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Abstract

In many applications such as recommender systems and
multi-label learning the task is to complete a partially ob-
served binary matrix. Such PU learning (positive-unlabeled)
problems can be solved by one-class matrix factorization
(MF). In practice side information such as user or item fea-
tures in recommender systems are often available besides the
observed positive user-item connections. In this work we con-
sider a generalization of one-class MF so that two types of
side information are incorporated and a general convex loss
function can be used. The resulting optimization problem
is very challenging, but we derive an efficient and effective
alternating minimization procedure. Experiments on large-
scale multi-label learning and one-class recommender sys-
tems demonstrate the effectiveness of our proposed approach.

1 Introduction
Many practical applications can be modeled in a positive
and unlabeled data learning (PU learning) framework. Be-
tween two types of objects, some connections between ob-
ject i of the first type and j of the second type are observed,
but for most remaining situations, either i and j are not
connected or the connection is not observed. A typical ex-
ample is the collaborative filtering with one-class informa-
tion (Pan et al. 2008; Hu, Koren, and Volinsky 2008; Pan and
Scholz 2009; Li et al. 2010; Paquet and Koenigstein 2013).
Given m users and n items, we observe part of a 0/1 ma-
trix Y ∈ Rm×n with Yij = 1, where (i, j) ∈ Ω+. An
observed entry indicates that user i likes item j. The goal
is to know for any unobserved pair (i, j) /∈ Ω+, whether i
likes j or not. Thus, only part of positive-labeled entries are
observed, while there are many unknown negative entries.
This setting is very different from traditional collaborative
filtering, where a real-valued rating (observed or not) is as-
sociated with any Yij . Note that this may be a more common
scenario; for example, most people watch the video that in-
terest them, without leaving any rating information.

Another important application that falls into the PU lean-
ing framework is multi-label classification (Kong et al. 2014;
Hsieh, Natarajan, and Dhillon 2015). The two types of ob-
jects are instances and labels. An entry Yij = 1 indicates
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that instance i is associated with label j. In practice, only
part of instance i’s labels have been observed.

PU learning is essentially a matrix completion problem.
Given Yij = 1, ∀(i, j) ∈ Ω+, we would like to predict
if other entries are zero or one. One common approach for
matrix completion is through matrix factorization (MF) by
finding two low-rank latent matrices

W =[. . . ,wi, . . .]
>∈Rm×k and H=[. . . ,hj , . . .]

>∈Rn×k

such that Yij = 1 ≈ w>i hj , ∀(i, j) ∈ Ω+. Note that k is a
pre-specified number satisfying k � m and k � n. Unlike
traditional matrix completion problems where Yij , ∀(i, j) ∈
Ω+ have different values, here approximating all the ob-
served positive entries will result in the all-one prediction
for all (i, j) /∈ Ω+. For such a one-class scenario, in the
approximation process one must treat some (i, j) /∈ Ω+ as
negative entries so that Yij = 0 ≈ w>i hj . Therefore, ex-
isting one-class MF works solve the following optimization
problem.

min
W,H

∑
i,j∈Ω

Cij(Yij −wT
i hj)

2+
∑
i

λi‖wi‖2+
∑
j

λ̄j‖hj‖2, (1)

where Cij is a cost associated with the loss, and λi, λ̄j are
regularization parameters. The set Ω = Ω+ ∪ Ω− includes
both observed positive and selected negative entries. The
rationale of selecting some (i, j) /∈ Ω+ and treating their
Yij = 0 is because in general each user likes only a small
set of items (or each instance is associated with a small set
of labels).

The selection of negative entries in Ω− is an important
issue. Roughly there are two approaches:
• Subsampled: we subsample some unobserved entries to

have Ω− with |Ω−| = O(|Ω+|).
• Full: Ω− = [m]×[n]\Ω+. That is, every unobserved entry

is considered as negative. Unfortunately, the huge size of
Ω− makes this approach computationally expensive.

Recently, Yu, Bilenko, and Lin (2017) successfully devel-
oped efficient optimization methods to solve (1) for the
Full approach. They show that the Full approach gives sig-
nificantly better results than the Subsampled approach.
A shortcoming is that their methods work only with the
squared loss (Yij − w>i hj)

2, which is a real-value regres-
sion loss. However Y is a 0/1 matrix in the one-class set-
ting, so a 0/1 classification loss might be more suitable. Yet,



Table 1: Various one-class MF formulations supported by
our proposed algorithms. SQ-SQ: we apply the square loss
on entries in both Ω+ and Ω−. SQ-wSQ: we apply the square
loss on entries in Ω+ and the weighted square loss on Ω−.
General-wSQ: we apply a general loss on entries in Ω+ and
the weighted square loss on Ω−. For the Full approach of
most formulations in this family, our proposed algorithms
are the first efficient approach with time complexity linear in
O(|Ω+|). [1]: (Pan and Scholz 2009), [2]: (Yu, Bilenko, and
Lin 2017), [3]: (Yu et al. 2014), and [4]: (Rao et al. 2015).

SQ-SQ SQ-wSQ General-wSQ
loss `+ij on Ω+ square square general loss
loss `−ij on Ω− square weighted square weighted square

Standard [1],[2] [1],[2] this paper
Feature-aware LEML [3] this paper this paper

Graph-structured GRALS [4] this paper this paper
Feature+Graph this paper this paper this paper

developing efficient methods for the Full approach with a
classification loss remains a challenging problem.

In problem (1), Yij , (i, j) ∈Ω+ are the only given infor-
mation. However, for most applications, some “side infor-
mation” is also available. For example, besides the prefer-
ence of user i on item j, user or item features may also
be known. For multi-label learning, a data instance always
comes with a feature vector. Further, relationships among
users (items) may be available, which can be represented as
a graph. How to effectively incorporate side information into
the PU learning framework is thus a crucial research issue.

In this paper, we consider a formulation which unifies and
generalizes many existing structured matrix-factorization
formulations for PU learning with side information. In Sec-
tion 2, we introduce the formulation and review related
works. Our main contribution in Section 3 is to develop an
efficient alternating minimization framework for the Full ap-
proach with any convex loss function. Experiments in Sec-
tion 4 consider multi-label classification and recommender
systems to illustrate the effectiveness of our approach. Re-
sults show a clear performance improvement using a classifi-
cation loss. A summary showing how we generalize existing
works is in Table 1, indicating that our proposed algorithms
enable the computational feasibility of the Full approach for
many one-class MF formulations with or without side infor-
mation. The experimental codes and supplementary materi-
als can be found at http://www.csie.ntu.edu.tw/
˜cjlin/papers/ocmf-side/.

2 One-class Structured Matrix Factorization

Assume that two types of side information are available for
users (or instances). First, each user is associated with a fea-
ture vector, and second, a similarity matrix indicating the
relationships between users is available. Our discussion can
be easily generalized to the situation that items or both users
and items come with side information. The proposed exten-

sion of (1) is the following optimization problem.

min
W,H

f(W,H), where f(W,H) = (2)∑
(i,j)∈Ω

Cij`(Yij ,x
>
i Whj) + λwR(W ) + λhR(H).

In (2), λw, λh and λg are regularization parameters;

R(W )=tr
(
W>W+λgW

>X>LXW
)
,R(H)=tr

(
H>H

)
are regularizers1; L is a positive definite matrix;

X = [x1, . . . ,xm]> ∈ Rm×d

includes feature vectors corresponding to users; `(a, b) is a
loss function convex in b. We also use

`ij(a, b) = Cij`(a, b)

to denote the loss term for the (i, j) entry. Typically L is in a
form of a graph Laplacian matrix with L = D−S, whereD
is a diagonal matrix with Dii =

∑m
t=1 Sit and S ∈ Rm×m

is a similarity matrix among users. Then inR(W ) we have

tr
(
W>X>LXW

)
=

1

2

∑
i1,i2
Si1,i2

∥∥W>xi1−W>xi2

∥∥2
.

If the relationship between users i1 and i2 is strong, the
larger Si1,i2 will make W>xi1 closer to W>xi2 . This use
of the graph information in the regularization term has been
considered in various learning methods (Smola and Kondor
2003; Li and Yeung 2009; Zhou et al. 2012; Zhao et al. 2015;
Rao et al. 2015; Natarajan, Rao, and Dhillon 2015), where
Natarajan, Rao, and Dhillon (2015) focus on PU learning.
We further note that in the optimization problem (2), W>xi

becomes the latent representation of the i-th user (or in-
stance). Thus in contrast to W ∈ Rm×k in the standard MF
formulation, now we have W ∈ Rd×k. Then the predic-
tion on unseen instances, such as in multi-label classifica-
tion, can be done naturally using W>x as feature vector x’s
latent representation. There are other approaches to incor-
porate side information into MF such as Singh and Gordon
(2008), but we focus on the formulation (2) in this paper.

Some past works have considered optimization problems
related to (2). In (Rao et al. 2015), for rating-based MF,
they consider the same regularization termR(W ) by assum-
ing that pairwise relationships are available via a graph. For
squared losses they derive efficient alternating least squares
methods to solve the optimization problem. Ours differs
from them on: (i) they do not incorporate the side infor-
mation of feature vectors in X; (ii) we consider one-class
rather than rating-based MF; (iii) we consider general losses.
Natarajan, Rao, and Dhillon (2015) consider the graph struc-
tured one-class MF without feature vectors X and proposes
a Frank-Wolf algorithm, which requires O(mn) space and
the full eigendecomposition of the graph Laplacian matrix.
For multi-label learning, Yu et al. (2014) solve (2) without
the graph information for two scenarios:
• the general loss with Cij = 1 and |Ω| � mn; and
• the squared loss with Cij = 1 and Ω = [m]× [n].

