 𝜏1

(
∥𝑊 − 𝐵𝑏 ∥2𝐹 + ∥𝐻 − 𝐷𝑏 ∥2𝐹

)
+ 𝛼

∑︁
(𝑖, 𝑗 )∉Ω+

(𝒘𝑇𝑖 𝒉 𝑗 )
2 + 𝜏2

(
∥𝑊 − 𝐵𝑑 ∥2𝐹 + ∥𝐻 − 𝐷𝑑 ∥2𝐹

)
(17)

subject to

𝐵𝑇
𝑏
1𝑚 = 0, 𝐷𝑇

𝑏
1𝑛 = 0, 𝐵𝑇

𝑑
𝐵𝑑 =𝑚 · I𝑘 , 𝐷𝑇

𝑑
𝐷𝑑 = 𝑛 · I𝑘 ,

where ∥ · ∥𝐹 is the Frobenious norm, 𝐵𝑏 and 𝐵𝑑 ∈ R𝑚×𝑘 , 𝐷𝑏

and 𝐷𝑑 ∈ R𝑛×𝑘 , 1𝑚 ∈ R𝑚 and 1𝑛 ∈ R𝑛 are vectors containing
ones, and I𝑘 ∈ R𝑘×𝑘 is an identity matrix. We follow [2] to use
a public code7 for solving (17). More details are in Appendix 7.3.

5https://github.com/HERECJ/recsys/tree/master/alg/discrete/SRRMF
6See details in Appendix 7.3.
7https://github.com/DefuLian/recsys/tree/master/alg/discrete/dmf

• Optimization method.We mentioned in Section 2 that Chen
et al. [2] derived an ALS procedure to minimize their ranking-
based formulation. For the point-wise method of solving (17), an
extension of ALS can be considered so that𝑊,𝐻, 𝐵𝑏 , 𝐷𝑏 , 𝐵𝑑 and
𝐷𝑑 are sequentially updated. For example, if 𝐵𝑏 , 𝐷𝑏 , 𝐵𝑑 and 𝐷𝑑

are fixed, (17) is reduced to the following unconstrained problem
that is very close to (2).

min
𝑊,𝐻

∑︁
(𝑖, 𝑗 ) ∈Ω+

(1 −𝒘𝑇𝑖 𝒉 𝑗 )
2 + 𝜏1

(
∥𝑊 − 𝐵𝑏 ∥2𝐹 + ∥𝐻 − 𝐷𝑏 ∥2𝐹

)
+ 𝛼

∑︁
(𝑖, 𝑗 )∉Ω+

(𝒘𝑇𝑖 𝒉 𝑗 )
2 + 𝜏2

(
∥𝑊 − 𝐵𝑑 ∥2𝐹 + ∥𝐻 − 𝐷𝑑 ∥2𝐹

)
.

Then when𝑊 (or 𝐻 ) is fixed, we have a least square problem.
Regarding 𝐵𝑏 , 𝐷𝑏 , 𝐵𝑑 or 𝐷𝑑 , the situation is more complicated
because of constraints. We leave details in Supplementary Ma-
terials A.1. Note that like the pair-wise method, Chen et al. [2]
also run 10 iterations.

• Hyper-parameter search. For their pair-wise approach of using
the loss (6) and the regularization term (9), Chen et al. [2] set the
latent dimension 𝑘 = 32 and check the following regularization
parameters in (9).

𝜆 ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 5 × 10−1}.

For the point-wise MF model in (17), Chen et al. [2] consider
𝑘 = 32 and the following weights of unobserved samples

𝛼 ∈ {10−4, 10−3, 10−2, 10−1, 1}. (18)

However, they did notmention the regularization hyper-parameters
𝜏1 and 𝜏2. In the code that we obtained, the default 𝜏1 and 𝜏2 were
10−2, but we expanded our scope of consideration to include

𝜏1 = 𝜏2 ∈ {10−4, 10−3, 10−2, 10−1}.

