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1 Proofs of the Main Paper
In this section we show the proofs of our main paper. To facilatate the discussion, we consider

i : index of test instances, and j : index of labels.

We further assume that for test instance i

Ki : true number of labels,
K̂i : predicted number of labels.

(10)

Define
Micro-F1 =

2× TP sum
TP sum + FP sum + TP sum + FN sum

, (11)

where “sum” means the accumulation of prediction results over all binary problems. Next we prove an upper
bound of Micro-F1.

1.1 Proof of Theorem 1
Proof. Let TPi, FPi, and FNi be respectively true positive, false positive and false negative from the predictions
of instance i. The definition of Ki and K̂i in (10) implies

TPi + FPi = K̂i and TPi + FNi = Ki. (12)
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From (11) and (12),

Micro-F1 =
2× TP sum∑l
i=1

(
Ki + K̂i

) =
2×∑l

i=1 TPi∑l
i=1

(
Ki + K̂i

) . (13)

From (12), TPi ≤ K̂i and TPi ≤ Ki, so the result in (7) follows from

TPi ≤ min
(
K̂i, Ki

)
. (14)

The second inequality in (7) easily follows from min
(
K̂i, Ki

)
≤ K̂i and Ki. Finally, when K̂i = Ki,

2×∑l
i=1min

(
K̂i, Ki

)
∑l

i=1

(
Ki + K̂i

) =
2×∑l

i=1Ki∑l
i=1

(
Ki +Ki

) = 1 (15)

achieves the maximum.

1.2 Proof of Theorem 2
Proof. By the assumption on decision values, selecting the top ones leads to

TPi =

{
K̂i if K̂i ≤ Ki,

Ki otherwise.

Thus the upper bound of TPi in (14) is achieved. Then (9) follows from (13). Moreover, from (15) and (9),
Micro-F1 = 1 when K̂i = Ki.

1.3 Proof of Theorem 3
Proof. By properties of multi-class problems mentioned before the theorem statement,

Ki = K̂i = 1. (16)

The TP sum in (13) is now the same as the number of correct predictions among all instances. With (16), the proof
follows from (13).
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#nodes #edges #degrees per node Edge Type
BlogCatalog1 10,312 333,983 64.78 undirected
Flickr1 80,513 5,899,882 146.56 undirected
YouTube1 1,138,499 2,990,443 5.25 undirected
PPI2 56,944 409,358 14.38 undirected

1 http://leitang.net/social dimension.html
2 http://snap.stanford.edu/graphsage/

Table 4: Dataset Statistics

2 Details of Generating Embedding Vectors
Table 4 shows the data source used in experiments. The data are first preprocessed to the data format used in the
various graph embedding toolkits. Since the objective of the graph embedding models is to learn and obtain an
informative embedding for each node from the observed edges of the given graph, the label data is not used in this
stage. The learned embeddings are then used in node classification. Due to the modeling process being unsuper-
vised (no labels for the downstream tasks), the hyperparameters have to be picked carefully. To obtain consistent
and comparable results, we have collected the applied hyperparameter settings from several representative papers
in Tables 5, 6, and 7, and stated what values we set. In our experiments, all the generated embeddings are run by
the toolkit released by the authors, which are listed in the second row of each table.

3 Additional Implementation Details
For training logistic regression, we use the Newton method (option -s 0) in LIBLINEAR (Fan et al., 2008), with
stopping tolerance -e 0.0001. For methods that use LIBLINEAR’s parameter-selection functionality (e.g., cost-
sensitive), the parameter -C is used. Otherwise, either a C value is specified by -c (e.g., cost-sensitive-simple),
or the default cost -c 1 is used. For all cross validations, three folds were used.

3.1 Execution Environment for Graph Representation Learning
The upstream graph representation learning task is performed on one machine with Intel Xeon Gold 6230 CPU
@ 2.10GHz. The software version used is Python 3.8.10 and g++ 9.3.0.

3.2 Execution Environment for Classification Task
The downstream classification task is performed by distributing workload to four machines with Intel Xeon E5-
2620 v4 @ 2.10GHz and nine machines with Intel Xeon E5-2620 0 @ 2.00GHz. The software versions used on
all machines are Python 3.9.6, g++ 11.1.0 and matlab R2019b.

4 Complete Experimental Results
In Tables 8, 9 and 10 we compare, respectively, the Macro-F1, Micro-F1 and Instance-F1 of all the training/pre-
diction methods performed on the embedding vectors generated by the three methods of representation learning.

3

http://leitang.net/social_dimension.html
http://snap.stanford.edu/graphsage/


Dimension Window Size Walk Length Walk Times NS or HS1

Defaults in the tool by
64 5 40 10 HS

DeepWalk authors2

Perozzi et al. (2014) 128 10 - 80 HS
Tang et al. (2015) 128 10 40 40 HS
Grover and Leskovec (2016) 128 10 80 10 -
Khosla et al. (2021) 128 10 40 80 -
Our Setting 128 10 40 80 HS

1 NS denotes Negative Sampling, and HS denotes Hierarchical Softmax.
2 https://github.com/phanein/deepwalk. This is the source code provided by Perozzi et al. (2014).

Table 5: DeepWalk’s hyperparameters

Dimension Window Size Walk Length Walk Times (p, q)
Defaults in the tool by

128 10 80 10 (1, 1)
Node2vec authors1

Grover and Leskovec (2016) 128 10 - 80 p, q ∈ {0.25, 0.5, 1, 2, 4}
Khosla et al. (2021) 128 10 40 80 p, q ∈ {0.25, 0.5, 1, 2, 4}
Our Setting 128 10 40 80 (4, 0.25)2

1 https://github.com/aditya-grover/node2vec. This is the source code provided by Grover and Leskovec (2016).
2 According to the assumption of Node2vec, (4, 0.25) encourages the model to generate the DFS-style random
walks, while (0.25, 4) generates the BFS-style random walks. The DFS one is generally better so we adopt it in
the main paper.

Table 6: Node2vec’s hyperparameters

Dimension (1st + 2nd) Sample Times Negative Samples
Defaults in the tool by LINE

100 + 100 - 5
authors1

Tang et al. (2015) 128 + 128† 10 Billion 5
Grover and Leskovec (2016) 64 + 64 10×|E|‡ 5
Khosla et al. (2021) 64 + 64 10 Billion 5
Our Setting 64 + 64 10 Billion 5

1 https://github.com/tangjianpku/LINE. This is the source code provided by Tang et al. (2015).
† Most subsequent works set the dimension to be 64 instead of 128 for each module (i.e. LINE-
1st and LINE-2nd). The purpose is to use the same 128 dimensions as other models.
‡ |E| represents the number of edges in the given graph.

Table 7: LINE’s hyperparameters
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We further observe that

• LINE has a larger improvement with one-vs-rest-basic-C over one-vs-rest-basic. This is because for
binary logistic regression, there is a C value under which complete underfitting occurs (Chu et al., 2015),
given by

C <
1

l maxi||xxxi||2
.

For DeepWalk and Node2vec, no normalization is done, and the resulting embedding vectors have varying
L2-norm dependent on the data set. In our experiments, we observed that

10 < maxi||xxxi||2 < 500.

For the LINE setting, as shown in Table 7, we choose Line-1st + LINE-2nd, so each embedding vector is a
concatenation of two unit L2-norm vectors both with half the embedding vector dimension. Thus, we have

maxi||xxxi||2 = 2.

We see that LINE is the closest to underfitting with C = 1 in one-vs-rest-basic, and therefore, LINE also
benefits from one-vs-rest-basic-C more than the other methods.

4.1 Choice of CV Splits
A simple way to implement cost-sensitive-simple is as follows

• For each (C, t)

– Split data to folds

– Sequentially validate each fold

Under each (C, t), a standard CV procedure is conducted and and one can call the CV functionality in a package
such as LIBLINEAR for the inner loop in the pseudocode. However, if we decide to use the same data splits in all
CV processes, we generally need to maintain the data split by ourselves. The procedure is as follows

• Split data to folds

• For each (C, t)

– Sequentially validate each fold

Therefore maintaining the same data splits causes less flexibility in implementation.
However, as was mentioned previously, we suspect that different data splits may cause a higher variation of

the results. We conduct a comparison here to see if this conjecture is true. In the tables, we denote the method of
having different data splits for each (C, t) as cost-sensitive-simple-rand.

We observe that the difference between cost-sensitive-simple and cost-sensitive-simple-rand is very small
in all cases. This robustness against the choice of CV splits allows the implementation flexibility.
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4.2 Choice of (C, t) values for cost-sensitive-simple
For the cost-sensitive family of methods, there is a problem of choosing the grid of (C, t) values. A denser grid
generally yields better performance at the cost of longer running time. Here we discuss how the final grid is chosen
for cost-sensitive-simple.

In Tables 11, 12, 13 we compare, respectively, the Macro-F1, Micro-F1 and Instance-F1 of choosing various
ranges ofC values with the same range of t values.1 We observe that in most cases there is a marginal improvement
with an increase of the number of C values used. However, the training time for higher C values are drastically
longer, in some cases up to 70 times longer than C = 1. Due to the insignificant improvement at a high cost, we
chose to use a single value C = 1.

Parambath et al. (2014) gave a theoretical bound relating the density of t and the performance of cost-
sensitive. However, the bound is very loose and cannot be used as a practical rule to choose a proper range
of t. In Tables 14, 15 and 16 we compare the Macro-F1, Micro-F1 and Instance-F1 of different numbers of t
values chosen equidistantly from the range (0, 1] with C = 1. We observe that Macro-F1 is slightly better with
more t values. However, Micro-F1 and Instance-F1 are usually better with a smaller number of t values. In the
end we decide to choose seven t values for cost-sensitive-simple based on balance of Macro-F1 performance
and running time. The justification for emphasizing Macro-F1 is given in Section 4.3.

4.3 The Macro-F1 and Micro-F1 Tradeoff
In this section we explain that observations from Tables 14–16 may be related to the different best t value settings
for Macro-F1 and Micro-F1. Note that optimizing Macro-F1 and Micro-F1 is often a tradeoff. Because Macro-F1
is the average of label-wise F1 scores, the performance on a rare label is equally important to the performance on
a frequent label. In contrast, Micro-F1 is the overall F1 score by considering all labels together. To confirm this
difference, we consider another cost-sensitive method to optimize Micro-F1 (Parambath et al., 2014):

• cost-sensitive-simple-micro: The same (C, t) pair is used for all labels and the best is chosen by cross-
validation Micro-F1 score. The grid of (C, t) pairs is the same as cost-sensitive-simple.

In Tables 17, 18 and 19 we compare cost-sensitive-simple and cost-sensitive-simple-micro by checking
their Macro-F1, Micro-F1 and Instance-F1. We use C = 1 and consider seven t values chosen equidistantly
from (0, 1]. We observe that cost-sensitive-simple-micro is significantly better at optimizing Micro-F1, but
significantly worse at optimizing Macro-F1. The same observations hold for other settings of choosing t values.

We also observe that Instance-F1 has the same trend as Micro-F1. This result may be because that similar to
Micro-F1, Instance-F1 is defined without particularly checking the predictions of rare labels.

5 Papers or Libraries Assuming the Number of Labels is Known in the
Prediction Stage

In this section we list papers or libraries assuming the number of labels is known, either explicitly stated through
text or visible in their evaluation code. We also include a section of likely suspects that implicitly cite these papers
or libraries in their evaluation procedures.