1tr(·) denotes the trace of a matrix
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Theirs does not cover the situation of using a general loss
with weighted Cij and Ω = [m]× [n].

If side information is not considered, Yu, Bilenko, and Lin
(2017) give a detailed study on one-class MF under the Full
setting. They consider the squared loss with

Cij =

{
1 if (i, j) ∈ Ω+,

piqj otherwise,
and Yij = ā, ∀(i, j) /∈ Ω+, (3)

where p ∈ Rm and q ∈ Rn are vectors chosen so that
piqj < 1 because weights for observed entries should be
higher and ā is a real number. A common choice is ā = 0
or −1. This work proposes efficient algorithms, and demon-
strates that using Ω− = [m] × [n] \ Ω+ gives much better
results than selecting a small set Ω− with |Ω−| = O(|Ω+|).

3 Algorithms for One-class Structured MF
We develop efficient optimization algorithms to minimize
(2) by considering Cij in (3), any convex loss, and Ω =
[m]×[n] (i.e., the Full approach). We consider an alternating
minimization framework to iteratively update
W ← arg minW f(W,H) and H ← arg minH f(W,H),

and show that each sub-problem can be efficiently solved.
Because minH f(W,H) can be treated as a special form of

minW f(W,H) with λg = 0 and X = I,

where I is the identity matrix, we focus on the sub-problem
when H is fixed. Let
x̃ij = hj⊗xi = vec

(
xih

>
j

)
∈ Rdk, w̃ = vec(W ) ∈ Rdk,

where vec(·) is the vector by stacking the columns of a ma-
trix. From

x>i Whj =
(
h>j ⊗ x>i

)
vec(W ) = x̃>ijw̃, (4)

minW f(W,H) can be reformulated as follows:
minw̃ g(w̃), where (5)

g(w̃) =
∑

(i,j)∈Ω
`ij
(
Yij , w̃

>x̃ij

)
+ λwRw̃(w̃), and

Rw̃(w̃) = w̃>w̃ + λg
(
(X>LX)⊗ Ik

)
w̃.

Because |Ω| = mn and the number of variables dk can be
large, and closed-form solutions may not be available un-
der some loss functions, we may apply iterative optimization
methods to solve (5), where the calculations of the function,
the gradient, and Hessian-vector product are often needed.

Handling all mn loss values is difficult, so we make
the sub-problem easier by restricting the loss function on
(i, j) ∈ Ω− to be quadratic. Therefore, with Cij in (3), we
have the following two modified loss functions.

`+ij(Yij , w̃
>x̃ij) = `ij(Yij , w̃

>x̃ij)− piqj(ā− w̃>x̃ij)
2

`−ij(ā, w̃
>x̃ij) = piqj(ā− w̃>x̃ij)

2. (6)
Then, (5) is equivalent to (7).
g(w̃) = λwRw̃(w̃)+ (7)∑
(i,j)∈Ω+

`+ij(Yij , w̃
>x̃ij)︸ ︷︷ ︸

L+(w̃)

+
∑

(i,j)∈[m]×[n]

`−ij(ā, w̃
>x̃ij)︸ ︷︷ ︸

L−(w̃)

,

where L+(w̃) is the term corresponding to all the entries in
Ω+, and L−(w̃) is the term considering all mn entries.

For the loss function, we do not require them to be differ-
entiable because some optimization methods need just func-
tion evaluations. However, if they are, we let

`′ij(a, b) =
∂

∂b
`ij(a, b), and `′′ij(a, b) =

∂2

∂b2
`ij(a, b),

and assume that once a and b are given, these values can be
calculated in a constant time.

With the reformulation (7), we can derive efficient proce-
dures to perform function, gradient evaluation and Hessian-
vector products. In particular, the O(mn) terms in L−(w̃)
can be efficiently computed with the cost comparable to that
for O(|Ω+|) terms in L+(w̃). While Yu et al. (2014) and
Yu, Bilenko, and Lin (2017) also achieve such results, their
optimization problems are our special cases. The generaliza-
tion is not trivial. For example, Yu et al. (2014) state that for
general losses, the O(mn) term in the overall complexity is
inevitable, but here we successfully remove it.

We show details for the function evaluation, but leave
most details of gradient evaluation and Hessian-vector prod-
ucts in the supplementary materials. To cover both dense and
sparse feature/graph matrices in our complexity analysis we
use nnz(·) to denote the number of nonzeros in a matrix.

3.1 Evaluation of the Objective Value g(w̃)
To compute L+(w̃) in (7), we first compute B = XW ,
where B = [. . . , bi, . . .]

> in O(nnz(X)k) time and store
it in an O(mk) space. Then for each (i, j) ∈ Ω+, from
(4), w̃>x̃ij is a simple inner product b>i hj that costs only
O(k) time. As a result, we can compute the entire L+(w̃) in
O(nnz(X)k + |Ω+|k) time and O(mk) space.

To compute L−(w̃), we first notice its independence of
any Yij and consider the following equivalent formulation
(see a detailed derivation in the supplementary materials).
L−(vec(W )) = tr

(
ā21n1

>
m diag(p)1m1>n diag(q)

)
(8)

+ tr
(
HW>X> diag(p)XWH> diag(q)

)
(9)

− 2 tr
(
ā1n1

>
m diag(p)XWH> diag(q)

)
, (10)

where 1m ∈ Rm and 1n ∈ Rn are vectors of ones, respec-
tively. Note that with the availability of
• B = XW , obtained from the calculation of L+(w̃),
• M = H> diag(q)H , which can be pre-computed in
O(nk2) time and stored in O(k2) space,

• d = X>p, which can be pre-computed in O(nnz(X))
time and stored in O(d) space,

• k = H>q, which can be pre-computed in O(nk) time
and stored in O(k) space, and

• p>1m and q>1n, which can be pre-computed in O(m+
n) time and stored in O(1) spaces,

values in (8)-(10) can be computed efficiently:
(8) = ā2 tr

(
1>m diag(p)1m1>n diag(q)1n

)
= ā2

(
p>1m

)(
q>1n

)
, (11)

(9) = tr
(

(XW )
>︸ ︷︷ ︸

B>

diag(p) (XW )︸ ︷︷ ︸
B

(
H> diag(q)H

)︸ ︷︷ ︸
M

)
= 〈B, diag(p)BM〉, (12)



Algorithm 1 Objective value evaluation: g(w̃)

• Pre-processing step: before any function evaluation
1 M = H> diag(q)H · · ·O(nk2)
2 d = X>p · · ·O(nnz(X))
3 k = H>q · · ·O(nk)
4 Compute p>1m and q>1n · · ·O(m+ n)

• Each time the function value at w̃ is evaluated:
1 B = XW , where B = [· · · bi · · · ]> · · ·O(nnz(X)k)
2 L+ =

∑
(i,j)∈Ω+ `

+
ij(Yij , b

>
i hj) · · ·O(|Ω+|k)

3 L− = ā2
(
p>1m

)(
q>1n

)
+ 〈B, diag(p)BM〉

−2ād>Wk · · ·O(mk2 + dk)

4 Return L+ + L− + λw(‖W‖2F + λg tr
(
B>LB

)
)

5 · · ·O(dk + nnz(L)k)

(10) = −2ā tr
(
1>m diag(p)(X)︸ ︷︷ ︸

d>

W H> diag(q)1n︸ ︷︷ ︸
k

)
= −2ād>Wk, (13)

where 〈·, ·〉 is the element-wise inner product between two
same-sized matrices. As a result, computing L−(w̃) costs
O(mk2+dk) time whenM , d, k, p>1m, and q>1n are pre-
computed and B has been obtained in calculating L+(w̃).
In general neither mk nor d is larger than |Ω+|, so by our
setting the cost is comparable to that for L+(w̃).

To compute Rw̃(w̃), via B = XW obtained earlier,
we calculate Rw̃(w̃) = tr

(
w̃>w̃ + λgB

>LB
)

in O(dk +
nnz(L)k) time. Details of the description of the function
evaluation are given in Algorithm 1.

3.2 Gradient and Hessian-vector Product
Given a current point w̃, calculating gradient ∇g(w̃) and
Hessian-vector product ∇2g(w̃)s̃ for a vector s̃ ∈ Rdk are
two common operations in iterative optimization algorithms
such as Newton methods. Let S ∈ Rd×k be the matrix such
that s̃ = vec(S). With careful derivations (see Section Supp-
1.2 and Section Supp-1.3 in the supplementary materials),
we show that both operations can be computed by a se-
quence of matrix-matrix products with a time complexity
only linear in |Ω+| instead of |Ω| = mn:

∇g(w̃) = vec
(
X>
[
D+H+2 diag(p)(BM)+2λwλgLB

]
+ 2λwW −2ādk>

)
, (14)

∇2g(w̃)s̃ = vec
(
X>
[
U+H + 2 diag(p)NM+2λwλgLN

]
+ 2λwS

)
, (15)

where N = XS, D+ and U+ are sparse matrices with
∀(i, j) ∈ Ω+:

D+
ij = `+ij

′
, U+

ij = `+ij
′′
x>i Shj ,

`+ij
′
= `+ij

′
(Yij , w̃

>x̃ij), and `+ij
′′

= `+ij
′′
(Yij , w̃

>x̃ij).