4.3 Reproducing Results in [2]
The goal is to check if results in their Table 4 can be reproduced. To
begin, we copy results in [2] as references; see the first row for each
data set in Table 3. Next, we conduct a standard machine learning
procedure with the hyper-parameter search in Algorithm 1. The
performance on predicting the test set is presented in the second
row in Table 3. Note that NDCG@200 is the target evaluation metric
used in Algorithm 1 for the hyper-parameter selection. In Table 3,

https://github.com/HERECJ/recsys/tree/master/alg/discrete/SRRMF
https://github.com/DefuLian/recsys/tree/master/alg/discrete/dmf
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Table 4: A rigorous comparison between point-wise and pair-wise methods for one-class MF. Performance on a test set is
presented. The best result under each evaluation metric is indicated in bold. We consider five random seeds and report the
means of the results. The standard deviations and confidence interval figures are located in Appendix 7.4.

NDCG Recall
@1 @10 @50 @100 @200 @1 @10 @50 @100 @200

MovieLens
SRRMF 38.80 32.07 36.98 39.79 43.53 5.10 24.53 49.91 62.64 74.57

WRMF-(17) 38.11 31.28 34.16 38.31 42.14 4.94 22.58 48.59 61.43 73.58
WRMF-(2) 37.18 32.19 35.25 39.39 43.15 4.79 23.37 49.77 62.56 74.49

Amazon Books
SRRMF 2.25 3.16 5.37 6.75 8.34 0.86 4.55 13.09 19.46 27.79

WRMF-(17) 2.22 3.18 5.30 6.52 7.91 0.88 4.56 12.20 18.28 26.36
WRMF-(2) 2.50 3.49 5.87 7.23 8.76 0.93 5.04 13.70 19.96 28.03

Netflix
SRRMF 35.41 28.83 30.18 33.71 38.01 2.92 15.77 36.80 48.89 62.37

WRMF-(17) 35.19 28.50 29.51 32.91 36.01 2.85 15.43 35.21 47.98 61.60
WRMF-(2) 36.17 29.29 30.25 33.63 36.54 2.94 15.87 35.90 48.73 62.18

Algorithm 1 A standard machine learning procedure.
Given the target evaluation metric.

1◦ Applying five-fold cross validation (CV) on the training set
to select the hyper-parameters achieving the best target
evaluation metric.

2◦ Obtaining the final model by training the whole training set
under the selected hyper-parameters.

3◦ Using the obtained model to predict the test set.

a column “Diff.” indicates the difference from the result by [2].
Clearly, our obtained NDCG@200 results are much worse although
Recall@200 is generally better. Therefore, it seems that we have
failed to reproduce the results in [2].

After some investigation, we suspect that the differences are
due to the different training/prediction procedures. Because Chen
et al. [2] mentioned only that they “do cross validation experiment
of 5 times,” we doubt if they have a test set independent of the
hyper-parameter search. In other words, they may apply CV on all
available data by using various hyper-parameters and report the
best CV performance. We consider this setting and report results
in Table 3; see the row of “CV results on all data.” Interestingly, the
resulting NDCG@200 and Recall@200 are very close to those in
[2]. Therefore, after carefully handling many details, we are able
to reproduce their results. However, through this process we have
identified several possible issues in their experiments.

• They used (17) as the point-wise method for comparison, but in
the literature the most widely used setting is to minimize (2).

• They may have reported the validation results after tuning hyper-
parameters. This setting is inappropriate because results on an
independent test should be used in comparing two methods.

5 A Rigorous Comparison Between Point-Wise
and Pair-Wise One-Class MFs

By applying suitable settings, in this section we rigorously compare
point-wise and pair-wise one-class MFs. The methods included
in our experiments are described as follows. One is a pair-wise
method, while two are point-wise methods.

• SRRMF: This is the pair-wise method proposed in [2], which
minimizes the sum of (6) and (9).

• WRMF-(17): As we concluded via experiments in Section 4, this
method seems to be the point-wise approach compared in [2].
Obviously, it should be included in our experiments.

• WRMF-(2): We learned earlier that WRMF-(17) is not the most
commonly used point-wise method for one-class MF because of
the constraints. Therefore, we consider the more popular form
of minimizing (2), which has been well studied in, for example,
[10, 14]. The implementation is modified from the code8 by [14].
The hyper-parameters of this method are 𝛼 , 𝜆 and 𝛾0. For the
search process, we consider 𝛼 in the set in (18),

𝜆 ∈ {10−4, 10−3, 10−2, 10−1},
and

𝛾0 ∈ {0, 10−8, 10−6, 10−4, 10−2}.
For each of the above approaches, various optimization methods
may be applied. To avoid the effect of optimization techniques, we
solve all problems by the alternating least square (ALS) method.
Moreover, we follow [2] to run 10 ALS iterations for each method.