1Seven values chosen equidistantly from (0, 1]
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Training and Macro-F1
prediction methods DeepWalk Node2vec LINE

BlogCatalog
unrealistic 0.276 ± 0.005 0.294 ± 0.004 0.239 ± 0.008
one-vs-rest-basic 0.190 ± 0.010 0.203 ± 0.010 0.150 ± 0.003
one-vs-rest-basic-C 0.208 ± 0.008 0.220 ± 0.008 0.195 ± 0.007
one-vs-rest-no-empty 0.241 ± 0.011 0.265 ± 0.007 0.204 ± 0.011
thresholding 0.269 ± 0.006 0.283 ± 0.006 0.221 ± 0.006
cost-sensitive 0.270 ± 0.003 0.283 ± 0.006 0.250 ± 0.007
cost-sensitive-no-empty 0.268 ± 0.004 0.280 ± 0.007 0.251 ± 0.007
cost-sensitive-simple 0.266 ± 0.005 0.275 ± 0.005 0.251 ± 0.007
cost-sensitive-simple-rand 0.261 ± 0.006 0.276 ± 0.005 0.251 ± 0.009

Flickr
unrealistic 0.304 ± 0.003 0.306 ± 0.001 0.258 ± 0.005
one-vs-rest-basic 0.195 ± 0.003 0.191 ± 0.002 0.128 ± 0.004
one-vs-rest-basic-C 0.209 ± 0.001 0.208 ± 0.002 0.188 ± 0.003
one-vs-rest-no-empty 0.256 ± 0.001 0.259 ± 0.002 0.206 ± 0.004
thresholding 0.299 ± 0.004 0.302 ± 0.002 0.264 ± 0.002
cost-sensitive 0.297 ± 0.000 0.301 ± 0.002 0.279 ± 0.003
cost-sensitive-no-empty 0.298 ± 0.000 0.301 ± 0.002 0.284 ± 0.006
cost-sensitive-simple 0.294 ± 0.001 0.296 ± 0.002 0.279 ± 0.002
cost-sensitive-simple-rand 0.293 ± 0.001 0.295 ± 0.002 0.279 ± 0.003

YouTube
unrealistic 0.397 ± 0.007 0.415 ± 0.009 0.412 ± 0.005
one-vs-rest-basic 0.213 ± 0.003 0.240 ± 0.006 0.230 ± 0.004
one-vs-rest-basic-C 0.217 ± 0.004 0.242 ± 0.006 0.246 ± 0.005
one-vs-rest-no-empty 0.263 ± 0.003 0.284 ± 0.006 0.281 ± 0.004
thresholding 0.358 ± 0.005 0.374 ± 0.006 0.377 ± 0.004
cost-sensitive 0.360 ± 0.005 0.375 ± 0.003 0.374 ± 0.004
cost-sensitive-no-empty 0.359 ± 0.005 0.374 ± 0.003 0.375 ± 0.004
cost-sensitive-simple 0.349 ± 0.005 0.369 ± 0.005 0.371 ± 0.005
cost-sensitive-simple-rand 0.349 ± 0.005 0.368 ± 0.005 0.372 ± 0.004

PPI
unrealistic 0.483 ± 0.003 0.442 ± 0.003 0.504 ± 0.003
one-vs-rest-basic 0.181 ± 0.001 0.148 ± 0.000 0.232 ± 0.002
one-vs-rest-basic-C 0.183 ± 0.001 0.150 ± 0.000 0.243 ± 0.002
one-vs-rest-no-empty 0.181 ± 0.001 0.148 ± 0.000 0.232 ± 0.002
thresholding 0.482 ± 0.002 0.457 ± 0.002 0.498 ± 0.001
cost-sensitive 0.482 ± 0.002 0.461 ± 0.002 0.495 ± 0.002
cost-sensitive-no-empty 0.482 ± 0.002 0.461 ± 0.002 0.495 ± 0.002
cost-sensitive-simple 0.481 ± 0.002 0.460 ± 0.002 0.494 ± 0.002
cost-sensitive-simple-rand 0.481 ± 0.002 0.460 ± 0.002 0.494 ± 0.002

Table 8: Macro-F1 of various training/prediction techniques on embedding vectors generated by some represen-
tation learning methods. Each entry is the average and standard deviation of five 80/20 training/testing splits. The
score of the best training/prediction method (excluding unrealistic) is bold-faced.
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Training and Micro-F1
prediction methods DeepWalk Node2vec LINE

BlogCatalog
unrealistic 0.417 ± 0.005 0.426 ± 0.006 0.406 ± 0.007
one-vs-rest-basic 0.334 ± 0.007 0.348 ± 0.012 0.296 ± 0.005
one-vs-rest-basic-C 0.344 ± 0.006 0.355 ± 0.012 0.335 ± 0.005
one-vs-rest-no-empty 0.390 ± 0.003 0.404 ± 0.006 0.370 ± 0.007
thresholding 0.390 ± 0.003 0.396 ± 0.010 0.353 ± 0.005
cost-sensitive 0.366 ± 0.007 0.371 ± 0.003 0.341 ± 0.004
cost-sensitive-no-empty 0.351 ± 0.010 0.360 ± 0.007 0.324 ± 0.009
cost-sensitive-simple 0.351 ± 0.006 0.362 ± 0.017 0.337 ± 0.004
cost-sensitive-simple-rand 0.353 ± 0.010 0.363 ± 0.006 0.332 ± 0.002

Flickr
unrealistic 0.416 ± 0.002 0.420 ± 0.005 0.409 ± 0.004
one-vs-rest-basic 0.283 ± 0.003 0.288 ± 0.002 0.271 ± 0.004
one-vs-rest-basic-C 0.291 ± 0.002 0.296 ± 0.002 0.289 ± 0.006
one-vs-rest-no-empty 0.377 ± 0.002 0.382 ± 0.004 0.373 ± 0.004
thresholding 0.370 ± 0.002 0.376 ± 0.003 0.364 ± 0.001
cost-sensitive 0.352 ± 0.003 0.358 ± 0.002 0.354 ± 0.005
cost-sensitive-no-empty 0.343 ± 0.006 0.355 ± 0.006 0.348 ± 0.013
cost-sensitive-simple 0.355 ± 0.003 0.360 ± 0.004 0.357 ± 0.004
cost-sensitive-simple-rand 0.356 ± 0.002 0.359 ± 0.005 0.356 ± 0.006

YouTube
unrealistic 0.470 ± 0.008 0.482 ± 0.008 0.480 ± 0.004
one-vs-rest-basic 0.287 ± 0.008 0.313 ± 0.007 0.315 ± 0.004
one-vs-rest-basic-C 0.290 ± 0.009 0.314 ± 0.007 0.325 ± 0.006
one-vs-rest-no-empty 0.382 ± 0.005 0.399 ± 0.004 0.402 ± 0.004
thresholding 0.387 ± 0.006 0.409 ± 0.003 0.412 ± 0.005
cost-sensitive 0.374 ± 0.010 0.400 ± 0.006 0.403 ± 0.004
cost-sensitive-no-empty 0.372 ± 0.008 0.400 ± 0.005 0.404 ± 0.004
cost-sensitive-simple 0.365 ± 0.006 0.390 ± 0.007 0.400 ± 0.005
cost-sensitive-simple-rand 0.368 ± 0.010 0.390 ± 0.003 0.401 ± 0.004

PPI
unrealistic 0.641 ± 0.001 0.626 ± 0.001 0.647 ± 0.001
one-vs-rest-basic 0.449 ± 0.001 0.433 ± 0.001 0.479 ± 0.001
one-vs-rest-basic-C 0.458 ± 0.001 0.441 ± 0.001 0.489 ± 0.002
one-vs-rest-no-empty 0.449 ± 0.001 0.433 ± 0.001 0.479 ± 0.001
thresholding 0.535 ± 0.002 0.482 ± 0.002 0.553 ± 0.001
cost-sensitive 0.533 ± 0.002 0.495 ± 0.002 0.548 ± 0.002
cost-sensitive-no-empty 0.533 ± 0.002 0.495 ± 0.002 0.548 ± 0.002
cost-sensitive-simple 0.529 ± 0.002 0.495 ± 0.002 0.547 ± 0.002
cost-sensitive-simple-rand 0.529 ± 0.002 0.494 ± 0.002 0.548 ± 0.002

Table 9: Micro-F1 of various training/prediction techniques on embedding vectors generated by some representa-
tion learning methods. Each entry is the average and standard deviation of five 80/20 training/testing splits. The
score of the best training/prediction method (excluding unrealistic) is bold-faced.
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Training and Instance-F1
prediction methods DeepWalk Node2vec LINE

BlogCatalog
unrealistic 0.422 ± 0.004 0.433 ± 0.006 0.408 ± 0.005
one-vs-rest-basic 0.255 ± 0.004 0.265 ± 0.009 0.222 ± 0.004
one-vs-rest-basic-C 0.267 ± 0.003 0.275 ± 0.009 0.256 ± 0.003
one-vs-rest-no-empty 0.403 ± 0.003 0.416 ± 0.006 0.389 ± 0.006
thresholding 0.347 ± 0.006 0.354 ± 0.012 0.315 ± 0.002
cost-sensitive 0.340 ± 0.006 0.348 ± 0.003 0.314 ± 0.005
cost-sensitive-no-empty 0.352 ± 0.011 0.363 ± 0.011 0.325 ± 0.015
cost-sensitive-simple 0.327 ± 0.004 0.335 ± 0.011 0.313 ± 0.006
cost-sensitive-simple-rand 0.327 ± 0.003 0.334 ± 0.007 0.311 ± 0.004

Flickr
unrealistic 0.406 ± 0.002 0.410 ± 0.004 0.394 ± 0.004
one-vs-rest-basic 0.211 ± 0.002 0.212 ± 0.002 0.185 ± 0.002
one-vs-rest-basic-C 0.217 ± 0.001 0.220 ± 0.002 0.207 ± 0.003
one-vs-rest-no-empty 0.386 ± 0.002 0.390 ± 0.004 0.376 ± 0.004
thresholding 0.352 ± 0.002 0.353 ± 0.005 0.325 ± 0.002
cost-sensitive 0.342 ± 0.001 0.343 ± 0.003 0.326 ± 0.002
cost-sensitive-no-empty 0.345 ± 0.008 0.357 ± 0.008 0.349 ± 0.018
cost-sensitive-simple 0.344 ± 0.006 0.345 ± 0.005 0.329 ± 0.008
cost-sensitive-simple-rand 0.346 ± 0.005 0.343 ± 0.007 0.328 ± 0.008

YouTube
unrealistic 0.454 ± 0.007 0.467 ± 0.006 0.464 ± 0.003
one-vs-rest-basic 0.245 ± 0.009 0.262 ± 0.008 0.254 ± 0.004
one-vs-rest-basic-C 0.247 ± 0.010 0.263 ± 0.008 0.263 ± 0.005
one-vs-rest-no-empty 0.412 ± 0.005 0.427 ± 0.005 0.428 ± 0.003
thresholding 0.389 ± 0.006 0.400 ± 0.006 0.398 ± 0.006
cost-sensitive 0.380 ± 0.011 0.399 ± 0.006 0.394 ± 0.004
cost-sensitive-no-empty 0.388 ± 0.010 0.414 ± 0.005 0.416 ± 0.006
cost-sensitive-simple 0.372 ± 0.009 0.388 ± 0.007 0.388 ± 0.004
cost-sensitive-simple-rand 0.377 ± 0.012 0.388 ± 0.006 0.388 ± 0.006

PPI
unrealistic 0.577 ± 0.002 0.565 ± 0.001 0.583 ± 0.002
one-vs-rest-basic 0.449 ± 0.001 0.438 ± 0.001 0.464 ± 0.001
one-vs-rest-basic-C 0.457 ± 0.001 0.445 ± 0.002 0.475 ± 0.001
one-vs-rest-no-empty 0.449 ± 0.001 0.438 ± 0.001 0.464 ± 0.001
thresholding 0.503 ± 0.002 0.456 ± 0.002 0.517 ± 0.001
cost-sensitive 0.501 ± 0.002 0.467 ± 0.002 0.513 ± 0.002
cost-sensitive-no-empty 0.501 ± 0.002 0.467 ± 0.002 0.513 ± 0.002
cost-sensitive-simple 0.496 ± 0.002 0.466 ± 0.002 0.512 ± 0.002
cost-sensitive-simple-rand 0.497 ± 0.002 0.466 ± 0.002 0.513 ± 0.002