With (14), gradient calculation can be done in

O(nnz(X)k +
∣∣Ω+

∣∣k + nnz(L)k +mk2 + dk) (16)

Algorithm 2 Gradient evaluation: ∇g(w̃)

• Pre-processing step: before any gradient evaluation
1 M = H> diag(q)H · · ·O(nk2)
2 d = X>p · · ·O(nnz(X))
3 k = H>q · · ·O(nk)

• Each time the gradient at w̃ is evaluated:
1 B = XW , where B = [· · · bi · · · ]> · · ·O(nnz(X)k)

2 D+
ij = `+ij

′
(Yij , b

>
i hj), ∀(i, j) ∈ Ω+ · · ·O(|Ω+|k)

3 G = X>(D+H + 2 diag(p)(BM) + 2λwλgLB)
4 · · ·O(|Ω+|k + nnz(X)k + nnz(L)k +mk2)
5 Return vec

(
G+ 2λwW − 2ādk>

)
· · ·O(dk)

Algorithm 3 Hessian-vector Product:∇2g(w̃)s̃

• Pre-processing step: before any Hessian-vector product
1 M = H> diag(q)H · · ·O(nk2)
2 B = XW , where B = [· · · bi · · · ]> · · ·O(nnz(X)k)

3 `+ij
′′

= `+ij
′′
(Yij , b

>
i hj), ∀(i, j) ∈ Ω+ · · ·O(|Ω+|k)

• Each time the Hessian-vector product at w̃ = vec(W ) is
required with a given vector s̃ = vec(S):
1 N = XS, where N = [· · ·ni · · · ]> · · ·O(nnz(X)k)

2 U+
ij = `+ij

′′
n>i hj , ∀(i, j) ∈ Ω+ · · ·O(|Ω+|k)

3 G = X>(U+H+2 diag(p)(NM) +2λwλgLN)
4 · · ·O(|Ω+|k + nnz(X)k + nnz(L)k +mk2)
5 Return vec(G+ 2λwS) · · ·O(dk)

time. See Algorithm 2 for details. Similarly, with (15), each
Hessian-vector products can be done in

O(nnz(X)k +
∣∣Ω+

∣∣k + nnz(L)k +mk2 + dk) (17)

time. See details in Algorithm 3. From (16) and (17), clearly
the cost is related to O(|Ω+|) rather than O(|Ω|) = O(mn).

3.3 Overall Optimization Procedure
With the efficient procedures proposed in Sections 3.1-3.2,
we are able to implement many optimization algorithms to
solve (7) such as gradient descent with line search, conju-
gate gradient, truncated Newton methods with line search,
and trust region Newton methods. In Section Supp-1.4 of
the supplementary materials, we give an efficient line-search
procedure that only costs O(|Ω+|k) time to check if the
function value is sufficiently decreased.

To illustrate how Algorithms 1-3 are used, in the supple-
mentary materials, we give details of a trust-region Newton
method in Algorithm 5 and a gradient descent method with
line search in Algorithm 6.

4 Experimental Results
We study one-class MF with various types of side infor-
mation: standard one-class recommender systems with and
without graph information, and multi-label learning by one-
class MF with feature vectors as the side information.

Compared Formulations We consider three one-class
MF formulations described in Table 1: SQ-SQ, SQ-wSQ,
and General-wSQ. In SQ-SQ, we apply the square loss on



Table 2: Data statistics.

m n |Ω+| d nnz(X) mtest k
bibtex 4,880 159 11,729 1,836 335,455 2,512 150

mediamill 30,993 101 135,752 120 3,719,160 12,425 100
delicious 12,920 983 245,810 500 234,740 3,182 300

eurlex 17,413 3,993 92,452 5,000 4,121,532 1,933 500
wiki10 14,146 30,938 263,705 101,938 9,526,572 6,616 500

(a) Multi-label learning.

m n |Ω+| nnz(S)
∣∣Ω+

test

∣∣ k
ml100k 943 1,682 49,791 29,235 5,584 64
flixster 147,612 48,794 3,619,304 2,538,746 401,917 100
douban 129,490 58,541 9,803,098 1,711,780 1,087,948 128
(b) One-class recommender systems with graph information, S,
among m users

entries in both Ω+ and Ω−. The difference of SQ-wSQ to
SQ-SQ is that we apply the weighted square loss on Ω−.
For General-wSQ, we consider a classification loss: the lo-
gistic loss, and denote the formulation as LR-wSQ. Specif-
ically, we apply the logistic loss on entries in Ω+ and the
weighted square loss on Ω−. We implement the trust re-
gion Newton method (Lin, Weng, and Keerthi 2008) with
the efficient function/gradient evaluation and Hessian-vector
product proposed in Section 3. We also include LR-wLR
into the multi-label learning experiments. LR-wLR is a Full
approach where we apply the logistic loss on the entries
in Ω+ and apply the weighted logistic loss on entries in
[m] × [n] \ Ω+. It can be used only for small datasets be-
cause, without efficient procedures like those in Section 3,
each iteration takes O(mnk) cost.

Datasets and Experimental Settings For one-class MF
with graph information as the side information, we con-
sider three rating-based recommender system datasets with
graph information, S, among m users (see Table 2):
ml100k (Rao et al. 2015), flixster (Jamali and Ester 2010),
and douban (Ma et al. 2011) and convert them into one-
class problems by the same procedure in (Yu, Bilenko, and
Lin 2017). Because the feature information is not available,
X is the identity matrix. For multi-label learning, we con-
sider five publicly available datasets (see Table 2) and set
λg = 0 because the graph information S is not available.
All experiments are run on a 20-core machine with 256GB
RAM. BLAS operations are used whenever possible for all
the implementations. Sparse matrix operations are paral-
lelized using OpenMP. We use precision and nDCG on the
top-rank predictions as our evaluation criteria for both rec-
ommender systems and multi-label learning. We only show
precision@5 in Figures 1-3 and leave figures with other cri-
teria in the supplementary materials. We adopt a held-out
validation approach on the training part of each dataset to
perform parameter search. See Section Supp-2 in the sup-
plementary materials for more experimental details.

4.1 Full versus Subsampled
We compare Full and Subsampled approaches on multi-
label problems, which are special cases of feature-aware

Table 3: Comparison between LR-wLR and LR-wSQ.

time p@1 p@2 p@3 p@4 p@5

bibtex LR-wSQ 22 63.22 48.43 39.89 33.83 29.50
LR-wLR 85 61.91 46.66 38.21 32.66 28.43

mediamill LR-wSQ 61 87.77 80.96 70.08 61.48 55.15
LR-wLR 437 87.78 81.17 70.38 61.85 55.33

delicious LR-wSQ 23 67.47 64.24 61.85 59.25 56.73
LR-wLR 446 67.91 65.04 62.27 59.81 57.27

one-class MF. An extensive comparison for the standard
one-class MF without features has been performed in (Yu,
Bilenko, and Lin 2017). Figure 1 shows both training time
and test performance on three large datasets.

From Figure 1(a), the three Full approaches: SQ-SQ, SQ-
wSQ, and LR-wSQ are highly efficient because with our
algorithms in Section 3, the cost per iteration of the trust
region Newton method is related to |Ω+| rather than |Ω| =
mn. Thus the costs of these three Full approaches are similar
to the costs of the two Subsampled approaches: SQ-wSQ
(S) and LR-wLR (S). Regarding the prediction performance,
from Figure 1(b), the Full formulations always outperform
the Subsampled formulations. Such observations are con-
sistent with those for one-class MF without side information
(Yu, Bilenko, and Lin 2017).

4.2 Comparison on Various Loss Functions
We check various formulations of the Full approach for
feature-aware or graph structured one-class MF to study the
effectiveness of (i) the use of weighted losses on the entries
in Ω−; and (ii) the use of a classification loss.

LR-wSQ versus LR-wLR To resolve the O(mnk) com-
putational requirement for the Full approach with a general
loss function, in Section 3, we propose a technique where
the general loss is applied to the observations in Ω+, while
a weighted squared loss is applied to Ω−. In Table 3, we
show the results of LR-wSQ and LR-wLR on three smaller
datasets. We observe that LR-wSQ and LR-wLR are simi-
lar in terms of prediction performance, while LR-wSQ runs
significantly faster. This result indicates that our proposed
technique to replace the loss on Ω− by a weighted loss not
only accelerates the training procedure significantly but also
yields a similar prediction performance.

SQ-wSQ versus LR-wSQ. By considering three types of
one-class problems, in Figure 2, we show the performance
improvement of SQ-wSQ and LR-wSQ over SQ-SQ (in
percentage) because for recommender systems with graph
information, SQ-SQ is equivalent to GRALS (Rao et al.
2015), while for multi-label learning, SQ-SQ is equivalent to
LEML (Yu et al. 2014). Clearly LR-wSQ significantly out-
performs SQ-wSQ and SQ-SQ. Therefore, the logistic loss
seems to be more appropriate for one-class MF problems,
and our approach enables its use.

4.3 Non-linear Multi-label Classifiers
Recently, some non-linear methods such as SLEEC (Bhatia
et al. 2015) and FastXML (Prabhu and Varma 2014) have



(a) Training Time. (b) Prediction Performance.

Figure 1: Full versus Subsampled on multi-label learning with various loss functions. “(S)” indicates Subsampled.