About the evaluationmetrics, Chen et al. [2] consideredNDCG@𝐾
and Recall@𝐾 with 𝐾 = 200. We mentioned in Section 4.2 that in
evaluating a practical recommender system, a smaller 𝐾 is often
more suitable. Thus here we consider a wide range of 𝐾 values:

1, 10, 50, 100, 200.

An important but often ignored detail in calculating a metric is
that training data should be excluded to avoid an overestimation.
Because the model was obtained by fitting Ω+

𝑖
, the prediction on

elements in Ω+
𝑖
should be quite accurate. Therefore, we follow [14]

to exclude Ω+
𝑖
and use only predicted values in

{1, . . . , 𝑛} \ Ω+
𝑖

for calculating the metric.
We then rigorously apply the machine learning procedure in

Algorithm 1. In particular, each evaluation metric requires a cor-
responding CV process. This setting is laborious, but mimics the
practical use, where a user decides a suitable metric and applies CV
to find the best hyper-parameters.
8https://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf/

https://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf/
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To address the variance from different data-set partitions for
cross validation and training/test splits, we consider five random
seeds. The means of the results are shown in Table 4, and the
standard deviations and confidence interval figures are located in
Appendix 7.4. We can make the following observations.

• For the evaluation metrics NDCG@200 and Recall@200 consid-
ered by [2], their method SRRMF is better than WRMF-(17). The
superiority of their method is consistent with their experimental
results, which are shown in Table 1. However, the gap is now gen-
erally smaller. Next, in the comparison with the other point-wise
method, WRMF-(2), the pair-wise method is not always better.
Even if it is, the difference is usually very small. Because WRMF-
(2) is the most popular point-wise setting, this result seems to
contradict the conclusion by [2] in comparing point-wise and
pair-wise one-class MFs.

• If a smaller 𝐾 is considered in NDCG@𝐾 and Recall@𝐾 , the pair-
wise setting is often worse than the point-wise setting WRMF-(2).
Take 𝐾 = 10 for an example. WRMF-(2) is superior in almost all
cases. Because 𝐾 = 10 is more often used than 𝐾 = 200 in real
applications, our experiments suggest that in practice we should
consider the point-wise setting in (2) first.

• From Table 7 in Appendix 7.5, results of using 𝛾0 = 0 are almost
the same as those in Table 4, where 𝛾0 has been tuned. Therefore,
the selection of 𝛾0 seems to be easy. This observation is opposite
to the claim in [2] on the difficulty in deciding 𝛾0.

6 Conclusions
In this paper, we re-investigate the conclusionmade by [2] on the su-
periority of pair-wise ranking-based one-class MF over point-wise
settings. By mathematical derivations, we explain that their method
may perform only similar to point-wise ones. Further, through the
process to reproduce their experimental results, we identify some
possible issues in their settings. For example, Chen et al. [2] seem
to report cross validation results after hyper-parameter tuning, but
for performance evaluation, an independent test set should be used.
More importantly, the point-wise method employed for the compar-
ison is not the most commonly used one. After considering suitable
settings, we rigorously compare point-wise and pair-wise one-class
MFs. Our results show that the pair-wise method, if not inferior,
is only similar to the point-wise setting. Therefore, for one-class
MF, the more traditional and mature point-wise setting should still
be the method for consideration. Our findings not only contradict
the conclusions in [2], but also indicate the importance of carefully
considering details in comparing two machine learning methods.

7 Appendices
7.1 The Derivation of (12)
Let us start from (6) − 𝐿𝑝 (𝑊,𝐻 ). Note that the coefficients

𝛽𝑖 =
𝑛 − |Ω+

𝑖
|

2
and 𝛼𝑖 =

|Ω+
𝑖
|

2
, ∀𝑖,

and details of 𝐿𝑝 (𝑊,𝐻 ) are in (13).