Table 10: Instance-F1 of various training/prediction techniques on embedding vectors generated by some repre-
sentation learning methods. Each entry is the average and standard deviation of five 80/20 training/testing splits.
The score of the best training/prediction method (excluding unrealistic) is bold-faced.
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Choice of Macro-F1
C values DeepWalk Node2vec LINE

BlogCatalog
1 0.266 ± 0.005 0.275 ± 0.005 0.251 ± 0.007
1, 10, 100 0.266 ± 0.005 0.276 ± 0.006 0.249 ± 0.006
0.01, 0.1, 1, 10, 100 0.266 ± 0.004 0.282 ± 0.005 0.250 ± 0.007

Flickr
1 0.294 ± 0.001 0.296 ± 0.002 0.279 ± 0.002
1, 10, 100 0.293 ± 0.001 0.295 ± 0.003 0.278 ± 0.002
0.01, 0.1, 1, 10, 100 0.297 ± 0.002 0.299 ± 0.002 0.279 ± 0.002

YouTube
1 0.349 ± 0.005 0.369 ± 0.005 0.371 ± 0.005
1, 10, 100 0.348 ± 0.005 0.368 ± 0.005 0.371 ± 0.004
0.01, 0.1, 1, 10, 100 0.357 ± 0.004 0.374 ± 0.005 0.374 ± 0.004

PPI
1 0.481 ± 0.002 0.460 ± 0.002 0.494 ± 0.002
1, 10, 100 0.481 ± 0.002 0.460 ± 0.002 0.494 ± 0.002
0.01, 0.1, 1, 10, 100 0.481 ± 0.002 0.460 ± 0.002 0.494 ± 0.002

Table 11: Macro-F1 of various choices of C values for cost-sensitive-simple on embedding vectors generated
by some representation learning methods. Each entry is the average and standard deviation of five 80/20 train-
ing/testing splits. The score of the best training/prediction method is bold-faced.

Choice of Micro-F1
C values DeepWalk Node2vec LINE

BlogCatalog
1 0.351 ± 0.006 0.362 ± 0.017 0.337 ± 0.004
1, 10, 100 0.355 ± 0.006 0.367 ± 0.017 0.336 ± 0.009
0.01, 0.1, 1, 10, 100 0.353 ± 0.010 0.371 ± 0.011 0.342 ± 0.007

Flickr
1 0.355 ± 0.003 0.360 ± 0.004 0.357 ± 0.004
1, 10, 100 0.355 ± 0.003 0.361 ± 0.005 0.360 ± 0.005
0.01, 0.1, 1, 10, 100 0.358 ± 0.003 0.361 ± 0.003 0.358 ± 0.005

YouTube
1 0.365 ± 0.006 0.390 ± 0.007 0.400 ± 0.005
1, 10, 100 0.365 ± 0.006 0.391 ± 0.008 0.401 ± 0.005
0.01, 0.1, 1, 10, 100 0.372 ± 0.007 0.395 ± 0.006 0.400 ± 0.004

PPI
1 0.529 ± 0.002 0.495 ± 0.002 0.547 ± 0.002
1, 10, 100 0.529 ± 0.002 0.495 ± 0.002 0.547 ± 0.002
0.01, 0.1, 1, 10, 100 0.529 ± 0.002 0.495 ± 0.002 0.547 ± 0.002

Table 12: Micro-F1 of various choices of C values for cost-sensitive-simple on embedding vectors generated
by some representation learning methods. Each entry is the average and standard deviation of five 80/20 train-
ing/testing splits. The score of the best training/prediction method is bold-faced.
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Choice of Instance-F1
C values DeepWalk Node2vec LINE

BlogCatalog
1 0.327 ± 0.004 0.335 ± 0.011 0.313 ± 0.006
1, 10, 100 0.329 ± 0.003 0.340 ± 0.010 0.307 ± 0.007
0.01, 0.1, 1, 10, 100 0.333 ± 0.004 0.350 ± 0.006 0.311 ± 0.004

Flickr
1 0.344 ± 0.006 0.345 ± 0.005 0.329 ± 0.008
1, 10, 100 0.344 ± 0.005 0.345 ± 0.005 0.330 ± 0.008
0.01, 0.1, 1, 10, 100 0.344 ± 0.006 0.345 ± 0.005 0.331 ± 0.007

YouTube
1 0.372 ± 0.009 0.388 ± 0.007 0.388 ± 0.004
1, 10, 100 0.373 ± 0.010 0.389 ± 0.010 0.388 ± 0.005
0.01, 0.1, 1, 10, 100 0.378 ± 0.009 0.392 ± 0.008 0.384 ± 0.006

PPI
1 0.496 ± 0.002 0.466 ± 0.002 0.512 ± 0.002
1, 10, 100 0.496 ± 0.002 0.466 ± 0.002 0.513 ± 0.002
0.01, 0.1, 1, 10, 100 0.497 ± 0.002 0.466 ± 0.002 0.512 ± 0.002

Table 13: Instance-F1 of various choices of C values for cost-sensitive-simple on embedding vectors generated
by some representation learning methods. Each entry is the average and standard deviation of five 80/20 train-
ing/testing splits. The score of the best training/prediction method is bold-faced.

5.1 Papers Explicitly Assuming the Number of Labels is Known
1. Tang and Liu (2009a): The paper is at https://dl.acm.org/doi/pdf/10.1145/1557019.1557109. “It has been

shown that different thresholding strategies lead to quite different performance (Fan and Lin, 2007; Tang
et al., 2009). To avoid the affection of thresholding, we assume the number of labels on the test data are
already known and check how the top ranking predictions match with the true labels. Two commonly used
measures Micro-F1 and Macro-F1 are adopted to evaluate the classification performance.”

2. Tang and Liu (2009b): The paper is at https://dl.acm.org/doi/pdf/10.1145/1645953.1646094. “Note that
our prediction problem is essentially multi-label. It is empirically shown that thresholding can affect the
final prediction performance drastically (Fan and Lin, 2007; Tang et al., 2009). For evaluation purpose, we
assume the number of labels of unobserved nodes is already known and check the match of the top-ranking
labels with the truth. Such a scheme has been adopted for other multi-label evaluation works Liu et al.
(2006). We randomly sample a portion of nodes as labeled and report the average performance of 10 runs
in terms of Micro-F1 and Macro-F1. We use the same setting as in Tang and Liu (2009a) for the baseline
methods for Flickr and BlogCatalog, thus the performance on the two data sets are reported here directly.”

3. Tang et al. (2010): The paper is at https://dl.acm.org/doi/pdf/10.1145/1964858.1964861. “We follow the
same evaluation procedure as in Tang and Liu (2009a,b).”

4. Menon and Elkan (2010): The paper is at https://link.springer.com/content/pdf/10.1007/s10618-010-
0189-3.pdf. “Following Tang and Liu (2009a), for multilabel data we assume that the number of labels are
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# of Macro-F1
t values DeepWalk Node2vec LINE

BlogCatalog
4 0.265 ± 0.004 0.274 ± 0.010 0.245 ± 0.010
7 0.266 ± 0.005 0.275 ± 0.005 0.251 ± 0.007
10 0.264 ± 0.007 0.274 ± 0.009 0.252 ± 0.012

Flickr
4 0.291 ± 0.002 0.294 ± 0.004 0.276 ± 0.002
7 0.294 ± 0.001 0.296 ± 0.002 0.279 ± 0.002
10 0.294 ± 0.002 0.297 ± 0.003 0.280 ± 0.003

YouTube
4 0.345 ± 0.004 0.365 ± 0.005 0.371 ± 0.005
7 0.349 ± 0.005 0.369 ± 0.005 0.371 ± 0.005
10 0.350 ± 0.005 0.370 ± 0.004 0.372 ± 0.004

PPI
4 0.477 ± 0.002 0.459 ± 0.002 0.490 ± 0.002
7 0.481 ± 0.002 0.460 ± 0.002 0.494 ± 0.002
10 0.482 ± 0.002 0.461 ± 0.002 0.495 ± 0.002

Table 14: Macro-F1 of various number of t values for cost-sensitive-simple on embedding vectors generated by
some representation learning methods. Each entry is the average and standard deviation of five 80/20 training/test-
ing splits. The score of the best training/prediction method is bold-faced.

# of Micro-F1
t values DeepWalk Node2vec LINE

BlogCatalog
4 0.377 ± 0.008 0.385 ± 0.005 0.356 ± 0.005
7 0.351 ± 0.006 0.362 ± 0.017 0.337 ± 0.004
10 0.334 ± 0.009 0.349 ± 0.010 0.320 ± 0.011

Flickr
4 0.374 ± 0.002 0.376 ± 0.002 0.373 ± 0.002
7 0.355 ± 0.003 0.360 ± 0.004 0.357 ± 0.004
10 0.352 ± 0.007 0.361 ± 0.003 0.356 ± 0.005

YouTube
4 0.392 ± 0.004 0.408 ± 0.006 0.410 ± 0.003
7 0.365 ± 0.006 0.390 ± 0.007 0.400 ± 0.005
10 0.362 ± 0.009 0.400 ± 0.007 0.406 ± 0.004

PPI
4 0.517 ± 0.002 0.491 ± 0.002 0.540 ± 0.002
7 0.529 ± 0.002 0.495 ± 0.002 0.547 ± 0.002
10 0.533 ± 0.002 0.495 ± 0.002 0.547 ± 0.002

Table 15: Micro-F1 of various number of t values for cost-sensitive-simple on embedding vectors generated by
some representation learning methods. Each entry is the average and standard deviation of five 80/20 training/test-
ing splits. The score of the best training/prediction method is bold-faced.
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# of Instance-F1
t values DeepWalk Node2vec LINE

BlogCatalog
4 0.338 ± 0.009 0.344 ± 0.003 0.319 ± 0.003
7 0.327 ± 0.004 0.335 ± 0.011 0.313 ± 0.006
10 0.321 ± 0.007 0.330 ± 0.006 0.304 ± 0.007

Flickr
4 0.353 ± 0.001 0.351 ± 0.002 0.337 ± 0.002
7 0.344 ± 0.006 0.345 ± 0.005 0.329 ± 0.008
10 0.341 ± 0.004 0.343 ± 0.001 0.329 ± 0.004

YouTube
4 0.393 ± 0.006 0.404 ± 0.005 0.399 ± 0.005
7 0.372 ± 0.009 0.388 ± 0.007 0.388 ± 0.004
10 0.373 ± 0.008 0.399 ± 0.006 0.395 ± 0.005

PPI
4 0.485 ± 0.002 0.462 ± 0.002 0.505 ± 0.002
7 0.496 ± 0.002 0.466 ± 0.002 0.512 ± 0.002
10 0.501 ± 0.002 0.467 ± 0.002 0.513 ± 0.003

Table 16: Instance-F1 of various number of t values for cost-sensitive-simple on embedding vectors generated
by some representation learning methods. Each entry is the average and standard deviation of five 80/20 train-
ing/testing splits. The score of the best training/prediction method is bold-faced.

known, and we measure how well the predicted score for each tag agrees with the true label. Agreement is
measured using the F1 micro and macro scores.”

5. Tang and Liu (2011): The paper is at https://link.springer.com/content/pdf/10.1007/s10618-010-0210-x.pdf.
“It has been shown that different thresholding strategies lead to quite different performances (Fan and Lin,
2007; Tang et al., 2009). To avoid the effect of thresholding, we assume the number of labels on the test
data is already known and check how the top-ranking predictions match with the true labels.”