(a) Standard one-class MF (b) Graph-structured one-class MF (c) Feature-aware one-class MF

Figure 2: Comparison on various loss functions. Y-axis is the improvement over the SQ-SQ formulation in percentage.

(a) Training Time. (b) Prediction Performance.

Figure 3: Comparison on non-linear multi-label classifiers.

been considered state-of-the-art approaches for multi-label
learning because they outperform traditional binary rele-
vance approaches. Here we demonstrate that the Full setting
considered in this paper yields competitive performances.

Besides directly applying the proposed approach (i.e.,
LR-wSQ) on feature vectors xi, ∀i, we propose a non-linear
extension by converting xi ∈ Rd into a new feature vec-
tor zi ∈ RD via a Nyström method. We consider K-means
Nyström (Zhang, Tsang, and Kwok 2008) by using D � m
centers {ct} from the K-means algorithm on {xi} as land-
mark points. Consider an RBF kernel matrix K ∈ RD×D

parameterized by γ > 0 with

Kts = exp(−γ‖ct − cs‖2), ∀t, s ∈ [D]× [D].

Given an x ∈ Rd, the transformed vector z ∈ RD is ob-
tained by z = K−1/2z̄, where z̄ ∈ RD is a vector with

z̄t = exp(−γ‖ct − x‖2), ∀t ∈ [D].

We append the transformed vector zi to the original xi. See
the supplementary materials for details such as the parame-
ters used. We refer tot this approach as LR-wSQ-Nys.

Figure 3 compares LR-wSQ, LR-wSQ-Nys, FastXML,
and SLEEC. We can see that LR-wSQ and LR-wSQ-Nys
yield competitive prediction performance.

5 Conclusions

In this paper, we consider a generalization of one-class ma-
trix factorization with two types of side information, which
has wide applicability to applications with only positive-
unlabeled observations such as recommender systems and
multi-label learning. We consider the Full approach for one-
class MF where all the unlabeled entries are regarded as
negative with a lower confidence, and any convex loss func-
tion can be used on the observed entries. The resulting op-
timization problem is very challenging, but we derive an
efficient alternating minimization procedure. Experiments
demonstrate the effectiveness of our proposed approach.
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Supplementary Materials:
A Unified Algorithm for One-class Structured Matrix Factorization with Side Information

Supp-1 Detailed Derivations of Algorithms
Supp-1.1 Detailed Derivation of L−(vec(W ))
From (4), (6), and (7), we have

L−(vec(W ))=
∥∥∥√diag(p)

(
ā1m1>n−XWH>

)√
diag(q)

∥∥∥2

F

= tr
(√

diag(q)
(
ā1n1

>
m −HW>X>

)
diag(p)×(

ā1m1>n −XWH>
)√

diag(q)
)

= tr
((
ā1n1

>
m −HW>X>

)
diag(p)×(

ā1m1>n −XWH>
)
diag(q)

)
= tr

(
ā21n1

>
m diag(p)1m1>n diag(q)

)
+ tr

(
HW>X> diag(p)XWH> diag(q)

)
− 2 tr

(
ā1n1

>
m diag(p)XWH> diag(q)

)
,

where 1m and 1n are vectors of ones with order m and n,
respectively, and tr(·) denotes the trace of a matrix (i.e., the
sum of diagonal entries).

Supp-1.2 Gradient Calculation∇g(w̃)
The following property is useful in subsequent derivations.
Property 1. Let X = [x1, . . . ,xm]>, H = [h1, . . . ,hn]>,
and D ∈ Rm×n. We have

X>DH =
∑
ij

xiDijh
>
j (1.1)

From (7), the gradient of g(w̃) is
∇g(w̃) = ∇L+(w̃) +∇L−(w̃) + λw∇Rw̃(w̃),

where

∇L+(w̃) =
∑

(i,j)∈Ω+

`+ij
′
x̃ij =

∑
(i,j)∈Ω+

vec
(
`+ij
′
xih

>
j

)
= vec

(
X>D+H

)
. (1.2)

The last equality follows from (1.1), `+ij
′

is the abbreviation

of `+ij
′
(Yij , w̃

>x̃ij) and,

D+
ij =

{
`+ij
′
, ∀(i, j) ∈ Ω+,

0, otherwise.

Similar to the situation of computing L+(w̃) in Section 3.1,
if B = XW has been calculated, then constructing a sparse
matrix D+ requires only O(|Ω+|k) operations and O(|Ω+|)
space. With a similar derivation in (1.2), we have

∇L−(w̃) = vec
(
X>D−H

)
,

where D− is a dense m × n matrix with D−ij =

`−ij
′
, ∀(i, j) ∈ [m] × [n]. From the definition of `−(·, ·) in

(6),
∂

∂b
`−(ā, b) = 2piqj(b− ā)

⇒ `−ij
′

= 2piqj
(
w̃>x̃ij − ā

)
= 2piqj

((
XWH>

)
ij
− ā
)
.

Thus, we have

D− = 2 diag(p)
(
XWH> − ā1m1>n

)
diag(q).

Straightforward computation of entire D− requires
O(mnk + nnz(X)k) time and O(mn) space; both re-
quirements are infeasible for large values of m and n.
Fortunately, ∇L−(w̃) = vec

(
X>D−H

)
can be computed

without explicitly forming D− as follows:

X>D−H

=2X> diag(p)XWH> diag(q)H

− 2āX> diag(p)1m1>n diag(q)H (1.3)

=2X> diag(p) (XW )︸ ︷︷ ︸
B

(
H> diag(q)H

)︸ ︷︷ ︸
M

−2ā
(
X>p

)︸ ︷︷ ︸
d

(
q>H

)︸ ︷︷ ︸
k>

,

where B, M , d, and k are the same matrices/vectors used
in the objective value evaluation introduced in Algorithm 1.
Combining (1.2), (1.3), and w̃ = vec(W ), ∇g(w̃) can be
computed using the following sequence of matrix-matrix
products:

∇g(w̃) = vec
(
X>D+H +X>D−H + λw∇Rw̃(w̃)

)
= vec

(
X>
[
D+H+2 diag(p)(BM) + 2λwλgLB

]
+ 2λwW −2ādk>

)
,

where the last equality follows from (1.3) and

∇Rw̃(w̃) = 2 vec
(
(I + λgX

>LX)W
)

= 2 vec
(
W + λgX

>LB
)
.

Thus, the cost is

O(nnz(X)k +
∣∣Ω+

∣∣k + nnz(L)k +mk2 + dk) (1.4)

time. A detailed procedure is shown in Algorithm 2. Note
that if the computation of∇g(w̃) follows immediately after
the objective value evaluation of the same w̃, then M , d, q,
k, and B can be re-used to save additional computation.2

Note that we may use a different sequence of matrix-
matrix products for (1.3) if the number of features d is very
small such that

d2 + dk < mk. (1.5)
By pre-computing M̄ = X> diag(p)X in O(nnz(X)d)
time and storing it in O(d2) space, the following sequence
to compute∇g(w̃),

∇g(w̃) = vec
(
X>D+H +X>D−H + λw∇Rw̃(w̃)

)
= vec

(
X>
(
D+H + 2λwλgLB

)
+ 2M̄WM

+ 2λwW − 2ādk>
)
,

costs

O(nnz(X)k +
∣∣Ω+

∣∣k + nnz(L)k + d2k + dk2)

time, which is smaller than that in (1.4) because of (1.5).
2diag(p)(BM) can also be re-used.



Supp-1.3 Hessian-vector Multiplication∇2g(w̃)s̃

Given a current point w̃ and a vector s̃ ∈ Rdk, computing
∇2g(w̃)s is a common operation required in many iterative
optimization algorithms such as conjugate gradient. Let S ∈
Rd×k be the matrix such that s̃ = vec(S). From (7), we
have

∇2g(w̃)s̃ = ∇2L+(w̃)s̃ +∇2L−(w̃)s̃ + λw∇2Rw̃(w̃)s̃,

where

∇2L+(w̃)s̃ =
∑

(i,j)∈Ω+

`+ij
′′
x̃ijx̃

>
ij s̃

=
∑

(i,j)∈Ω+

`+ij
′′((

hjh
>
j

)
⊗
(
xix

>
i

))
vec(S)

=
∑

(i,j)∈Ω+

vec
(
`+ij
′′
xix

>
i Shjh

>
j

)
(1.6)

=
∑

(i,j)∈Ω+

vec
(
xi `

+
ij

′′
x>i Shj︸ ︷︷ ︸
U+

ij

h>j
)

= vec
(
X>U+H

)
. (1.7)

Note that (1.6) is from (4), (1.7) is from (1.1), U+ is a sparse
matrix with

U+
ij =

{
`+ij
′′
x>i Shj , ∀(i, j) ∈ Ω+,

0 otherwise,

and `+ij
′′

= `+ij
′′
(Yij , w̃

>x̃ij), ∀(i, j) ∈ Ω+. Similar to

the gradient computation, `+ij
′′

can be computed in O(k)
time if B = XW is pre-computed. To efficiently compute
U+
ij , ∀(i, j) ∈ Ω+, we first compute a matrix-matrix prod-

uct XS in O(nnz(X)k) time and store it in an m × k ma-
trix N = [. . . ,ni, . . .]

> such that ni = S>xi. Then the
entire sparse matrix U+ can be constructed in O(|Ω+|k +
nnz(X)k) time.