(6) − (13)

=
1
2

𝑚∑︁
𝑖=1

∑︁
𝑠∈Ω+

𝑖

∑︁
𝑡∉Ω+

𝑖

(
1 −𝒘𝑇𝑖 𝒉𝑠 +𝒘

𝑇
𝑖 𝒉𝑡

)2
−

∑︁
(𝑖, 𝑗 ) ∈Ω+

𝛽𝑖

(
1 −𝒘𝑇𝑖 𝒉 𝑗

)2
−

∑︁
(𝑖, 𝑗 )∉Ω+

𝛼𝑖

(
𝒘𝑇𝑖 𝒉 𝑗
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1
2
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𝑖
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With moving (13) to the right-hand side, we have done the deriva-
tion

(6) = (13) +
𝑚∑︁
𝑖=1

∑︁
𝑠∈Ω+

𝑖

∑︁
𝑡∉Ω+

𝑖

(
1 −𝒘𝑇𝑖 𝒉𝑠

) (
𝒘𝑇𝑖 𝒉𝑡

)
,

which is the same as (12).

7.2 The Processing of Data Sets
The data sets MovieLens, Amazon Books and Netflix are collected
as the rating of user 𝑖 on item 𝑗 , but the OCCF problem deals with
a binary situation of whether user 𝑖 likes item 𝑗 . Thus, Chen et al.
[2] mapped the rating values in the range [0, 5] to {0, 1} by the
following function

𝑇 (𝑣) =
{
1 if 𝑣 > 0,
0 if 𝑣 = 0.

Furthermore, Chen et al. [2] alternately filtered the users and items
with less than 20, 10 and 10 observed entries in MovieLens, Amazon
Books and Netflix, respectively. This filtering process, denoted as a
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Table 5: The results of two possible point-wise one-class MF models that Chen et al. [2] might use. Values of NDCG@200 and
Recall@200 are multiplied by 100. We show CV results after the hyper-parameter search.

MovieLens Amazon Books Netflix
NDCG@200 Recall@200 NDCG@200 Recall@200 NDCG@200 Recall@200

Chen et al. 49.74 69.15 9.14 24.52 42.24 57.65
Discrete MF-(19) 32.61 55.31 4.94 15.47 22.68 37.09

WRMF-(17) 49.78 72.49 9.18 24.56 42.42 57.99

Table 6: Results of the same experiment for Table 4, but this table further includes the standard deviations.

NDCG Recall
@1 @10 @50 @100 @200 @1 @10 @50 @100 @200

MovieLens

SRRMF 38.80 32.07 36.98 39.79 43.53 5.10 24.53 49.91 62.64 74.57
± 0.12 ± 0.09 ± 0.04 ± 0.07 ± 0.08 ± 0.04 ± 0.09 ± 0.03 ± 0.04 ± 0.04

WRMF-(17) 38.11 31.28 34.16 38.31 42.14 4.94 22.58 48.59 61.43 73.58
± 0.19 ± 0.06 ± 0.04 ± 0.05 ± 0.05 ± 0.03 ± 0.06 ± 0.07 ± 0.02 ± 0.03

WRMF-(2) 37.18 32.19 35.25 39.39 43.15 4.79 23.37 49.77 62.56 74.49
± 0.22 ± 0.05 ± 0.04 ± 0.04 ± 0.04 ± 0.02 ± 0.08 ± 0.05 ± 0.05 ± 0.06

Amazon Books

SRRMF 2.25 3.16 5.37 6.75 8.34 0.86 4.55 13.09 19.46 27.79
± 0.06 ± 0.05 ± 0.04 ± 0.05 ± 0.06 ± 0.04 ± 0.05 ± 0.10 ± 0.13 ± 0.18

WRMF-(17) 2.22 3.18 5.30 6.52 7.91 0.88 4.56 12.20 18.28 26.36
± 0.05 ± 0.04 ± 0.05 ± 0.05 ± 0.06 ± 0.02 ± 0.05 ± 0.12 ± 0.16 ± 0.15

WRMF-(2) 2.50 3.49 5.87 7.23 8.76 0.93 5.04 13.70 19.96 28.03
± 0.06 ± 0.04 ± 0.04 ± 0.05 ± 0.05 ± 0.03 ± 0.08 ± 0.07 ± 0.15 ± 0.15