6. Wang and Sukthankar (2011): The paper is at https://ieeexplore.ieee.org/abstract/document/611322
4. “Since our classification problem is essentially a multi-label task, during the prediction procedure, we
assume that the number of labels for the unlabeled nodes is already known and assign the labels according to
the top-ranking class. Such a scheme has been adopted for multi-label evaluation in social network datasets
(Tang and Liu, 2009a,b).”

7. Tang et al. (2012): The paper is at https://ieeexplore.ieee.org/abstract/document/5710923. “It is empirically
shown that thresholding can affect the final prediction performance drastically (Fan and Lin, 2007; Tang
et al., 2009). For evaluation purposes, we assume the number of labels of unobserved nodes is already
known, and check whether the top-ranking predicted labels match with the actual labels.”

8. Wang and Sukthankar (2013): The paper is at https://dl.acm.org/doi/abs/10.1145/2487575.2487610.
“Since our problem is essentially a multi-label classification task, we assume that the number of labels for
the unlabeled nodes is already known (e.g., based on the output of a separate classifier) and assign the
labels according to the top-ranking set of classes at the conclusion of the inference process. Such a scheme
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Training and Macro-F1
prediction methods DeepWalk Node2vec LINE

BlogCatalog
cost-sensitive-simple 0.266 ± 0.005 0.275 ± 0.005 0.251 ± 0.007
cost-sensitive-simple-micro 0.251 ± 0.006 0.259 ± 0.008 0.231 ± 0.008

Flickr
cost-sensitive-simple 0.294 ± 0.001 0.296 ± 0.002 0.279 ± 0.002
cost-sensitive-simple-micro 0.279 ± 0.002 0.283 ± 0.002 0.255 ± 0.003

YouTube
cost-sensitive-simple 0.349 ± 0.005 0.369 ± 0.005 0.371 ± 0.005
cost-sensitive-simple-micro 0.324 ± 0.003 0.350 ± 0.005 0.351 ± 0.003

PPI
cost-sensitive-simple 0.481 ± 0.002 0.460 ± 0.002 0.494 ± 0.002
cost-sensitive-simple-micro 0.408 ± 0.001 0.358 ± 0.002 0.446 ± 0.002

Table 17: Macro-F1 for cost-sensitive-simple and cost-sensitive-simple-micro on embedding vectors gener-
ated by some representation learning methods. Each entry is the average and standard deviation of five 80/20
training/testing splits. The score of the best training/prediction method is bold-faced.

Training and Micro-F1
prediction methods DeepWalk Node2vec LINE

BlogCatalog
cost-sensitive-simple 0.351 ± 0.006 0.362 ± 0.017 0.337 ± 0.004
cost-sensitive-simple-micro 0.398 ± 0.004 0.409 ± 0.008 0.383 ± 0.006

Flickr
cost-sensitive-simple 0.355 ± 0.003 0.360 ± 0.004 0.357 ± 0.004
cost-sensitive-simple-micro 0.395 ± 0.003 0.398 ± 0.002 0.397 ± 0.002

YouTube
cost-sensitive-simple 0.365 ± 0.006 0.390 ± 0.007 0.400 ± 0.005
cost-sensitive-simple-micro 0.417 ± 0.005 0.432 ± 0.004 0.433 ± 0.002

PPI
cost-sensitive-simple 0.529 ± 0.002 0.495 ± 0.002 0.547 ± 0.002
cost-sensitive-simple-micro 0.561 ± 0.001 0.545 ± 0.002 0.576 ± 0.002

Table 18: Micro-F1 for cost-sensitive-simple and cost-sensitive-simple-micro on embedding vectors gener-
ated by some representation learning methods. Each entry is the average and standard deviation of five 80/20
training/testing splits. The score of the best training/prediction method is bold-faced.
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Training and Instance-F1
prediction methods DeepWalk Node2vec LINE

BlogCatalog
cost-sensitive-simple 0.327 ± 0.004 0.335 ± 0.011 0.313 ± 0.006
cost-sensitive-simple-micro 0.343 ± 0.016 0.347 ± 0.006 0.342 ± 0.004

Flickr
cost-sensitive-simple 0.344 ± 0.006 0.345 ± 0.005 0.329 ± 0.008
cost-sensitive-simple-micro 0.357 ± 0.002 0.360 ± 0.003 0.343 ± 0.002

YouTube
cost-sensitive-simple 0.372 ± 0.009 0.388 ± 0.007 0.388 ± 0.004
cost-sensitive-simple-micro 0.417 ± 0.006 0.427 ± 0.006 0.418 ± 0.003

PPI
cost-sensitive-simple 0.496 ± 0.002 0.466 ± 0.002 0.512 ± 0.002
cost-sensitive-simple-micro 0.529 ± 0.001 0.514 ± 0.002 0.537 ± 0.002

Table 19: Micro-F1 for cost-sensitive-simple and cost-sensitive-simple-micro on embedding vectors gener-
ated by some representation learning methods. Each entry is the average and standard deviation of five 80/20
training/testing splits. The score of the best training/prediction method is bold-faced.

has been adopted for multi-label evaluation in social network datasets (Tang and Liu, 2009b; Wang and
Sukthankar, 2011).”

9. Wang et al. (2013): The paper is at https://link.springer.com/article/10.1007/s10115-012-0555-0. “We
follow the same evaluation procedure as in Tang and Liu (2009a,b).2”

10. Li et al. (2016b): The paper is at https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152857.
“To evaluate the performance of different methods, dataset will be divided into training set and testing set
randomly. The labels of nodes in the training set are known, and the labels of nodes in the testing set are
unknown. All the classification methods need to utilize the training set to predict the labels of all nodes
in the testing set. For handling multi-label classification task, we apply the typically used strategy, which
assumes the number of labels of unlabeled nodes is already known and check the match of the top-ranking
labels with the truth (Wang and Sukthankar, 2013; Tang and Liu, 2011, 2009b).”

11. Li et al. (2016a): The paper is at https://aclanthology.org/P16-1095.pdf. As the datasets are not only
multi-class but also multi-label, we usually need a thresholding method to test the results. But literature
gives a negative opinion of arbitrarily choosing thresholding methods because of the considerably different
performances. To avoid this, we assume that the number of the labels is already known in all the test
processes.

12. Nandanwar and Murty (2016): The paper is at https://dl.acm.org/doi/abs/10.1145/2939672.2939782. “For
each node in the test set, decision values are obtained from the respective class models. We assign s most
probable classes to the node using these decision values, where s is equal to the number of labels assigned
to the node originally.”

2http://leitang.net/social dimension.html
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13. Rizos et al. (2017): The paper is at https://journals.plos.org/plosone/article?id=10.1371/journal.pone.017
3347. “Following Tang and Liu (2009a); Devooght et al. (2014), we assume the true number of labels for
each vertex to be known.”

14. Qiu et al. (2018): The paper is at https://dl.acm.org/doi/abs/10.1145/3159652.3159706. “To avoid the
thresholding effect (Tang et al., 2009), we assume that the number of labels for test data is given (Perozzi
et al., 2014; Tang et al., 2009). We repeat the prediction procedure 10 times and evaluate the performance
in terms of average Micro-F1 and average Macro-F1 (Tsoumakas et al., 2010).”

15. Zhang et al. (2018d): The paper is at https://www.sciencedirect.com/science/article/pii/S092523121830246
7. “For evaluation purpose, we assume that the number of labels for the unlabeled nodes is already known
and we assign the labels according to the top-ranking set of class membership probabilities. Such a scheme
has been adopted for multi-label evaluation in social network datasets (Wang and Sukthankar, 2013; Tang
and Liu, 2009a).”

16. Zhang et al. (2018c): The paper is at https://www.sciencedirect.com/science/article/abs/pii/S095070511
8303186. “For evaluation purpose, we assume that the number of labels for the unlabeled nodes is already
known and assign the labels according to the top-ranking set of class-membership probabilities. Such a
scheme has been adopted for multi-label evaluation in social network datasets (Tang et al., 2012)”

17. Zhang et al. (2018b): The paper is at https://link.springer.com/chapter/10.1007/978-3-030-02922-7 25.
“if the probability of a test instance belonging to a label is more than 0.5, MLKNN assigns this class label
to this test instance. We made a minor change. For fair comparison, in all methods, we assume that the
number of labels for all unlabeled nodes are already known and we assign the labels based on the classes
with highest probability. Such a scheme has been adopted for multilabel evaluation in social network data
sets (Tang and Liu, 2009a; Wang and Sukthankar, 2013) and improve the performance of MLKNN.”

18. Goyal and Ferrara (2018): The paper is at https://www.sciencedirect.com/science/article/abs/pii/S09507
05118301540. “For data sets with multiple labels per node, we assume that we know how many labels to
predict.”

19. Ye et al. (2018): The paper is at https://link.springer.com/article/10.1007/s41019-018-0062-8. “In multi-
label prediction phrase, the goal is to find the most probable classes for each unlabeled node. Since most
methods yield a ranking of labels rather than an exact assignment, a threshold is often required. To avoid
the affection of introducing a threshold, we assign s most probable classes to a node, where s is the number
of labels assigned to the node originally.”

20. Nandanwar and Murty (2018): The paper is at https://ojs.aaai.org/index.php/AAAI/article/view/11787. “In
our multilabel setting, each node has a different number of labels assigned to it. For an unlabeled node, we
predict a set of labels using predicted class membership probabilities. The cardinality of the predicted label
set is equal to that of its original label set.”

21. Berberidis et al. (2018): The paper is at https://ieeexplore.ieee.org/abstract/document/8622130. “Similar to
Grover and Leskovec (2016) and Perozzi et al. (2014), during evaluation the number of labels per sampled
node is known, and check how many of them are in the top predictions.”

22. Yin and Wei (2019): The paper is at https://dl.acm.org/doi/abs/10.1145/3292500.3330860. “To avoid the
thresholding effect (Tang et al., 2009), we assume that the number of labels for test data is given (Perozzi
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et al., 2014). The performance of each method is evaluated in terms of average Micro-F1 and average
Macro-F1 (Tsoumakas et al., 2010), and we only report Micro-F1 as we experience similar behaviors with
Macro-F1. Table 7 and Table 8 show the node classification results on BlogCatalog and Flickr. Surprisingly,
DeepWalk outperforms all successors other than STRAP on both datasets.”

23. Schlötterer et al. (2019): The paper is at https://ieeexplore.ieee.org/abstract/document/8816899. “Since
BlogCatalog is multi-label, we first obtain the number of actual labels to predict for each sample from the
test set. Then we predict the k most probable classes, where k is the number of labels to predict. This is a
common choice in the evaluation setup of the reproduced methods. All methods report the Macro-F1 score,
except for Walklets, reporting Micro-F1, which we follow in the reproduction.”

24. Qiu et al. (2019): The paper is at https://dl.acm.org/doi/abs/10.1145/3308558.3313446. “To avoid the
thresholding effect, we take the assumption that was made in DeepWalk, LINE, and node2vec, that is, the
number of labels for vertices in the test data is given Grover and Leskovec (2016); Perozzi et al. (2014);
Tang et al. (2009).”

25. Berberidis et al. (2019): The paper is at https://ieeexplore.ieee.org/abstract/document/8590776. “Similar to
Grover and Leskovec (2016) and Perozzi et al. (2014), during evaluation of accuracy the number of labels
per sampled node is known, and check how many of them are in the top predictions.”

26. Berberidis and Giannakis (2019): The paper is at http://www.mlgworkshop.org/2019/papers/MLG2019 p
aper 40.pdf. “In the testing phase, we sorted the predicted class probabilities for each node in decreasing
order, and extracted the top-ki ranking labels, were ki is the true number of labels of node vi. We then
computed the Micro- and Macro-averaged F1 scores of the predicted labels.”