With a similar derivation as above, we have

∇2L−(w̃)s = vec
(
X>U−H

)
,

where U− is a dense m× n matrix with

U−ij = `−ij
′′
x>i Shj , ∀(i, j) ∈ [m]× [n].

From the definition of `−(·, ·) in (6),

∂2

∂b2
`−ij(ā, b) = 2piqj , ∀b ⇒ `−ij

′′
= 2piqj .

Thus, we have

U− = 2 diag(p)XSH> diag(q).

Similar to the situation in the gradient computation, com-
puting ∇2L−(w̃)s̃ = vec

(
X>U−H

)
can be done without

forming the entire U− explicitly as follows:

X>U−H = 2X> diag(p) (XS)︸ ︷︷ ︸
N

H> diag(q)H︸ ︷︷ ︸
M

, (1.8)

where N is available when we construct the sparse matrix
U+, and M can be pre-computed and stored (same M in
the objective value evaluation and gradient computation).
Combining (1.7), (1.8), and w̃ = vec(W ), ∇2g(w̃)s̃ can
be computed using the following sequence of matrix-matrix
products:

∇2g(w̃)s̃ = vec
(
X>U+H +X>U−H + λw∇2Rw̃(w̃)s̃

)
= vec

(
X>
[
U+H + 2 diag(p)NM

]
+ λw∇2Rw̃(w̃)s̃

)
= vec

(
X>
[
U+H + 2 diag(p)NM + 2λwλgLN

]
+ 2λwS

)
,

where the last equality follows from

∇2Rw̃(w̃)s̃ = 2 vec
(
S + λgX

>LXS
)

= 2 vec
(
S + λgX

>LN
)
.

Thus, the cost is

O(nnz(X)k +
∣∣Ω+

∣∣k + nnz(L)k +mk2 + dk)

time. Note that we can move the computation of
`+ij
′′
, ∀(i, j) ∈ Ω+ into the pre-processing phase to save

some repeated operations when the Hessian-vector products
are performed many times with the same w̃, a common situ-
ation in iterative optimization algorithms such as conjugate
gradient. Further, when the squared loss `(a, b) = (a−b)2 is
used, for entries in Ω+, `+ij

′′
= 2(1−piqj) is independent of

the choice of w̃ and can be pre-computed in the beginning
of the entire optimization procedure. A detailed procedure is
presented in Algorithm 3.

Similar to the gradient calculation, when d2 + dk < mk,
we can reduce the cost by using another sequence of matrix-
matrix products to compute∇2g(w̃)s̃ in

O(
∣∣Ω+

∣∣k + nnz(X)k + nnz(L)k + d2k + dk2)

time with M̄ = X> diag(p)X as follows:

X>
(
U+H + 2λwλgLN

)
+ 2M̄SM + 2λwS.

Supp-1.4 Line Search Procedure and Trust
Region Method

Line search procedures and trust region methods are two
common techniques to determine a step size and guarantee
the asymptotic convergence for an optimization algorithm.
In this section, we briefly introduce how to apply these two
techniques to (7).

Line Search Procedure A line search procedure is used to
ensure the sufficient decrease of the objective function value
after a search direction ∆W is given. Common choices for
the search direction include the negative gradient direction
and the Newton direction. However, even if ∆W is a descent
direction, g(W + ∆W ) is not necessary smaller than g(W ).
Thus, in a backward line search procedure, we try a sequence
of step size α = 1, β, β2, . . ., with β < 1 such that

g(W + α∆W ) < g(W ) + σα〈∇g(W ),∆W 〉, (1.9)

where σ < 1/2. Note that even with our proposed efficient
function value evaluation procedure (Algorithm 1), recalcu-
lating function value at W + α∆W for each α can still be
expensive.



We propose an effective trick to reduce the cost for line
search by taking that w̃>x̃ij is a linear function of w̃,
`−ij(ā, w̃

>x̃ij) is a quadratic function of w̃>x̃ij , and R(w̃)
is a quadratic function of w̃. The idea is to have

g(W + α∆W )

=L+(W + α∆W ) + L−(W + α∆W ) + λwR(W + α∆W )

=g(W )− L+(W ) + L+(W + α∆W ) + αVal 1 + α2Val 2,

where Val 1 and Val 2 can be calculated with the cost of
one function evaluation. If these two values are available,
then the sufficient decrease condition in (1.9) can be easily
checked as follows.

g(W + α∆W )− g(W )

=− L+(W ) + L+(W + α∆W ) + αVal 1 + α2Val 2
<σα〈∇g(W ),∆W 〉.

Moreover, when the line-search procedure terminates, we
have the next iterateW +α∆W and the new function value.
From (8)-(13) in the main text,

L−(W + α∆W )

=ā2(p>1m)(q>1n) + 〈B + α∆B, diag(p)(B + α∆B)M〉
− 2ād>(W + α∆W )k

=L−(W ) + α2〈∆B, diag(p)∆BM〉+
α
(
〈∆B, diag(p)BM〉+〈B, diag(p)∆BM〉−2ād>∆Wk

)
and

R(W + α∆W )

= tr
(

(W + α∆W )
>

(W + α∆W )
)

+ λg tr
(

(B + α∆B)
>
L(B + α∆B)

)
=R(W ) + α

(
2 tr
(
W>∆W + λgB

>L∆B
))

+ α2 tr
(
∆W>∆W + λg∆B>L∆B

)
,

=R(W ) + α(2〈W,∆W 〉+ 2λg〈B,L∆B〉)

+ α2
(
‖∆W‖2F + λg〈∆B,L∆B〉

)
,

where
∆B = X∆W.

The above calculation shows that in addition to the matrix
B, we can maintain

M̂ = diag(p)BM, and L̂ = LB.

Before the line-search procedure,

∆B = X∆W, (1.10)

∆M̂ = diag(p)∆BM, (1.11)

∆δ = d>∆Wk, and (1.12)

∆L̂ = L∆B (1.13)

are calculated. Then

Val 1 =
〈

∆B, M̂
〉

+
〈
B,∆M̂

〉
− 2ā∆δ

+ 2λw

(
〈W,∆W 〉+ λg

〈
B,∆L̂

〉)
,

Val 2 =
〈

∆B,∆M̂
〉

+ λw

(
‖∆W‖2F + λg

〈
∆B,∆L̂

〉)
.

Clearly, the computation for (1.10)-(1.13) costs

O(nnz(X)k +mk2 + dk + nnz(L)k),

which is the same as the cost of one function evaluation.
For Val 1 and Val 2, the cost O(dk +mk) is much smaller.
To check the sufficient decrease condition (1.9), we pre-
calculate ∇g(W )>∆W before the line-search procedure,
so the calculation under an α is O(|Ω+|k) for calculating
L+(W + α∆W ).

If the squared loss is considered on entries in Ω+, the
same technique for calculating L−(W + α∆W ) can be ap-
plied for calculating L+(W + α∆W ). Then the O(|Ω+|k)
cost is needed only before the line-search procedure rather
than at each step of checking an α value.

Trust Region Methods Trust region method is an alterna-
tive technique of line search to guarantee asymptotic conver-
gence, which is also widely used in many machine learning
applications (Lin, Weng, and Keerthi 2008). At the t-th it-
eration of a trust region method, we have the current iterate
w̃t, a size ∆t of trust region, and a quadratic model qt(s̃)
as the approximation of the value g(w̃t + s̃)− g(w̃t). Two
common choices for qt(s̃) are the first-order approximation

qt(s̃) = ∇g(w̃t)
>
s̃ +

1

2
s̃>s̃ (1.14)

and the second-order approximation

qt(s̃) = ∇g(w̃t)
>
s̃ +

1

2
s̃>∇2g(w̃t)s̃. (1.15)

Next we find s̃t to approximately solve

min
‖s̃‖≤∆t

qt(s̃). (1.16)

If (1.16) is the choice, we can apply conjugate gradient to
obtain s̃t with our efficient Hessian-vector product proce-
dure in Algorithm 3. In Algorithm 4, we present a detailed
conjugate gradient procedure to solve (1.16). See Lin, Weng,
and Keerthi (2008) for more details about the convergence
property and the implementation issues of Algorithm 4.

We then update w̃t and ∆t as follows:

w̃t+1 =

{
w̃t + s̃ if ρt > η0,

w̃t otherwise,
(1.17)

∆t+1 ∈


[σ1 min(‖s̃t‖,∆t), σ2∆t] if ρt ≤ η1,

[σ1∆t, σ3∆t] if ρt ∈ (η1, η2),

[∆t, σ3∆t] if ρt ≥ η2,

(1.18)



where ρt is the ratio of the actual reduction in the function
to the predicted reduction in the quadratic model:

ρt =
g(w̃t + s̃t)− g(w̃t)

qt(s̃t)
,

and η0, η1, η2, and σ1, σ2, σ3 are pre-specified positive con-
stants such that η1 < η2 < 1 and σ1 < σ2 < 1 < σ3. The
idea behind a trust region method is that if the ratio ρt is
large enough, we can accept the current step s̃t and enlarge
the size of trust region ∆t; otherwise, we reject the current
step and shrink the size of trust region. More details can be
found in Lin, Weng, and Keerthi (2008).