Netflix

SRRMF 35.41 28.83 30.18 33.71 38.01 2.92 15.77 36.80 48.89 62.37
± 0.05 ± 0.04 ± 0.03 ± 0.03 ± 0.03 ± 0.01 ± 0.04 ± 0.01 ± 0.02 ± 0.02

WRMF-(17) 35.19 28.50 29.51 32.91 36.01 2.85 15.43 35.21 47.98 61.60
± 0.08 ± 0.04 ± 0.04 ± 0.04 ± 0.03 ± 0.02 ± 0.03 ± 0.03 ± 0.03 ± 0.02

WRMF-(2) 36.17 29.29 30.25 33.63 36.54 2.94 15.87 35.90 48.73 62.18
± 0.07 ± 0.05 ± 0.05 ± 0.05 ± 0.01 ± 0.02 ± 0.06 ± 0.02 ± 0.02 ± 0.06

function 𝐹 , is repetitively applied.

data_set′ = 𝐹◦ · · · ◦︸︷︷︸
𝑛

𝐹 (data_set),

where 𝑛 is a large enough number so that

𝐹 (data_set′) = data_set′ .

We follow the same procedure to process each set and list statistics
of the processed sets in the right column of Table 2.

7.3 The Point-Wise One-Class MF Used in [2]
From the communication with Chen et al. [2], we learned that
their experiment code of WRMF is at https://github.com/HERECJ/
recsys/tree/master/alg/discrete/dmf. However, after our investiga-
tion, this code is from the work [8] and solves the following integer

programming problem.

min
𝑊,𝐻,
𝐵𝑏 ,𝐷𝑏 ,
𝐵𝑑 ,𝐷𝑑

∑︁
(𝑖, 𝑗 ) ∈Ω+

(1 −𝒘𝑇𝑖 𝒉 𝑗 )
2 + 𝜏1

(
∥𝑊 − 𝐵𝑏 ∥2𝐹 + ∥𝐻 − 𝐷𝑏 ∥2𝐹

)
+ 𝛼

∑︁
(𝑖, 𝑗 )∉Ω+

(𝒘𝑇𝑖 𝒉 𝑗 )
2 + 𝜏2

(
∥𝑊 − 𝐵𝑑 ∥2𝐹 + ∥𝐻 − 𝐷𝑑 ∥2𝐹

)
(19)

subject to

𝐵𝑇
𝑏
1𝑚 = 0, 𝐷𝑇

𝑏
1𝑛 = 0, 𝐵𝑇

𝑑
𝐵𝑑 =𝑚 · I𝑘 , 𝐷𝑇

𝑑
𝐷𝑑 = 𝑛 · I𝑘 ,

𝑊 ∈ {−1, 1}𝑚×𝑘 , 𝐻 ∈ {−1, 1}𝑛×𝑘 ,

which is denoted as “Discrete MF-(19).” Furthermore, Lian et al. [8]
initialized the solution procedure of (19) by solving a continuous
relaxation problem (17), which is referred to as “WRMF-(17),” so
there are two point-wise implementations in their code. Because we
do not exactly know between “Discrete MF-(19)” and “WRMF-(17),”
which one is used by [2], we conduct an experiment in Table 5. We
present CV results after searching hyper-parameters. Therefore,
results in the third row are the same as those in the row of “CV
results on all data” in Table 3. See details about the experimental
settings in Section 4. From Table 5, clearly, results of WRMF-(17)
are closer to those reported in [2]. Therefore, we conclude that the

https://github.com/HERECJ/recsys/tree/master/alg/discrete/dmf
https://github.com/HERECJ/recsys/tree/master/alg/discrete/dmf
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Figure 1: The 95% confidence interval for the results of SRRMF and WRMF-(2).

Table 7: Results of the same experiment for Table 4, but 𝛾0 = 0 is fixed without tuning.