27. Berberidis and Giannakis (2021): The paper is at https://ieeexplore.ieee.org/abstract/document/8778744.
“In the testing phase, we sorted the predicted class probabilities for each node in decreasing order, and
extracted the top-ki ranking labels, were ki is the true number of labels of node vi. We then computed the
Micro- and Macro-averaged F1 scores of the predicted labels.”

28. Postăvaru et al. (2020): The paper is at https://arxiv.org/abs/2010.06992. “The other datasets have multiple
labels per node, and we are using a One-vs-The-Rest ensemble. When evaluating, we assume the number
of correct labels, K, is known and select the top K probabilities from the ensemble.”

29. Yue et al. (2020): The paper is at https://academic.oup.com/bioinformatics/article/36/4/1241/5581350?l
ogin=true. “We assign top αi predictions to the node i as its predicted labels, where αi is the number of
golden labels of the node i in the testing set. Accuracy, Macro-F1 and Micro-F1 are used to evaluate the
performance of different embedding methods on the testing set.”

30. Devooght et al. (2014): The paper is at https://dl.acm.org/doi/abs/10.1145/2566486.2567986. “Each
element of the BlogCatalog and Flickr datasets can have multiple labels, and the presented algorithms
produce for each element a ranking of the most probable labels. This ranking is compared to the ground-
truth using the micro and macro-average of the F-measure, respectively noted microF1 an macroF1 [20, 26],
a pair of metrics well-known in information retrieval. The F-measure is the harmonic mean of precision and
recall. The micro- and macro-average are two ways of computing the F-measure when dealing with multiple
labels. The microF1 is defined using directly the global recall (ρ) and precision (π) of the results (as in Tang
and Liu (2009a,b); Tang et al. (2010), ρ and π are computed on the ranking truncated to the true number of
labels)”
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31. Krohn-Grimberghe et al. (2012): The paper is at https://dl.acm.org/doi/10.1145/2124295.2124317.
“As suggested in Tang and Liu (2009b), we remove the dependency on the length of the top-N list for
performance evaluation w.r.t. Micro-F1 and Macro-F1 by assuming that the number of true instances is
known at prediction time.”

32. Santos et al. (2018): The paper is at https://dl.acm.org/doi/pdf/10.1145/3201603. “We have considered two
different evaluation measures: Precision at 1 (P@1) measures the percentage of nodes for which the category
with the highest predicted score is among the observed labels for this node. For monolabel classification,
this should be the target label, while for multilabel classification, this could be any of the target labels.
Precision at k (P@k) is the proportion of correct labels in the set of k labels with the highest predicted
scores. For the monolabel dataset DBLP, we only make use of Precision at 1 (P@1). For the multilabels
dataset, P@k will denote an average over all the node types, with k set to the number of categories a node
belongs to. We optimized the different models with regard to microaverage, but we report both microaverage
and macroaverage precision P@•”

33. Sun et al. (2021): The paper is at https://link.springer.com/chapter/10.1007/978-981-15-8411-4 219.
“The prediction step is the same as the experimental procedure in NetMF (Qiu et al., 2018). We divide the
datasets randomly into training and testing parts. The training ratio ranges from 10 to 90%. The rest data is
the testing part. The multi-label classification task is implemented by one-vs-rest logistic regression model.
The result of the testing step is a list of labels’ ranking, instead of a fixed label. The number of labels is given
in the experiment. The experiments repeat ten times and compute the average of macro-F1 and micro-F1
score, respectively as evaluation.”

5.2 Papers Using Number of Labels in Their Code
34. Tang et al. (2015): The paper is at https://dl.acm.org/doi/abs/10.1145/2736277.2741093. The code is

at https://github.com/tangjianpku/LINE. Predictions were done at linux/evaluate/program/score.cpp. The
following segment shows that the number of labels is used.
FILE *fi = fopen(candidate_file, "rb");
while (fscanf(fi, "%d", &len) == 1)
{
v_nlabels.push_back(len);
for (int k = 0; k != len; k++)
{

fscanf(fi, "%d", &lb);
if (lb2id[lb] == 0) lb2id[lb] = ++id_size;
id = lb2id[lb];
truth[id].insert(test_size);

}
test_size++;

}
fclose(fi);

From the above we can see v nlabels[k] represents the number of true labels for instance k.
for (int k = 0; k != test_size; k++)
{
fscanf(fi, "%d", &tmp);
for (int i = 0; i != label_size; i++)
{

fscanf(fi, "%lf", &prob);
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id = pst2id[i];
ranked_list[i].id = id;
ranked_list[i].value = prob;

}
sort(ranked_list, ranked_list + label_size);
int n = v_nlabels[k];
for (int i = 0; i != n; i++)
{

id = ranked_list[i].id;
predict[id].insert(k);

}
}
fclose(fi);

After ranking the probability values, they then predict the labels according to the number of true labels,
which used ground-truth information. Finally, they used this prediction to evaluate Macro- and Micro-F1
scores.

35. Perozzi et al. (2014): The paper is at https://dl.acm.org/doi/abs/10.1145/2623330.2623732. The code is at
https://github.com/phanein/deepwalk. Predictions were done at example graphs/scoring.py. The following
code shows that the number of labels is used.
clf = TopKRanker(LogisticRegression())
clf.fit(X_train, y_train_)

# find out how many labels should be predicted
top_k_list = [len(l) for l in y_test]
preds = clf.predict(X_test, top_k_list)

results = {}
averages = ["micro", "macro"]
for average in averages:
results[average] = f1_score(mlb.fit_transform(y_test),

mlb.fit_transform(preds),
average=average)

36. Dalmia et al. (2018): The paper is at https://dl.acm.org/doi/abs/10.1145/3184558.3191523. The code is at
https://github.com/ganeshjawahar/interpretNode. Predictions were done at downstream/nodeclass/scor-
ing.py, which used the same way as Perozzi et al. (2014).
clf = TopKRanker(LogisticRegression())
clf.fit(X_train, y_train)

# find out how many labels should be predicted
top_k_list = [len(l) for l in y_test]
preds = clf.predict(X_test, top_k_list)

37. Khosla et al. (2020): The paper is at https://link.springer.com/chapter/10.1007/978-3-030-46150-8 24. The
code is at https://git.l3s.uni-hannover.de/khosla/nerd. For evaluation, their predictions used the number of
true labels, which can be found in evaluation/functions.py. The following segment shows that the number
of labels is used.
def __get_f1(predictions, y, number_of_labels):

# find the indices (labels) with the highest probabilities (ascending order)
pred_sorted = numpy.argsort(predictions, axis=1)
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# the true number of labels for each node
num_labels = numpy.sum(y, axis=1)

# we take the best k label predictions for all nodes, where k is the true number of
labels

pred_reshaped = []
for pr, num in zip(pred_sorted, num_labels):
pred_reshaped.append(pr[-num:].tolist())

# convert back to binary vectors
pred_transformed = MultiLabelBinarizer(range(number_of_labels)).fit_transform(

pred_reshaped)
f1_micro = f1_score(y, pred_transformed, average=’micro’)
f1_macro = f1_score(y, pred_transformed, average=’macro’)
return f1_micro, f1_macro

38. Rahman et al. (2020): The paper is at https://ieeexplore.ieee.org/abstract/document/9338414. The code
is at https://github.com/HipGraph/Force2Vec. When computing node classification scores, a similar
OneVsRestClassifier class is defined as in Perozzi et al. (2014), which takes in the number of labels for
each entry and subsequently uses it for prediction.
#this class is defined similar to deepwalk paper.
class MyClass(OneVsRestClassifier):
def prediction(self, X, nclasses):
ps = np.asarray(super(MyClass, self).predict_proba(X))
#print(ps)
predlabels = []
for i, k in enumerate(nclasses):

ps_ = ps[i, :]
labels = self.classes_[ps_.argsort()[-k:]].tolist()
predlabels.append(labels)

return predlabels
modelLR = MyClass(LogisticRegression(random_state=0)).fit(trainX, trainY)
ncs = [len(x) for x in testY]
predictedY = modelLR.prediction(testX, ncs)

39. Liang et al. (2021): The paper is at https://ojs.aaai.org/index.php/ICWSM/article/view/18067. The code is
at https://github.com/jiongqian/MILE. In eval embed.py, the multilabel classifier function uses the same
strategy as Perozzi et al. (2014).
clf = OneVsRestClassifier(LogisticRegression(), n_jobs=12) # for multilabel scenario.

#penalty=’l2’
clf.fit(X_train, y_train)
y_pred_proba = clf.predict_proba(X_test)
y_pred = []
for inst in range(len(X_test)):

# assume it has the same number of labels as the truth. Same strtegy is used in
DeepWalk and Node2Vec paper.

y_pred.append(y_pred_proba[inst, :].argsort()[::-1][:sum(y_test[inst, :])])

40. Cui et al. (2020): The paper is at https://ieeexplore.ieee.org/abstract/document/9377928. The code is at
https://github.com/7733com/MLANE. Again, as seen in src/utils.py, a OneVsRestClassifier is used to make
predictions taking into account a top k list containing the number of labels for each entry.
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top_k_list = [len(l) for l in Y]
Y_ = self.predict(X, top_k_list)

The following four papers (41, 42, 43, and 44) all contain the exact two lines of code as the above in their
respective scoring or evaluation functions, only differing in the variable names used:

41. Zhuo et al. (2019): The paper is at https://www.hindawi.com/journals/cin/2019/8106073/. The code is at
https://github.com/JhuoW/CAHNE and evaluation done in classify.py.

42. Zhang et al. (2019a): The paper is at https://www.ijcai.org/proceedings/2019/594. The code is at https:
//github.com/THUDM/ProNE and evaluation done in classifier.py.

43. Yang et al. (2019): The paper is at https://dl.acm.org/doi/abs/10.1145/3292500.3330951. The code is at
https://github.com/eXascaleInfolab/NodeSketch and evaluation done in scoring kernel hamming.py.

44. Akbas and Aktas (2019): The paper is at https://ieeexplore.ieee.org/abstract/document/9006142. The code
is at https://github.com/esraabil/NECL and evaluation done in classify.py.

45. Wang et al. (2020b): The paper is at https://dl.acm.org/doi/abs/10.1145/3340531.3412041. The code is
at https://github.com/SoftWiser-group/RankNE/. scoring.py’s evaluation function contains the following,
which follows the trend from the above papers:
# find out how many labels should be predicted
top_k_list = [np.sum(y_test_[i]) for i in range(y_test_.shape[0])]
# print(’top_k_list’, top_k_list[:10])
preds = clf.predict(X_test, top_k_list)

46. Li et al. (2021): The paper is at https://www.jair.org/index.php/jair/article/view/12567. The code is at
https://github.com/RingBDStack/RWNE/. code/eval classify.py’s classify thread body function contains
the following, almost identical to the above:
# find out how many labels should be predicted
top_k_list = [np.sum(Y_test[i]) for i in range(np.size(Y_test,axis=0))]
clf = TopKRanker(LogisticRegression())
clf.fit(X_train, Y_train)
preds = clf.predict(X_test, top_k_list)

47. Xiao et al. (2020): The paper is at https://epubs.siam.org/doi/abs/10.1137/1.9781611976236.67. The code
is at https://github.com/HKUST-KnowComp/vertex-reinforced-random-walk. Evaluation is done inside
cogdl/tasks/unsupervised node classification.py’s evaluate function:
# find out how many labels should be predicted
top_k_list = list(map(int, y_test.sum(axis=1).T.tolist()[0]))
preds = clf.predict(X_test, top_k_list)