We can see that the computation of the ratio ρt requires a
function value evaluation at g(w̃t + s̃t) and qt(s̃t). To com-
pute g(w̃t + s̃t), we can apply Algorithm 1. To compute
qt(s̃

t), we can utilize our proposed algorithms as subrou-
tines to perform a straightforward computation. For exam-
ple, assume the second-order approximation in (1.15) is con-
sidered and the conjugate gradient described in Algorithm 4
is applied to solve (1.16). In the procedure in Algorithm 4,
∇g(w̃t) is required as an input. Further, we have the final
residual vector

ri
∗

= −∇qt(s̄i
∗
) = −∇g(w̃t)−∇2g(w̃t)s̄i

∗

available when Algorithm 4 terminates, where i∗ is the num-
ber of CG iterations performed, and s̃t = s̄i

∗
. Then, we can

compute

qt(s̃
t) = −1

2

((
−∇g(w̃t)

)>
s̃t −

(
s̃t
)>

ri
∗
)

in O(dk) time.

Supp-1.5 Complete Optimization Procedures
With the efficient procedures proposed in Section 3, we are
able to implement many optimization algorithms to solve (7)
such as gradient descent with line search, nonlinear conju-
gate gradient, truncated Newton methods with line search,
and trust region Newton methods. To illustrate how Algo-
rithms 1-3 are used in practice, in Algorithm 5, we use a trust
region Newton method (TRON) (Lin, Weng, and Keerthi
2008) as an example to show the complete optimization pro-
cedure.

We give another Algorithm 6 to demonstrate the use of
line search in a gradient descent method for solving (7). Note
that we use a Newton direction in Algorithm 5 and a nega-
tive gradient direction in Algorithm 6, respectively, though
in either algorithm any descent direction can be considered.

Algorithm 4 Conjugate gradient procedure to approxi-
mately solve the trust-region subproblem (1.16).
Input: ∇g(w̃t), a relative stopping parameter ξ < 1, and a size

of trust region ∆t > 0

Output: s̃t = s̄i∗ and ri∗ = −∇g(w̃t)−∇2g(w̃t)s̃t

1: // Initialization
2: s̄0 = 0

¯
// initial point

3: r0 = −∇g(w̃t) // initial residual
4: d0 = r0 // initial direction
5: for i = 0, 1, 2, 3, . . . (CG iterations) do
6: if

∥∥ri
∥∥ ≤ ξ∥∥r0

∥∥ then
7: Stop the for loop and return s̃t = s̄i and ri

8: Compute and store∇2g(w̃t)di by Algorithm 3
9: αi =

∥∥ri
∥∥2
/
〈
di,∇2g(w̃t)di

〉
10: s̄i+1 = s̄i + αidi

11: if
∥∥s̄i+1

∥∥ ≥ ∆t then
12: Compute τ such that

∥∥s̄i + τdi
∥∥ = ∆t

13: s̄i+1 = s̄i + τdi

14: ri+1 = ri − τ∇2g(w̃t)di

15: Stop the for loop and return s̃t = s̄i+1 and ri+1

16: ri+1 = ri − αi∇2g(w̃t)di

17: βi =
∥∥ri+1

∥∥2
/
∥∥ri
∥∥2

18: di+1 = ri+1 + βidi



Algorithm 5 A trust-region Newton method for (7).
Input: feature matrix X = [x1, . . . ,xm]> ∈ Rm×d, label ma-

trix Y = [y1, . . . ,ym]> ∈ Rm×n, H ∈ Rn×k, and pa-
rameters k, λw, λg , p, q, ā, and an initial size ∆ > 0 of
trust region. Choose positive constants η0, η1 < η2 < 1 and
σ1 < σ2 < 1 < σ3.

1: M = H> diag(q)H · · ·O(nk2)
2: d = X>p · · ·O(nnz(X))
3: k = H>q · · ·O(nk)
4: Compute p>1m and q>1n · · ·O(m+ n)
5: B = XW , where B = [· · · , bi, · · · ]> · · ·O(nnz(X)k)

6: M̂ = diag(p)BM · · ·O(mk2)
7: δ = d>Wk · · ·O(dk)

8: L̂ = LB · · ·O(nnz(L)k)
9: L+ =

∑
(i,j)∈Ω+ `ij(Yij , b

>
i hj) O(

∣∣Ω+
∣∣k)

10: L− = ā2(p>1m)(q>1n) +
〈
B, M̂

〉
− 2āδ · · ·O(mk)

11: obj = L+ + L− + λw

(
‖W‖2F + λg

〈
B, L̂

〉)
12: · · ·O(dk +mk)
13: // Compute gradient
14: D+

ij = `+ij
′
(Yij , b

>
i hj), ∀(i, j) ∈ Ω+ · · ·O(

∣∣Ω+
∣∣k)

15: G = X>(D+H + 2M̂) · · ·O(
∣∣Ω+

∣∣k+nnz(X)k+mk2)

16: G = G− 2ādk> + 2λwλgX
>L̂

17: · · ·O(dk + nnz(X)k)
18: // Pre-processing for Hessian-vector products
19: `+ij

′′
= `+ij

′′
(Yij , b

>
i hj), ∀(i, j) ∈ Ω+ · · ·O(

∣∣Ω+
∣∣k)

20: for t = 1, 2, 3, . . . do
21: // Solve (1.16) approximately
22: Get s̃=vec(S) and ri∗=vec(R) by Algorithm 4 with ∆
23:
24: // Compute qt(s̃)
25: qt(s̃) = − 1

2
(−〈G,S〉 − 〈R,S〉) · · ·O(dk)

26:
27: // Compute g(w̃t + s̃)
28: Wnew = W + S · · ·O(dk)
29: Bnew = XWnew · · ·O(nnz(X)k)

30: M̂ = diag(p)BnewM O(mk2)
31: δ = d>Wnewk · · ·O(dk)

32: L̂ = LBnew · · ·O(nnz(L)k)

33: L+ =
∑

(i,j)∈Ω+ `ij(Yij , (wnew)>i hj) · · ·O(
∣∣Ω+

∣∣k)

34: L− = ā2(p>1m)(q>1n) +
〈
Bnew, M̂

〉
− 2āδ

35: · · ·O(mk)

36: objnew = L+ + L− + λw

(
‖Wnew‖2F + λg

〈
Bnew, L̂

〉)
37: · · ·O(mk + dk)
38: ρ = (objnew − obj)/qt(s̃) · · ·O(1)
39: Update ∆ based on ρ and (1.18) · · ·O(1)
40: if ρ > η0 then
41: obj = objnew · · ·O(1)
42: W = Wnew · · ·O(dk)
43: B = Bnew · · ·O(mk)
44: // Compute gradient
45: D+

ij = `+ij
′
(Yij , b

>
i hj), ∀(i, j) ∈ Ω+ · · ·O(

∣∣Ω+
∣∣k)

46: G = X>(D+H + 2M̂)
47: · · ·O(

∣∣Ω+
∣∣k+nnz(X)k+mk2)

48: G = G− 2ādk> + 2λwλgX
>L̂

49: · · ·O(dk + nnz(X)k)
50: // Pre-processing for Hessian-vector products
51: `+ij

′′
= `+ij

′′
(Yij , b

>
i hj), ∀(i, j) ∈ Ω+ · · ·O(

∣∣Ω+
∣∣k)

Algorithm 6 A gradient-descent method with backtracking
line search to minimize (7).
Input: feature matrix X = [x1, . . . ,xm]> ∈ Rm×d, label ma-

trix Y = [y1, . . . ,ym]> ∈ Rm×n, H ∈ Rn×k, and parame-
ters k, λw, λg , p, q, and ā. Choose β < 1 and σ < 1/2.

1: M = H> diag(q)H · · ·O(nk2)
2: d = X>p · · ·O(nnz(X))
3: k = H>q · · ·O(nk)
4: Compute p>1m and q>1n · · ·O(m+ n)
5: B = XW , where B = [· · · , bi, · · · ]> · · ·O(mk2)

6: M̂ = diag(p)BM · · ·O(mk2)

7: L̂ = LB · · ·O(nnz(L)k)
8: L+ =

∑
(i,j)∈Ω+ `ij(Yij , b

>
i hj) O(

∣∣Ω+
∣∣k)

9: for t = 1, 2, 3, . . . do
10: // Compute gradient
11: D+

ij = `+ij
′
(Yij , b

>
i hj), ∀(i, j) ∈ Ω+ · · ·O(

∣∣Ω+
∣∣k)

12: G = X>(D+H + 2M̂) · · ·O(
∣∣Ω+

∣∣k+nnz(X)k+mk2)

13: G = G− 2ādk> + 2λwλgX
>L̂ · · ·O(dk + nnz(X)k)

14:
15: // Obtain a descent direction ∆W
16: ∆W = −G
17:
18: // Perform backtracking line search
19: ∆B = X∆W · · ·O(nnz(X)k)

20: ∆M̂ = diag(p)∆BM · · ·O(mk2)
21: ∆δ = d>∆Wk · · ·O(dk)

22: ∆L̂ = L∆B · · ·O(nnz(L)k)

23: Val 1=
〈

∆B, M̂
〉

+
〈
B,∆M̂

〉
−2ā∆δ

24: +2λw

(
〈W,∆W 〉+ λg

〈
B,∆L̂

〉)
· · ·O(dk +mk)

25: Val 2 =
〈

∆B,∆M̂
〉

26: +λw

(
‖∆W‖2F + λg

〈
∆B,∆L̂

〉)
· · ·O(dk+mk)

27: c = 〈G,∆W 〉 · · ·O(dk)
28: for α = 1, β, β2, . . . do
29: Bnew = B + α∆B · · ·O(mk)

30: L+
new =

∑
(i,j)∈Ω+ `ij(Yij , b

new
i
>hj) O(

∣∣Ω+
∣∣k)

31: if −L++L+
new+αVal 1+α2Val 2 < ασc then

32: W = W + α∆W · · ·O(dk)
33: B = Bnew · · ·O(mk)

34: M̂ = M̂ + α∆M̂ · · ·O(mk)

35: L̂ = L̂+ α∆L̂ · · ·O(mk)
36: L+ = L+

new · · ·O(1)
37: Break the line-search for-loop



Supp-2 Experimental Details
Supp-2.1 Evaluation Criteria and Data Sources
We used Precision@k and nDCG@k as evaluation criteria.
For a predicted score vector ŷ ∈ RL and the true label vector
y ∈ {0, 1}L, Precision@k is defined as

p@k ≡ 1

k

∑
l∈toprankk(ŷ)

yl,

and nDCG@k is defined as

DCG@k ≡
∑

l∈toprankk(ŷ)

yl
log(l + 1)

,

nDCG@k ≡ DCG@k∑min(k,‖y‖0)
l=1

1
log(l+1)

.