NDCG Recall
@1 @10 @50 @100 @200 @1 @10 @50 @100 @200

MovieLens
SRRMF 38.80 32.07 36.98 39.79 43.53 5.10 24.53 49.91 62.64 74.57

WRMF-(17) 38.11 31.28 34.16 38.31 42.14 4.94 22.58 48.59 61.43 73.58
WRMF-(2) 37.17 32.17 35.25 39.38 43.15 4.79 23.35 49.77 62.55 74.48

Amazon Books
SRRMF 2.25 3.16 5.37 6.75 8.34 0.86 4.55 13.09 19.46 27.79

WRMF-(17) 2.22 3.18 5.30 6.52 7.91 0.88 4.56 12.20 18.28 26.36
WRMF-(2) 2.50 3.49 5.87 7.23 8.76 0.93 5.03 13.69 19.96 28.03

Netflix
SRRMF 35.41 28.83 30.18 33.71 38.01 2.92 15.77 36.80 48.89 62.37

WRMF-(17) 35.19 28.50 29.51 32.91 36.01 2.85 15.43 35.21 47.98 61.60
WRMF-(2) 36.17 29.29 30.26 33.64 36.54 2.94 15.88 35.90 48.73 62.15

setting of solving (17) should be the point-wise approach used in
[2].

7.4 Confidence Interval for Results
Due to the readability, we only show the mean of results under
different random seeds in Section 5. Complete results including the
standard deviation are presented in Table 6. We then calculate the
confidence interval with Student’s t distribution with 4 degrees of
freedom, which is

[mean − 1.2415 · std,mean + 1.2415 · std],
and plot the intervals of results of SRRMF andWRMF-(2) in Figure 1.
We can observe that standard deviations are generally too small to
affect our conclusions on the comparison.

7.5 Results of Using 𝛾0 = 0
In Section 2.2, we mentioned that Chen et al. [2] criticized the
setting in (2) because they think 𝛾0 is difficult to explain and decide.

Nevertheless, we think 𝛾0 can often be decided by a validation
procedure; see results in Table 4. Moreover, if we fix 𝛾0 = 0, results
shown in Table 7 are almost the same as those in Table 4. Thus,
deciding a suitable 𝛾0 seems to be easy.
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A Supplementary Materials
A.1 Extending ALS for Solving (17)
To solve (17), we mentioned in Section 4.2 that ALS is extended to
update𝑊,𝐻, 𝐵𝑏 , 𝐷𝑏 , 𝐵𝑑 and 𝐷𝑑 sequentially. We showed that the
sub-problem of𝑊 or 𝐻 is a standard least square problem and can
be easily solved. Here we discuss how to update 𝐵𝑏 and 𝐵𝑑 by the
following derivation, while the situation for 𝐷𝑏 and 𝐷𝑑 is similar.

If all variables except 𝐵𝑏 are fixed, the sub-problem is

min
𝐵𝑏

∥𝑊 − 𝐵𝑏 ∥2𝐹

subject to 𝐵𝑇
𝑏
1𝑚 = 0.

(20)

Lian et al. [8] stated only that they solve (20) by the Lagrangian
multiplier method, but did not give details. Here we derive the
solution procedure. Let us modify (20) to another formulation

min
�̂�
𝑏

1 ,...,�̂�
𝑏

𝑘

𝑘∑︁
𝑗=1

∥�̂� 𝑗 − �̂�
𝑏
𝑗 ∥22

subject to
(
�̂�
𝑏
𝑗

)𝑇
1𝑚 = 0, ∀𝑗 = 1, . . . , 𝑘,

(21)

where �̂� 𝑗 is the 𝑗th column of𝑊 and �̂�
𝑏
𝑗 is the 𝑗th column of 𝐵𝑏 .

Then, we solve (21) by the Lagrangian multiplier method. With the
Lagrangian multiplier

𝜼 =


𝜂1
.
.
.

𝜂𝑘

 ∈ R𝑘 ,

we have

𝜕
∑𝑘

𝑗=1 ∥�̂� 𝑗 − �̂�
𝑏
𝑗 ∥22

𝜕�̂�
𝑏
𝑖

=

𝑘∑︁
𝑗=1

𝜂 𝑗 ·
𝜕

(
�̂�
𝑏
𝑗

)𝑇
1𝑚

𝜕�̂�
𝑏
𝑖

,

for all 𝑖 = 1, . . . ,𝑚, which then implies

𝜕∥�̂�𝑖 − �̂�
𝑏
𝑖 ∥22

𝜕�̂�
𝑏
𝑖

= 𝜂𝑖 ·
𝜕 (1𝑚)𝑇 �̂�

𝑏
𝑖

𝜕�̂�
𝑏
𝑖

, ∀𝑖 . (22)