48. Cen et al. (2021): The paper is at https://arxiv.org/abs/2103.00959. The code is at https://github.com/t
hudm/cogdl. Predictions were done at cogdl/tasks/unsupervised node classification.py. The following code
shows that the number of labels is used in prediction function.
class TopKRanker(OneVsRestClassifier):

def predict(self, X, top_k_list):
assert X.shape[0] == len(top_k_list)
probs = np.asarray(super(TopKRanker, self).predict_proba(X))
all_labels = sp.lil_matrix(probs.shape)
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for i, k in enumerate(top_k_list):
probs_ = probs[i, :]
labels = self.classes_[probs_.argsort()[-k:]].tolist()
for label in labels:

all_labels[i, label] = 1
return all_labels

From the code below we can see the number of labels is passed into the prediction function above.
clf = TopKRanker(LogisticRegression(solver="liblinear"))
clf.fit(X_train, y_train)

# find out how many labels should be predicted
top_k_list = list(map(int, y_test.sum(axis=1).T.tolist()[0]))
preds = clf.predict(X_test, top_k_list)
result = f1_score(y_test, preds, average="micro")
all_results[train_percent].append(result)

49. Liu et al. (2020b): The paper is at https://dl.acm.org/doi/abs/10.1145/3340531.3411910. The code is at
https://github.com/smufang/meta-tail2vec/. The following can be found in multilabel task.py:
# find out how many labels should be predicted, same as deepwalk
top_k_list = [len(l) for l in y_test__]
preds = clf.predict(X_test, top_k_list)

50. Chanpuriya et al. (2021): The paper is at http://proceedings.mlr.press/v139/chanpuriya21a/chanpuriy
a21a.pdf. The code is at https://github.com/konsotirop/Invert Embeddings. In predict.py, the function
construct indicator utilizes the number of labels to generate predictions:
def construct_indicator(y_score, y):

# rank the labels by the scores directly
num_label = np.sum(y, axis=1, dtype=np.int)
y_sort = np.fliplr(np.argsort(y_score, axis=1))
y_pred = np.zeros_like(y, dtype=np.int)
for i in range(y.shape[0]):

# print(type(i), num_label.shape, num_label[i])
for j in range(num_label[i]):

y_pred[i, y_sort[i, j]] = 1
return y_pred

y pred returned by the above is then used to calculated Micro- and Macro-f1 scores in the main predict cv
function.
y_score = clf.predict_proba(X_test)
y_pred = construct_indicator(y_score, y_test)
mi = f1_score(y_test, y_pred, average="micro")
ma = f1_score(y_test, y_pred, average="macro")

51. Lutov et al. (2019): The paper is at https://ieeexplore.ieee.org/abstract/document/9006038. The code
is at https://github.com/eXascaleInfolab/GraphEmbEval. This evaluation framework similarly uses a
scoring classif.py that includes a TopKRanker class predicting labels according to known numbers.
class TopKRanker(OneVsRestClassifier):

def predict(self, gram_test, top_k_list):
assert gram_test.shape[0] == len(top_k_list)
probs = super(TopKRanker, self).predict_proba(gram_test)
if not isinstance(probs, np.ndarray):

probs = probs.toarray()
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all_labels = []
for i, k in enumerate(top_k_list):

probs_ = probs[i]
# Fetch test labels
labels = self.classes_[probs_.argsort()[-k:]].tolist()
all_labels.append(labels)

return all_labels

52. Chen et al. (2018): The paper is at https://ojs.aaai.org/index.php/AAAI/article/view/11849. The code is at
https://github.com/GTmac/HARP. The scoring function inside src/scoring.py contains the following:
# find out how many labels should be predicted
top_k_list = [len(l) for l in y_test]
preds = clf.predict(X_test, top_k_list)

53. Yang et al. (2017): The paper is at https://www.ijcai.org/proceedings/2017/544. The code is at https:
//github.com/thunlp/NEU. The main program neu.m calls the evaluate function and by default generates
prediction through evaluation by ranking via instance, shown below:
function [pred] = evaluate_by_ranking_via_instance(pred, Y)
% rank the labels by the scores directly
[n, k] = size(Y);
[val, index] = sort(full(pred), 2, ’descend’);

numlabel = sum(Y,2); % the number of labels for each instance
clear val;

pred = construct_indicator(index, numlabel);
pred = sparse(pred);

In addition, the main evaluation function contains the following comment:
% suppose we know the number of labels for ground truth

54. Tsitsulin et al. (2021): The paper is at https://dl.acm.org/doi/abs/10.14778/3447689.3447713. The code
is at https://github.com/xgfs/FREDE. DeepWalk’s performance in the paper is evaluated using the known
number of labels, as seen inside src/classification.py’s evaluate deepwalk function:
clf = TopKRanker(LogisticRegression(solver=’liblinear’))
clf.fit(X_train, Y_train)
top_k_list = [l.nnz for l in Y_test]
preds = clf.predict(X_test, top_k_list)

55. Liu et al. (2021): The paper is at https://ieeexplore.ieee.org/abstract/document/9380483. The code is
at https://github.com/Qidong-Liu/TriATNE. Inside eval/functions.py, the get f1 function uses the true
number of labels:
# the true number of labels for each node
num_labels = numpy.sum(y, axis=1)

# we take the best k label predictions for all nodes, where k is the true number of
labels

pred_reshaped = []
pred_set = set()
for pr, num in zip(pred_sorted, num_labels):

pred_reshaped.append(pr[-num:].tolist())
pred_set.update(pr[-num:])
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56. Sheikh et al. (2019): The paper is at https://link.springer.com/article/10.1007/s00607-018-0622-9. The
code is at https://github.com/snash4/GAT2VEC. Inside src/GAT2VEC/evaluation/classification.py, the
following function explicitly uses label information:
def fit_and_predict_multilabel(self, clf, X_train, X_test, y_train, y_test):

""" predicts and returns the top k labels for multi-label classification
k depends on the number of labels in y_test."""
clf.fit(X_train, y_train)
y_pred_probs = clf.predict_proba(X_test)

pred_labels = []
nclasses = y_test.shape[1]
top_k_labels = [np.nonzero(label)[0].tolist() for label in y_test]
for i in range(len(y_test)):

k = len(top_k_labels[i])
probs_ = y_pred_probs[i, :]
labels_ = tuple(np.argsort(probs_).tolist()[-k:])
pred_labels.append(labels_)

57. Mitra et al. (2020): The paper is at https://epubs.siam.org/doi/abs/10.1137/1.9781611976236.55. The code
is at https://github.com/sonaidgr8/USS NMF. Inside main algo.py, the construct indicator function is used
to generate predictions by ranking labels’ scores:
def construct_indicator(y_score, y):

# rank the labels by the scores directly
num_label = np.sum(y, axis=1, dtype=np.int)
y_sort = np.fliplr(np.argsort(y_score, axis=1))
y_pred = np.zeros_like(y, dtype=np.int)
for i in range(y.shape[0]):

for j in range(num_label[i]):
y_pred[i, y_sort[i, j]] = 1

return y_pred

The above is used in the main function as follows:
y_pred = construct_indicator(predictions, labels[pred_ids, :])

58. Zhu et al. (2021): The paper is at https://epubs.siam.org/doi/abs/10.1137/1.9781611976700.19. The code is
at https://github.com/GemsLab/PhUSION. Inside src/eval/predict.py, the exact same evaluation structure is
followed as in the previous paper, differing only in variable names used.

59. Liu et al. (2020a): The paper is at https://ieeexplore.ieee.org/abstract/document/9121704. The code is
at https://github.com/Qidong-Liu/ANE. In eval/functions.py, the get f1 function explicitly uses the true
number of labels in prediction:
# the true number of labels for each node
num_labels = numpy.sum(y, axis=1)

# we take the best k label predictions for all nodes, where k is the true number of
labels

pred_reshaped = []
pred_set = set()
for pr, num in zip(pred_sorted, num_labels):

pred_reshaped.append(pr[-num:].tolist())
pred_set.update(pr[-num:])
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60. Chen et al. (2017): The paper is at https://arxiv.org/abs/1702.05764. The code is downloaded from
https://users.ece.cmu.edu/∼sihengc/code.zip. In scoring.py, the same strategy is again used as in
Perozzi et al. (2014), with top k set as true in all evaluations done in run.sh.
if topk:

# find out how many labels should be predicted
top_k_list = [len(l) for l in y_test]
preds = clf.predict(X_test, top_k_list)
preds = label2onehot(preds, labels_matrix.toarray().shape[1])

else:
preds = clf.predict(X_test)

61. Zhang and Xu (2019): The paper is at https://arxiv.org/abs/1912.00303. The code is at https://github.com
/hanzh015/MANELA. To score node classification, the scoring.py program is modified from the original
DeepWalk paper, using the number of labels in prediction:
# find out how many labels should be predicted
top_k_list = [len(l) for l in y_test]
preds = clf.predict(X_test, top_k_list)

62. Schumacher et al. (2020): The paper is at https://arxiv.org/abs/2005.10039. The code is at https://gi
thub.com/SGDE2020/embedding stability. Inside downstream classification/classify.py, regardless of the
classifier used, multilabel predictions for both training and testing sets are done by first ranking probabilities
in descending order and then selecting the top k, where k is equal to the number of true labels. The following
is from the get predictions function, where k is np.count nonzero(labels).
if classification_type == ClassificationType.MULTILABEL:

if isinstance(train_proba, list):
train_proba = list(true_prop(train_proba))
train_proba = np.array(train_proba).T
test_proba = list(true_prop(test_proba))
test_proba = np.array(test_proba).T

target_classes = node_labels_train.shape[-1]
train_pred = np.zeros((node_labels_train.shape[0], target_classes))
test_pred = np.zeros((node_labels_test.shape[0], target_classes))

for i, labels in enumerate(node_labels_train):
train_pred[i][np.argsort(-train_proba[i])[0:np.count_nonzero(labels)]] = 1

for i, labels in enumerate(node_labels_test):
test_pred[i][np.argsort(-test_proba[i])[0:np.count_nonzero(labels)]] = 1

63. Qiu et al. (2021): The paper is at https://dl.acm.org/doi/abs/10.1145/3448016.3457329. The code is at
https://github.com/xptree/LightNE. In LightNE/predict.py, the function below shows that the number of
labels is used to construct prediction results.
def construct_indicator(y_score, y):

# rank the labels by the scores directly
num_label = y.sum(axis=1, dtype=np.int32)
# num_label = np.sum(y, axis=1, dtype=np.int)
y_sort = np.fliplr(np.argsort(y_score, axis=1))
#y_pred = np.zeros_like(y_score, dtype=np.int32)
row, col = [], []
for i in range(y_score.shape[0]):

row += [i] * num_label[i, 0]
col += y_sort[i, :num_label[i, 0]].tolist()
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#for j in range(num_label[i, 0]):
# y_pred[i, y_sort[i, j]] = 1

y_pred = sp.csr_matrix(
([1] * len(row), (row, col)),
shape=y.shape, dtype=np.bool_)

return y_pred

The code below shows that the above function is used when evaluating multi-label classification results.
y_score = clf.predict_proba(X_test)
y_pred = construct_indicator(y_score, y_test)
mi = f1_score(y_test, y_pred, average="micro")
ma = f1_score(y_test, y_pred, average="macro")

64. Cheng et al. (2019): The paper is at https://link.springer.com/article/10.1007/s11390-019-1934-8. The
code is at https://github.com/daweicheng/BHONEM. In method/classify.py, the function below shows that
the classifier takes number of labels as argument.
class TopKRanker(OneVsRestClassifier):

def predict(self, X, top_k_list):
probs = numpy.asarray(super(TopKRanker, self).predict_proba(X))
all_labels = []
for i, k in enumerate(top_k_list):

probs_ = probs[i, :]
labels = self.classes_[probs_.argsort()[-k:]].tolist()
probs_[:] = 0
probs_[labels] = 1
all_labels.append(probs_)

return numpy.asarray(all_labels)

The code below shows that prediction function takes number of labels as input.
top_k_list = [len(l) for l in Y]
Y_ = self.predict(X, top_k_list)