For multi-label learning, the data sets are downloaded
from Mulan: A Java Library for Multi-Label Learning3 and
The Extreme Classification Repository.4 To avoid the 0/0
situation in the calculation of nDCG, data instances in the
test set without any active labels (i.e., ‖y‖0 = 0) are re-
moved. For recommender systems with graph information,
the data sources have been mentioned in the main text.

Supp-2.2 Parameter Selection
To select a suitable set of parameters, we hold out 1/5 of
the training instances for multi-label problems. Similarly,
we hold out 1/5 of the observed entries for graph structured
one-class MF. The chosen parameters are those that give the
highest validation performance on the hold out set. Since
the best parameter for different measures (p@1 to p@5) may
slightly vary, we used the one corresponding to the highest
p@5. However, if the best parameter for p@5 has a very bad
performance for other measures on the hold out set, we will
choose the second best parameter for p@5.

For our methods, we fix ā in (3) to −1 because of the
following reasons. First, for LR-wLR, we have

`+ij(Yij , w̃
>x̃ij) = `−ij(Yij , w̃

>x̃ij)

= log
(

1 + e−Yijw̃
>x̃ij

)
,

where Yij = ±1. Therefore, for (i, j) ∈ Ω−, its Yij = ā
should be −1. For other formulations such as LR-wSQ, we
have

`−(Yij , w̃
>x̃ij) = (ā− w̃>x̃ij)

2.

The logistic loss `+(Yij , w̃
>x̃ij) intends to have

(i, j) ∈ Ω+ if w̃>x̃ij ≥ 0,

but for the squared loss `−(Yij , w̃
>x̃ij), it intends to have

(i, j) ∈ Ω− if w̃>x̃ij ≈ 0.

Clearly, a conflict occurs when w̃>x̃ij > 0 but ≈ 0. On
the other hand, for LEML (Yu et al. 2014), which is SQ-
SQ, we use ā = 0 in order be consistent with their ex-
periment setting. For our methods that include a weighted

3http://mulan.sourceforge.net/datasets-mlc.html
4https://manikvarma.github.io/downloads/XC/XMLRepository.html

loss (SQ-wSQ, LR-wSQ and LR-wLR), piqj in assump-
tion (3) is set to a constant ρ. We perform a grid search for
log2(ρ) ∈ {−9,−7,−5,−3,−1, 0}. For Subsampled ap-
proaches, we fix ρ = 1 and perform the grid search on the
ratio |Ω−|/|Ω+| ∈ {0.25, 0.5, 1, 2}.

For regularization parameters λw and λh, we set
λw = λh and perform a grid search on log2(λw) ∈
{−6,−4,−2, 0, 2, 4, 6}. For problems without graph infor-
mation, we set λg = 0. For problems with graph infor-
mation, λg is non-zero and is obtained by a grid search
on log2(λgλw) ∈ {−6,−3, 0, 3, 6, 8, 10}. We consider the
same setting for LEML.

For the kernel Nyström method in the last experiment, we
use the same regularization and weight-loss parameters se-
lected earlier for the setting without the Nyström method.
For the Gaussian kernel K(x,y) = exp(−γ‖x− y‖2) ,
we check γ ∈

{
0.5/σ2, 1/σ2, 2/σ2

}
, where σ2 is the vari-

ance of all feature values in the entire training data set. We
also conduct a grid search on the number of columns using
D ∈ {500, 1000}.

For all one-class MF formulations, we run 15 alternating
iterations in our validation process and obtain the validation
performance at each iteration. We then use the iteration in-
dex yielding the best validation performance as the number
of iterations to be run in training a model for predicting the
test set. Note that the held-out validation set is included so
we use the whole training set for generating the final model.

For the non-linear method SLEEC, since it includes 8
hyper-parameters, a grid search on this high dimensional
space is not easy. Therefore we first fix the number of clus-
ters to 1. Then the number of learners also becomes 1 be-
cause the use of several learners is due to the randomness in
clustering. Next we conduct a grid search on the two most
sensitive parameters: the k in kNN and the number of neigh-
bors considered during the singular value projection method
as suggested by the paper. For all other parameters we use
the suggested values given by the authors.

Supp-2.3 More Experimental Results
The results are shown in both tables and figures.
• In Figure Supp-1, we show the results of Full versus Sub-

sampled for multi-label learning in bar charts.
• In Figure Supp-2 and Figure Supp-3, we show the results

of various loss functions for three types of one-class MF
problems in bar charts.

• In Figure Supp-4, we show the results of the comparison
of non-linear multi-label classifiers in bar charts.

• In Table Supp-1, we show the detailed results of recom-
mender systems with and without graph information in
terms of precision@1 to precisions@5 and nDCG@1 to
nDCG@5.

• In Table Supp-2, we show the detailed results of the
comparison among non-linear multi-label classifiers in
terms of precision@1 to precisions@5 and nDCG@1 to
nDCG@5.

• In Table Supp-3, we show the detailed results of the multi-
label learning in terms of precision@1 to precisions@5
and nDCG@1 to nDCG@5.



(a) Prediction Performance (precision). (b) Prediction Performance (nDCG).

(c) Prediction Performance (precision). (d) Prediction Performance (nDCG).

(e) Prediction Performance (precision). (f) Prediction Performance (nDCG).

(g) Prediction Performance (precision). (h) Prediction Performance (nDCG).

(i) Prediction Performance (precision). (j) Prediction Performance (nDCG).

Figure Supp-1: Full v.s. Subsampled on multi-label learning with various loss functions. See Figure 1 for the legend informa-
tion.



(a) Standard one-class MF (b) Graph-structured one-class MF (c) Feature-aware one-class MF

(d) Standard one-class MF (e) Graph-structured one-class MF (f) Feature-aware one-class MF

(g) Standard one-class MF (h) Graph-structured one-class MF (i) Feature-aware one-class MF

(j) Standard one-class MF (k) Graph-structured one-class MF (l) Feature-aware one-class MF

(m) Standard one-class MF (n) Graph-structured one-class MF (o) Feature-aware one-class MF

Figure Supp-2: Comparison on various loss functions. Y-axis is the improvement of Precision@k over the SQ-SQ formulation
in percentage.



(a) Standard one-class MF (b) Graph-structured one-class MF (c) Feature-aware one-class MF

(d) Standard one-class MF (e) Graph-structured one-class MF (f) Feature-aware one-class MF

(g) Standard one-class MF (h) Graph-structured one-class MF (i) Feature-aware one-class MF

(j) Standard one-class MF (k) Graph-structured one-class MF (l) Feature-aware one-class MF

(m) Standard one-class MF (n) Graph-structured one-class MF (o) Feature-aware one-class MF

Figure Supp-3: Comparison on various loss functions. Y-axis is the improvement of nDCG@k over the SQ-SQ formulation in
percentage.



(a) Prediction Performance (precision). (b) Prediction Performance (nDCG).

(c) Prediction Performance (precision). (d) Prediction Performance (nDCG).

(e) Prediction Performance (precision). (f) Prediction Performance (nDCG).

(g) Prediction Performance (precision). (h) Prediction Performance (nDCG).

(i) Prediction Performance (precision). (j) Prediction Performance (nDCG).

Figure Supp-4: Comparison on non-linear multi-label classifiers.



Table Supp-1: Comparison on graph structured one-class MF. Loss1-Loss2 denotes the formulation with the Loss1 on entries
in Ω+ and Loss2 on entries in Ω−. wSQ/wLR denote the weighted square/logistic loss functions respectively. Note that the
SQ-SQ formulation for the graph structured one-class MF part is equivalent to the formulation considered in Rao et al. (2015).