Therefore, any optimal solution of (21) satisfies (22) and(
1𝑚

)𝑇 �̂�
𝑏
1 = · · · =

(
1𝑚

)𝑇 �̂�
𝑏
𝑘 = 0. (23)

Further,

(22) ⇒− 2�̂�𝑖 + 2�̂�𝑏𝑖 − 𝜂𝑖1𝑚 = 0, ∀𝑖

⇒ �̂�
𝑏
𝑖 = �̂�𝑖 +

1
2
𝜂𝑖1𝑚, ∀𝑖 (24)

⇒
(
1𝑚

)𝑇 �̂�
𝑏
𝑖 =

(
1𝑚

)𝑇 �̂�𝑖 +
1
2
𝜂𝑖

(
1𝑚

)𝑇 1𝑚, ∀𝑖

From (23), we have

0 =
(
1𝑚

)𝑇 �̂�𝑖 +
𝑚

2
𝜂𝑖 , ∀𝑖 .

By substituting 𝜂𝑖 in (24) with the above value, the optimal
(
�̂�
𝑏
𝑖

)∗
is(

�̂�
𝑏
𝑖

)∗
= �̂�𝑖 −

1
𝑚

( (
1𝑚

)𝑇 �̂�𝑖

)
· 1𝑚, ∀𝑖 .

This can be written in a matrix form

𝐵∗
𝑏
=

(
I𝑚 − 1

𝑚
1𝑚

(
1𝑚

)𝑇 )
𝑊,

which is the solution of the sub-problem (20).
Now if all variables except 𝐵𝑑 are fixed, the sub-problem is

min
𝐵𝑑

∥𝑊 − 𝐵𝑑 ∥2𝐹

subject to 𝐵𝑇
𝑑
𝐵𝑑 =𝑚 · I𝑘 .

(25)

In Lian et al. [8], they only stated that “this problem is the same as
the projection of a matrix onto the Stiefel manifold” and refer to
[3] for getting the analytical solution of 𝐵𝑑 . Here we derive all the
details. The objective function can further be derived as

∥𝑊 − 𝐵𝑑 ∥2𝐹
=
∑︁
𝑖

∥𝒘𝑖 − 𝒃𝑑𝑖 ∥
2
2

=
∑︁
𝑖

∥𝒘𝑖 ∥22 − 2
∑︁
𝑖

𝒘𝑇𝑖 𝒃
𝑑
𝑖 +

∑︁
𝑖

∥𝒃𝑑𝑖 ∥
2
2

=
∑︁
𝑖

∥𝒘𝑖 ∥22 − 2 · trace(𝑊𝑇𝐵𝑑 ) + trace(𝐵𝑇
𝑑
𝐵𝑑 ),

where 𝒘𝑖 is the 𝑖th column of𝑊 , and 𝒃𝑑𝑖 is the 𝑖th column of 𝐵𝑑 .
From the constraint in (25),

trace(𝐵𝑇
𝑑
𝐵𝑑 ) = trace(𝑚 · I𝑘 ) =𝑚𝑘,

so problem (25) is equivalent to

max
𝐵𝑑

trace(𝑊𝑇𝐵𝑑 )

subject to 𝐵𝑇
𝑑
𝐵𝑑 =𝑚 · I𝑘 .

(26)

The maximal 𝐵𝑑 can be found by calculating the singular value
decomposition (SVD) of𝑊 . Suppose that

𝑊 = 𝑈 Σ𝑉𝑇 ,

where
𝑈 ∈ R𝑚×𝑚, Σ ∈ R𝑚×𝑘 ,𝑉 ∈ R𝑘×𝑘 ,

is the SVD of𝑊 with

𝑈𝑈𝑇 = 𝑈𝑇𝑈 = I𝑚 and 𝑉𝑉𝑇 = 𝑉𝑇𝑉 = I𝑘 . (27)

Furthermore, because 𝑘 ≤ 𝑚, Σ is a rectangular diagonal matrix
having values in the upper 𝑘 × 𝑘 part.