65. Liu et al. (2018): The paper is at http://www.mlgworkshop.org/2018/papers/MLG2018 paper 5.pdf. The
code is at https://github.com/uestcnlp/GEN. The code below shows that the number of labels is used to
construct new prediction results.
predlist = softmax[i][0]
top_k = len(y_test[h])
top_k_list = heapq.nlargest(top_k, range(len(predlist)), predlist.__getitem__)
top_k_list = [j for j in top_k_list]
preds[h] = top_k_list

66. He et al. (2019): The paper is at https://dl.acm.org/doi/pdf/10.1145/3357384.3358061. The code is
at https://github.com/HKUST-KnowComp/HeteSpaceyWalk. The code below shows that the number
of labels is used to reconstruct prediction results. Inside eval classify.py, the TopKRanker class used the
number of labels as arguments and returned the same number of prediction result for each entry.
# find out how many labels should be predicted
top_k_list = [np.sum(Y_test[i]) for i in range(np.size(Y_test,axis=0))]
clf = TopKRanker(LogisticRegression())
clf.fit(X_train, Y_train)
preds = clf.predict(X_test, top_k_list)

67. Gu et al. (2020): The paper is at https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191
c53c1842a38-Paper.pdf. The code is at https://github.com/SwiftieH/IGNN/tree/main/nodeclassification.
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From the Evaluation function inside utils.py, the following code shows that the number of labels is used
to select top k prediction results as the final prediction to evaluate, and calculates Micro-F1 and Macro-F1
scores under this setting.
for i in range(preds.shape[0]):

k = labels[i].sum().astype(’int’)
topk_idx = preds[i].argsort()[-k:]
binary_pred[i][topk_idx] = 1
for pos in list(labels[i].nonzero()[0]):

if labels[i][pos] and labels[i][pos] == binary_pred[i][pos]:
num_correct += 1

68. Gurukar et al. (2019): The paper is at https://arxiv.org/pdf/1905.00987.pdf. The code is at https://github
.com/PriyeshV/NRL Benchmark. The code below shows that the number of labels is used to select top k
prediction results as the final prediction to evaluate.
def predict_top_k(classifier, X, top_k_list):

assert X.shape[0] == len(top_k_list)
probs = numpy.asarray(classifier.predict_proba(X))
all_labels = []
for i, k in enumerate(top_k_list):

probs_ = probs[i, :]
try:

labels = classifier.classes_[probs_.argsort()[-k:]].tolist()
except AttributeError: # for eigenpro

labels = probs_.argsort()[-k:].tolist()
all_labels.append(labels)

return all_label

The code below shows that the number of labels is passed into the function above.
def get_classifer_performace(classifer, X_test, y_test, multi_label_binarizer):

top_k_list_test = [len(l) for l in y_test]
y_test_pred = predict_top_k(classifer, X_test, top_k_list_test)

69. Mitra et al.: The paper is at https://dl.acm.org/doi/10.1145/3447548.3467443. The code is at https:
//github.com/anasuamitra/ssdcm. Inside evaluation/evaluate ml.py, the function construct indicator shows
that the prediction were done by utilizing the number of ground truth labels:
def construct_indicator(y_score, y):

# rank the labels by the scores directly
num_label = np.sum(y, axis=1, dtype=np.int)
y_sort = np.fliplr(np.argsort(y_score, axis=1))
y_pred = np.zeros_like(y, dtype=np.int)
for i in range(y.shape[0]):

for j in range(num_label[i]):
y_pred[i, y_sort[i, j]] = 1

return y_pred

This prediction result then be used for calculating Macro- and Micro-F1 scores:
# test
logits = sup[idx_test] #log(test_embs)
preds = construct_indicator(logits.detach().cpu().numpy(), test_lbls)

test_acc = np.sum(preds == test_lbls) / test_lbls.shape[0]
test_f1_macro = f1_score(test_lbls, preds, average=’macro’)
test_f1_micro = f1_score(test_lbls, preds, average=’micro’)
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5.3 Open-Source Libraries Using Number of Labels in Their Code
The following network embedding libraries have no corresponding papers but similarly use the number of labels
in prediction.

70. The github is at https://github.com/thunlp/OpenNE and contains network embedding models and evalu-
ations for the following: DeepWalk, Node2vec, LINE, GraRep, TADW, GCN, GraphFactorization, SDNE.
Except for GCN, all of the above models use the following code inside src/openne/classify.py for evaluation.
def evaluate(self, X, Y):

top_k_list = [len(l) for l in Y]
Y_ = self.predict(X, top_k_list)

71. The github is at https://github.com/shenweichen/GraphEmbedding and contains network embedding
models and evaluations for the following: DeepWalk, LINE, Node2vec, SDNE, Struc2Vec. ge/classify.py
contains the same evaluation code as in OpenNE.

5.4 Papers Citing OpenNE in Evaluation
The following papers neither explicitly state the use of unrealistic information during prediction in their papers nor
have publicly available code, but implicitly admit to following this practice by citing OpenNE from section 5.3 in
their experimental procedures. Papers that do not mention specifically how evaluations were done are included in
this section as well - we only suspect they may follow the same practice since the OpenNE framework combines
training and evaluation into one command. If possible, we also take into consideration the experimental values
and how these values compare to our results for the same method and data set under the unrealistic prediction.

72. Lozano et al. (2021): The paper is at https://www.sciencedirect.com/science/article/pii/S016786552100002
7. “These experiments are performed by training a logistic regression classifier with the embedding vectors
corresponding to 50% of the nodes, and tested with the remaining vectors, using the OpenNE framework.”

73. Chandra et al. (2019): The paper is at https://dl.acm.org/doi/abs/10.1145/3347146.3359104. “We
evaluate our proposed models against the baseline models on classification and clustering data mining tasks.
We use OpenNE toolkit to implement DeepWalk, LINE, GraRep, and node2vec models...We evaluate the
performances of the models by calculating Macro-F1 and Micro-F1 scores.”

74. Li et al. (2019a): The paper is at https://dl.acm.org/doi/pdf/10.1145/3341161.3342864. “The baseline
methods of GraRep, Deepwalk, and LINE are implemented in the OpenNE toolkit, and we follow their
default parameter settings.” Their results also seem close to unrealistic i.e. BlogCatalog’s DeepWalk at 80%
training ratio has Micro-F1: 0.4051 and Macro-F1: 0.2701 (compared to Micro-F1: 0.417 and Macro-F1:
0.276 in ours).

5.5 Papers with Abnormally High Macro-F1 and/or Micro-F1 Results
We list papers reporting Macro-F1 and/or Micro-F1 scores that are abnormally high or comparable to our results
under unrealistic predictions. For papers with results that are slightly lower than ours, we suspect them on the basis
of citing papers in section 5.2 for their experimental procedures or describing a similar procedure with results that
are higher than what would likely be achieved without using the number of labels.
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75. Hou et al. (2019): The paper is at https://dl.acm.org/doi/abs/10.1145/3292500.3330948. For PPI data,
this paper “use about 80% of the nodes (i.e., those in 22 subgraphs) for training and nodes in the remaining
2 subgraphs for validation and test”. On Node2vec method, their Micro-F1 is 0.61, which is consistent
with our unrealistic prediction value (i.e., 0.62), while their Macro-F1 is 0.48 which even better than ours
(i.e., 0.44). Though on DeepWalk method, their Micro-F1 and Macro-F1 are respectively 0.60 and 0.45,
which are slightly lower than our DeepWalk unrealistic prediction (i.e., 0.64 and 0.48). Again on DeepWalk
method, if we consider our highest downstream method thresholding, then for Macro-F1, their value is
slightly lower than ours (i.e., 0.48). However, for Micro-F1, their value is much higher than ours (i.e., 0.53).

76. Xin et al. (2019): The paper is at https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8850094. “We
evaluated our method using the same experimental procedure as other research (Perozzi et al., 2014)...We
trained a one-vs-rest logistic regression model with L2 regularization on the network embeddings for pre-
diction.” Their results seem close to unrealistic i.e. BlogCatalog’s DeepWalk at 80% training ratio has
Macro-F1: 0.253 (compared to Macro-F1: 0.276 in ours).

77. Zhang et al. (2021): The paper is at https://arxiv.org/abs/2106.05476. “Following previous work (Grover and
Leskovec, 2016; Perozzi et al., 2014), we employ a one-vs-rest logistic regression classifier implemented by
LIBLINEAR [15] with default parameters for all methods. Micro-F1 score is used as the evaluation metric
for the classification task.” Their results seem close to unrealistic i.e. BlogCatalog’s DeepWalk at 70%
training ratio has Micro-F1 0.399 and at 90% training ratio has Micro-F1 0.413 (compared to Micro-F1:
0.417 in ours at 80% training ratio).

78. Zhu et al. (2018): The paper is at https://dl.acm.org/doi/10.1145/3219819.3220052. “Then, following
(Perozzi et al., 2014), we randomly sample a portion of the labeled nodes as the training data and the rest
as the test. For BlogCatalog, we randomly sample 10% to 90% of the nodes as the training samples and use
the left nodes to test the performance.” Their results are shown graphically and seem slightly lower than
unrealistic but still comparable i.e. BlogCatalog’s DeepWalk at 80% training ratio has Micro-F1 around
0.375 and Macro-F1 around 0.250.

79. Garcı́a-Durán and Niepert (2017): The paper is at https://dl.acm.org/doi/10.5555/3295222.3295265.
“For the graphs without attributes (BlogCatalog, PPI and POS) we follow the exact same experimental
procedure as in previous work (Tang and Liu, 2009a; Perozzi et al., 2014; Grover and Leskovec, 2016).
First, the node embeddings were computed in an unsupervised fashion. Second, we sampled a fraction Tr
of nodes uniformly at random and used their embeddings and class labels as training data for a logistic
regression classifier. ” Their Micro-F1 results for both DeepWalk and Node2vec seem close to unrealistic
but Macro-F1 is slightly lower i.e. for BlogCatalog, DeepWalk at 90% training ratio has Micro-F1: 0.383
± 0.018 and Macro-F1: 0.229 ± 0.010; Node2vec at 90% training ratio has Micro-F1: 0.400 ± 0.012 and
Macro-F1: 0.248 ± 0.010 (For Node2vec, our results at 80% training ratio were Micro-F1: 0.426 ± 0.005
and Macro-F1: 0.294 ± 0.004).

80. Perozzi et al. (2017): The paper is at https://dl.acm.org/doi/10.1145/3110025.3110086. “We evaluate our
method using the same experimental procedure outlined in Perozzi et al. (2014).” Their DeepWalk results
seem close to unrealistic i.e. for BlogCatalog, DeepWalk at 90% training ratio has Micro-F1: 0.423 (their
LINE results are not comparable as they use the LINE 1st method whereas we use LINE 1st+2nd).

81. Cavallari et al. (2017): The paper is at https://dl.acm.org/doi/pdf/10.1145/3132847.3132925. “We
follow (Perozzi et al., 2014) to first train graph embedding on the whole graph, then randomly split 10%
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(BlogCatalog, Wikipedia and DBLP) and 90% (Flickr) of nodes as test data, respectively.” Their DeepWalk
Micro-F1 results seem comparable to ours although Macro-F1 is considerably lower i.e. for BlogCatalog,
DeepWalk at 80% training ratio has Micro-F1: 0.383 and Macro-F1: 0.215.

82. Fang et al. (2021): The paper is at https://ranger.uta.edu/∼jiang/publication/Conferences/2021/HuGE
ICDE publish.pdf. “To perform this task, we use embedding vector and a one-vs-rest logistic regression

classifier with L2 regularization (using the LIBLINEAR library), and evaluate accuracy by micro-averaged
F1 (Micro-F1) and micro-averaged F1 (Macro-F1).” Their results are shown graphically and Micro-F1
results seem comparable to ours although Macro-F1 is considerably lower i.e. for Flickr, DeepWalk at 80%
training ratio has Micro-F1 around 38 and Macro-F1 around 22; For Node2vec at 80% training ratio, Micro-
F1 is around 0.390 and Macro-F1 around 0.240 (for Node2vec on Flickr, our results at 80% training ratio
were Micro-F1: 0.420 and Macro-F1: 0.306).