(a) Precision@k

time p@1 p@2 p@3 p@4 p@5

ml100k

Standard one-class MF
SQ-SQ 1.2 26.93 22.20 20.00 18.47 16.95
SQ-wSQ 0.9 28.56 23.99 21.16 19.48 18.04
LR-wSQ 1.8 30.98 25.61 22.04 20.41 18.80

Graph structured one-class MF
SQ-SQ 1.3 28.55 24.62 22.04 20.26 19.05
SQ-wSQ 0.9 30.75 25.43 22.85 20.49 19.12
LR-wSQ 7.0 31.45 26.01 22.58 21.21 19.28

flixster

Standard one-class MF
SQ-SQ 23.7 14.87 12.41 10.96 10.06 9.35
SQ-wSQ 51.2 17.46 14.79 13.09 12.05 11.19
LR-wSQ 161.3 20.54 16.89 14.74 13.34 12.34

Graph structured one-class MF
SQ-SQ 27.4 14.66 12.37 10.97 10.06 9.35
SQ-wSQ 54.0 18.28 15.34 13.60 12.42 11.53
LR-wSQ 180.6 20.58 16.91 14.77 13.36 12.36

douban

Standard one-class MF
SQ-SQ 64.8 17.42 15.07 13.56 12.47 11.62
SQ-wSQ 100.3 18.13 15.97 14.47 13.35 12.48
LR-wSQ 514.3 19.71 17.59 16.12 15.03 14.16

Graph structured one-class MF
SQ-SQ 58.3 18.89 16.61 15.07 13.97 13.11
SQ-wSQ 75.0 19.27 17.12 15.58 14.47 13.56
LR-wSQ 571.4 20.23 18.02 16.57 15.44 14.53

(b) nDCG@k

n@1 n@2 n@3 n@4 n@5

Standard one-class MF
26.93 23.99 23.00 22.84 22.54
28.56 25.98 24.88 24.72 24.59
30.98 27.76 26.00 25.75 25.42

Graph structured one-class MF
28.55 26.54 25.57 25.28 25.38
30.75 27.59 26.73 25.99 25.82
31.45 28.12 26.50 26.55 26.04

Standard one-class MF
14.87 14.46 14.44 14.64 14.84
17.46 17.33 17.51 17.94 18.26
20.54 20.33 20.44 20.72 21.04

Graph structured one-class MF
14.66 14.35 14.38 14.59 14.78
18.28 18.16 18.43 18.80 19.15
20.58 20.36 20.50 20.77 21.08

Standard one-class MF
17.42 15.84 14.97 14.44 14.09
18.13 16.74 15.93 15.43 15.13
19.71 18.44 17.78 17.45 17.29

Graph structured one-class MF
18.89 17.41 16.60 16.14 15.89
19.27 17.93 17.14 16.71 16.45
20.23 18.89 18.24 17.88 17.70

Table Supp-2: Comparison of state-of-the-art approaches on multi-label learning.

(a) Precision@k

time p@1 p@2 p@3 p@4 p@5

bibtex

LR-wSQ 22 63.22 48.43 39.89 33.83 29.50
LR-wSQ-Nys 54 63.26 48.33 39.91 33.80 29.55
FastXML 17 63.62 47.89 39.22 33.39 29.01
SLEEC 249 65.29 48.97 39.63 33.24 28.76

delicious

LR-wSQ 23 67.47 64.24 61.85 59.25 56.73
LR-wSQ-Nys 94 69.64 66.74 64.11 61.35 58.84
FastXML 34 70.90 67.14 64.52 61.87 59.63
SLEEC 1,124 69.27 65.10 62.03 59.49 56.82

mediamill

LR-wSQ 61 87.77 80.96 70.08 61.48 55.15
LR-wSQ-Nys 144 88.72 82.08 71.85 63.70 57.08
FastXML 256 88.04 81.12 70.29 62.06 55.48
SLEEC 1,764 89.34 82.33 72.09 63.73 57.34

eurlex

LR-wSQ 404 78.43 71.21 65.82 60.67 55.64
LR-wSQ-Nys 1,134 79.20 71.75 66.15 60.75 55.80
FastXML 164 77.29 69.17 62.63 56.84 51.44
SLEEC 1,497 76.67 67.80 60.71 54.45 49.34

wiki10

LR-wSQ 449 85.07 77.50 71.33 66.14 61.85
LR-wSQ-Nys 666 84.72 77.20 71.05 66.22 61.86
FastXML 744 82.91 74.63 67.82 62.06 57.73
SLEEC 183 85.52 78.65 72.00 65.81 60.75

(b) nDCG@k

n@1 n@2 n@3 n@4 n@5

63.22 59.59 59.93 61.24 62.73
63.26 59.53 59.97 61.21 62.81
63.62 59.49 59.55 60.87 62.16
65.29 60.87 60.62 61.46 62.52
67.47 64.99 63.16 61.23 59.40
69.64 67.41 65.43 63.39 61.54
70.90 68.05 66.04 64.06 62.40
69.27 66.11 63.78 61.84 59.89
87.77 83.96 78.60 75.97 75.28
88.72 85.17 80.29 78.10 77.32
88.04 84.10 78.81 76.48 75.61
89.34 85.60 80.73 78.36 77.73
78.43 72.84 68.97 65.91 63.96
79.20 73.44 69.41 66.15 64.25
77.29 71.00 66.25 62.60 60.19
76.67 69.80 64.61 60.58 58.28
85.07 79.21 74.47 70.46 67.10
84.72 78.90 74.18 70.41 67.02
82.91 76.50 71.27 66.83 63.37
85.52 80.20 75.16 70.48 66.55



Table Supp-3: Comparison of various Full and Subsampled formulations on multi-label learning. Loss1-Loss2 denotes the
formulation with the Loss1 on entries in Ω+ and Loss2 on entries in Ω−. wSQ/wLR denote the weighted square/logistic loss
functions respectively. Note that the Full approach with SQ-SQ is equivalent to the LEML (Yu et al. 2014) formulation.

(a) Precision@k

time p@1 p@2 p@3 p@4 p@5

bibtex

the Subsampled approach
SQ-SQ 12 46.04 23.16 31.31 27.59 24.63
LR-LR 9 52.92 39.42 32.63 28.27 25.08

the Full approach
SQ-SQ 13 63.14 47.58 38.77 33.09 28.81
SQ-wSQ 12 63.30 48.35 39.78 33.74 29.37
LR-wSQ 22 63.22 48.43 39.89 33.83 29.50
LR-wLR 85 61.91 46.66 38.21 32.66 28.43

delicious

the Subsampled approach
SQ-SQ 8 53.80 52.42 50.46 49.13 47.41
LR-LR 19 63.89 60.86 58.44 55.95 53.43

the Full approach
SQ-SQ 3 66.88 63.44 61.09 58.84 56.51
SQ-wSQ 8 66.81 63.55 61.29 59.01 56.52
LR-wSQ 23 67.47 64.24 61.85 59.25 56.73
LR-wLR 446 67.91 65.04 62.27 59.81 57.27

mediamill

the Subsampled approach
SQ-SQ 83 83.20 79.21 69.62 61.66 55.50
LR-LR 93 87.62 80.72 69.87 61.37 55.08

the Full approach
SQ-SQ 8 87.70 81.05 69.89 61.23 54.72
SQ-wSQ 41 84.85 79.82 69.92 61.79 55.47
LR-wSQ 61 87.77 80.96 70.08 61.48 55.15
LR-wLR 437 87.78 81.17 70.38 61.85 55.33

eurlex

the Subsampled approach
SQ-SQ 93 29.75 30.94 30.23 29.75 29.04
LR-LR 166 44.08 43.09 39.83 37.39 34.58

the Full approach
SQ-SQ 335 78.43 70.18 63.67 57.80 52.21
SQ-wSQ 672 75.63 69.79 64.60 59.82 55.21
LR-wSQ 404 78.43 71.21 65.82 60.67 55.64

wiki10

the Subsampled approach
SQ-SQ 121 17.23 16.58 16.14 15.59 15.04
LR-LR 764 76.30 63.29 55.28 49.72 45.09

the Full approach
SQ-SQ 247 77.71 69.58 64.20 60.23 56.45
SQ-wSQ 872 78.69 69.97 64.39 60.35 56.59
LR-wSQ 449 85.07 77.50 71.33 66.14 61.85

(b) nDCG@k

n@1 n@2 n@3 n@4 n@5

the Subsampled approach
46.04 45.47 46.71 48.87 50.66
52.92 49.17 49.59 51.32 52.94

the Full approach
63.14 58.99 58.95 60.34 61.71
63.30 59.61 59.96 61.26 62.65
63.22 59.59 59.93 61.24 62.73
61.91 57.75 57.91 59.40 60.76

the Subsampled approach
53.80 52.73 51.28 50.26 49.02
63.89 61.56 59.71 57.84 55.99

the Full approach
66.88 64.24 62.42 60.72 59.03
66.81 64.31 62.57 60.86 59.07
67.47 64.99 63.16 61.23 59.40
67.91 65.74 63.68 61.85 59.99

the Subsampled approach
83.20 81.59 77.17 75.10 74.60
87.62 83.74 78.39 75.82 75.15

the Full approach
87.70 83.99 78.43 75.75 74.88
84.85 82.41 77.75 75.57 74.92
87.77 83.96 78.60 75.97 75.28
87.78 84.17 78.87 76.33 75.50

the Subsampled approach
29.75 30.67 30.38 30.47 30.92
44.08 43.32 41.17 39.90 38.99

the Full approach
78.43 72.04 67.30 63.63 61.12
75.63 71.11 67.45 64.66 63.02
78.43 72.84 68.97 65.91 63.96

the Subsampled approach
17.23 16.73 16.38 15.98 15.56
76.30 66.23 59.91 55.40 51.62

the Full approach
77.71 71.42 67.20 64.04 61.07
78.69 71.94 67.55 64.31 61.34
85.07 79.21 74.47 70.46 67.10
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