We define 𝑍 by

𝑍 =
1
√
𝑚
𝑈𝑇𝐵𝑑𝑉 ∈ R𝑚×𝑘 . (28)

The objective value of (25) can be written as

trace
(
𝑊𝑇𝐵𝑑

)
= trace

((
𝑈 Σ𝑉𝑇

)𝑇
𝐵𝑑

)
=trace

(
𝑉 Σ𝑇𝑈𝑇𝐵𝑑

)
=
√
𝑚 · trace

(
𝑉 Σ𝑇𝑍𝑉𝑇

)
,

(29)

where the last equality is from multiplying with𝑉𝑉𝑇 , (27), and (28).
The property

trace (𝐴𝐵) = trace (𝐵𝐴) , ∀𝐴, 𝐵 ∈ R𝑘×𝑘
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implies that
√
𝑚 · trace

(
𝑉 Σ𝑇𝑍𝑉𝑇

)
=
√
𝑚 · trace

(
Σ𝑇𝑍𝑉𝑇𝑉

)
=
√
𝑚 · trace

(
Σ𝑇𝑍

)
=
√
𝑚 ·

𝑘∑︁
𝑖=1

𝜎𝑖 · 𝑧𝑖𝑖 , (30)

where 𝜎𝑖 is the 𝑖th diagonal component of Σ, 𝑧𝑖 𝑗 is the component
on 𝑖th row and 𝑗 th column of𝑍 . Because (27), (28) and the constraint
in (26) imply

𝑍𝑇𝑍 =
1
𝑚
𝑉𝑇𝐵𝑇

𝑑
𝑈 ·𝑈𝑇𝐵𝑑𝑉 = I𝑘 ,

we have the property
𝑚∑︁
𝑠=1

𝑧2𝑠𝑖 = 1, ∀𝑖 = 1, . . . , 𝑘,

which implies
|𝑧𝑖𝑖 | ≤ 1, ∀𝑖 .

Therefore, from (29) and (30),

trace
(
𝑊𝑇𝐵𝑑

)
=
√
𝑚 ·

𝑘∑︁
𝑖=1

𝜎𝑖 · 𝑧𝑖𝑖 ≤
√
𝑚 ·

𝑘∑︁
𝑖=1

𝜎𝑖 ,

and the equality holds under the condition

𝑧𝑖𝑖 = 1, ∀𝑖 = 1, . . . , 𝑘 . (31)

By considering
𝐵∗
𝑑
=
√
𝑚�̃�𝑉𝑇 , (32)

where �̃� includes the first 𝑘 columns of 𝑈 , and the property (27),
we have (

𝐵∗
𝑑

)𝑇
𝐵∗
𝑑
=𝑚 · I𝑘 .

Thus 𝐵∗
𝑑
is feasible to (25). Moreover, from (28), we have

𝑍 ∗ =
1
√
𝑚
𝑈𝑇𝐵∗

𝑑
𝑉 =

[
I𝑘

0

]
satisfying (31). Therefore, the maximal possible objective value of
(26) is achieved. That is, from (29), (30) and (31), we have

trace(𝑊𝑇𝐵𝑑 ) ≤ trace(𝑊𝑇𝐵∗
𝑑
) =

√
𝑚 ·

𝑘∑︁
𝑖=1

𝜎𝑖 ,

for any 𝐵𝑑 satisfying the constraint of (25). Thus 𝐵∗
𝑑
in (32) is an

optimal solution of (25).


	Abstract
	1 Introduction
	2 MF Models for OCCF Problems
	2.1 Regression-Based MF
	2.2  Ranking-Based MF by JC19a

	3 Relation Between Pair-Wise Ranking-Based and Point-Wise Regression-Based MF Models
	4 Reproducing Results in JC19a
	4.1 Data Set Generation and Partition
	4.2 Other Settings in JC19a
	4.3 Reproducing Results in JC19a

	5 A Rigorous Comparison Between Point-Wise and Pair-Wise One-Class MFs
	6 Conclusions
	7 Appendices
	7.1 The Derivation of (12)
	7.2 The Processing of Data Sets
	7.3  The Point-Wise One-Class MF Used in JC19a
	7.4 Confidence Interval for Results
	7.5 Results of Using 0 = 0

	Acknowledgments
	References
	A Supplementary Materials
	A.1 Extending ALS for Solving (17)