83. Zhu and Koniusz (2021): The paper is at https://arxiv.org/pdf/2108.10703.pdf. By using 70% BlogCatalog
data set for training and 30% for testing, the paper indicated that DeepWalk had a 0.425 on Micro-F1 score
and 0.285 on Macro-F1 score, which is similar or even higher to our DeepWalk results which had a 0.417 on
Micro-F1 score and 0.279 on Macro-F1 score under 80% of training data with unrealistic prediction setting.

84. Yang et al. (2018): The paper is at https://crad.ict.ac.cn/EN/10.7544/issn1000-1239.2018.20180248.
The paper did not clearly show their evaluation process; however, due to experimental results similar to our
unrealistic evaluation, we suspected that the number of labels was used. By using 80% of training data in
BlogCatalog, the paper indicated that DeepWalk had a nearly 0.400 on Micro-F1 score and nearly 0.300 on
Macro-F1, which are similar to our results, having a 0.417 on Micro-F1 score and 0.279 on Macro-F1 under
80% of training data.

85. Zhang et al. (2018a): The paper is at https://dl.acm.org/doi/abs/10.1145/3269206.3269320. On the
BlogCatalog task, the paper scored 0.392, 0.403, 0.370 on Micro-F1 and 0.254, 0.264, 0.219 on Macro-F1
by using DeepWalk, Node2vec, and LINE respectively, while our result under unrealistic setting scores
0.417, 0.426, 0.406 on micro F1 and 0.276, 0.294, 0.239 on macro F1. Although the scores are slightly
lower than ours as well as no clear evidence showing the number of labels is used, the paper revealed that
they followed the same experimental setting as Goyal and Ferrara (2018), which used the number of labels
during evaluation in code.

86. Fahrbach et al. (2020): The paper is at http://proceedings.mlr.press/v119/fahrbach20a/fahrbach20a.pdf.
Using 80% of BlogCatalog data set for training, the paper indicated that LINE scored nearly 0.400 on
Micro-F1 and nearly 0.200 on Macro-F1, which is similar to our unrealistic evaluation setting on LINE
results which were 0.406 on Micro-F1 score and 0.239 on Macro-F1 trained by 80% of the data.

87. Zhang and Xu (2020): The paper is at https://arxiv.org/pdf/2003.02689.pdf. Using 80% of BlogCatalog data
set for training, the paper showed the performance of DeepWalk, Node2vec, and LINE are 0.427, 0.413,
0.433 on Micro-F1 score, and 0.287, 0.277, 0.292 on Macro-F1 score, while our results are 0.417, 0.426,
0.406 on Micro-F1 and 0.276, 0.294, 0.239 on Macro-F1 under unrealistic evaluation setting. Since the
scores are similar or even higher than our result, we suspect the paper introduced the number of labels in
the evaluation process.

88. Zhang et al. (2018e): The paper is at https://ieeexplore.ieee.org/abstract/document/8594903. “We use
two measurements, Macro-F1 and Micro-F1 Perozzi et al. (2014), to evaluate the performance. The average

30

https://ranger.uta.edu/~jiang/publication/Conferences/2021/HuGE_ICDE_publish.pdf
https://ranger.uta.edu/~jiang/publication/Conferences/2021/HuGE_ICDE_publish.pdf
https://arxiv.org/pdf/2108.10703.pdf
https://crad.ict.ac.cn/EN/10.7544/issn1000-1239.2018.20180248
https://dl.acm.org/doi/abs/10.1145/3269206.3269320
http://proceedings.mlr.press/v119/fahrbach20a/fahrbach20a.pdf
https://arxiv.org/pdf/2003.02689.pdf
https://ieeexplore.ieee.org/abstract/document/8594903


results of 5 runs are reported.” Their results are shown graphically and BlogCatalog is the only comparable
data set due to the experimental setting. By applying Deewalk and Node2vec, the Micro-F1 scores are above
0.400 and the Macro-F1 scores are about 0.300, while our result under unrealistic setting scores are 0.417,
0.426 on Micro-F1 and 0.276, 0.294 on Macro-F1. Not only the experiments are similar to our unrealistic
result, but they also seemed to follow the experiment setting from DeepWalk, thus we suspect the paper
used the number of labels during evaluation.

89. Zhang et al. (2019b): The paper is at https://ieeexplore.ieee.org/abstract/document/8923519. “All
node embeddings are used to train a one-vs-rest logistic regression classifier with L2 regularization” With
the experiment results the paper provided, we can see that by using 80% of BlogCatalog for training, the
Macro-F1 score of DeepWalk, Node2vec, and LINE are 0.395, 0.401, 0.360 respectively. On the other
hand, our results showed 0.417, 0.426, 0.406 on the Micro-F1 score under the unrealistic setting, which
is similar but slightly higher than the paper’s results. Since the results introduced by the paper are still
significantly higher than the one-vs-rest-basic setting, we suspect that the paper used the number of labels
in the evaluation process.

90. Li et al. (2019b): The paper is at https://www.sciencedirect.com/science/article/abs/pii/S09252312193
10835. The paper showed experiment results of BlogCatalog and Flickr. By using DeepWalk, Node2vec
and LINE and trained with 80% of the BlogCatalog data, the Micro-F1 scores are 0.409, 0.426, 0.434
and Macro-F1 scores are 0.275, 0.303, 0.291 respectively. The results are similar to our experiment under
unrealistic setting, which are 0.417, 0.426, 0.406 under Micro-F1 score and 0.276, 0.294, 0.239 under
Macro-F1 score. However, the result in Flickr didn’t match with our paper; therefore, we are not sure if the
paper used the number of labels or not, but we suspect that they used it while evaluating at least BlogCatalog
task.

91. Rashed et al. (2019): The paper is at https://arxiv.org/pdf/1902.09294.pdf. “We followed the same
experimental protocol in (Krohn-Grimberghe et al., 2012; Perozzi et al., 2014; Grover and Leskovec, 2016).
We used 10-fold crossvalidation experiments on each target relation. These experiments were applied using
different percentages of labeled nodes ranging from 10% to 90%.” Their DeepWalk and Node2vec results
are almost identical to unrealistic except for training ratio i.e. for BlogCatalog, DeepWalk at 90% training
ratio has Micro-F1: 0.411 and Macro-F1: 0.278. Node2vec at 90% training ratio has Micro-F1: 0.422 and
Macro-F1: 0.292.

92. Zheng et al. (2021): The paper is at https://arxiv.org/pdf/2103.07295.pdf. “Following the experiment
settings in Grover and Leskovec (2016) for multi-label node classification, we report the performance of
each method by increasing the number of nodes labeled for training from 10% to 80% of the total number
of nodes...and the other nodes are divided into two sets for verification and testing.” Their results are shown
graphically and seem close to unrealistic i.e. for BlogCatalog, DeepWalk at 80% training ratio has Micro-F1
around 0.40 and Macro-F1 around 0.24.

93. Ma et al. (2019): The paper is at http://proceedings.mlr.press/v97/ma19a/ma19a.pdf. “We follow node2vec
Grover and Leskovec (2016) and report the performance of each method while varying the number of nodes
labeled for training from 10%|V | to 90%|V |,where |V | is the total number of nodes. The rest of the nodes
are split equally to form a validation set and a test set.” Their results are shown graphically and seem close
to unrealistic i.e. for BlogCatalog, DeepWalk at 80% training ratio has Micro-F1 around 0.39 and Macro-F1
around 0.24.
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94. Xu et al. (2021): The paper is at https://www.mdpi.com/2227-7390/9/15/1767. “We utilize a one-vs-
rest logistic regression (Perozzi et al., 2014) to evaluate the learned representational quality of all methods.
We randomly sample a certain fraction of the nodes during the training phase as the training set, and the
remaining nodes are used for testing.” Their results are again shown graphically and seem close to unrealistic
i.e. for BlogCatalog, DeepWalk at 80% training ratio has Micro-F1 around 0.42 and Macro-F1 around 0.24
(Micro-F1 is even higher than our unrealistic result: 0.417).

95. Wang et al. (2020a): The paper is at https://www.frontiersin.org/articles/10.3389/fnins.2019.01387/full.
“In this experiment, Logistic Regression (LR) is used as a classifier. A portion of the labeled nodes are
randomly selected as the training dataset, and thus the remaining nodes without labels are adopted to test
the performance.” Their DeepWalk and Node2vec results seem close to unrealistic i.e. for BlogCatalog,
DeepWalk at 80% training ratio has Micro-F1: 0.408 and Macro-F1: 0.264. Node2vec at 80% training ratio
has Micro-F1: 0.403 and Macro-F1: 0.271.

96. Wu et al. (2021): The paper is at https://arxiv.org/pdf/2101.06471.pdf. “We follow node2vec Grover and
Leskovec (2016) and report the performance of each method while varying the number of nodes labeled
for training from 10% |V | to 90% |V |, where |V | is the total number of nodes. The rest of nodes are split
equally to form a validation set and a test set. Then with the best hyperparameters on the validation sets, we
report the averaged performance of 30 runs on each multi-label test set.” Their results are shown graphically
and seemc close to unrealistic i.e. for BlogCatalog, DeepWalk at 80% training ratio has Micro-F1 around
0.39 and Macro-F1 around 0.24.

97. Cavallari et al. (2019): The paper is at https://ieeexplore.ieee.org/document/8764640?denied=. “We follow
Perozzi et al. (2014) to first train graph embedding on the whole graph. Then, we randomly split 80% of
the nodes as a training set and the remaining 20% is used for testing. Finally, an SVM classifier [49] is
used to infer the node labels. So far, we report the results with the SVM classifier parameter c=1, which
was suggested by Perozzi et al. (2014), for all the methods. ” Their results seem close to unrealistic i.e. for
BlogCatalog, DeepWalk at 80% training ratio has Micro-F1: 0.383 and Macro-F1: 0.222.

98. Chen et al. (2019): The paper is at https://dl.acm.org/doi/abs/10.1145/3357384.3357879. By training with
80% of BlogCatalog data set, the paper indicated that Deepwalk, Node2vec and LINE scored about 0.280,
0.290, 0.280 on Macro-F1 respectively, which is similar to our unrealistic setting on BlogCatalog data set,
scoring 0.276, 0.294, 0.239 on Macro-F1 under the same proportion of training data.

99. Zhang et al. (2019c): The paper is at https://www.sciencedirect.com/science/article/abs/pii/S0167739X1
9300378. By training with 80% of PPI data set, the paper indicated that Deepwalk, Node2vec and LINE
scored between 0.580 to 0.620 on Micro-F1, and scored between 0.400 to 0.470 on Macro-F1. The result is
similar to our unrealistic evaluation setting on PPI data set, with Micro-F1 ranging from 0.626 to 0.647, and
Macro-F1 ranging from 0.442 to 0.504. We can see there’s still a small gap between the paper’s result and
our result; however, any other method without using number of labels will greatly reduce the performance;
therefore, we suspect that the paper took the true number of labels into account during the prediction stage.

100. Yao et al. (2021): The paper is at https://arxiv.org/pdf/2010.04895.pdf. By training with 80% of BlogCatalog
data set, the paper indicated that Deepwalk and Node2vec scored 0.400, 0.414 on Micro-F1, and scored
0.258, 0.270 on Macro-F1. The result is similar to our unrealistic evaluation setting on BlogCatalog data
set, which scored 0.417 to 0.426 on Micro-F1, and scored 0.276 to 0.294 on Macro-F1. Therefore, we
suspect that the paper took the true number of labels into account during the prediction stage.
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