
Fast Matrix-vector Multiplications for Large-scale
Logistic Regression on Shared-memory Systems

Mu-Chu Lee
Department of Computer Science
National Taiwan Univ., Taiwan
Email: b01902082@ntu.edu.tw

Wei-Lin Chiang
Department of Computer Science
National Taiwan Univ., Taiwan
Email: b02902056@ntu.edu.tw

Chih-Jen Lin
Department of Computer Science
National Taiwan Univ., Taiwan
Email: cjlin@csie.ntu.edu.tw

Abstract—Shared-memory systems such as regular desktops
now possess enough memory to store large data. However, the
training process for data classification can still be slow if we do
not fully utilize the power of multi-core CPUs. Many existing
works proposed parallel machine learning algorithms by modi-
fying serial ones, but convergence analysis may be complicated.
Instead, we do not modify machine learning algorithms, but
consider those that can take the advantage of parallel matrix
operations. We particularly investigate the use of parallel sparse
matrix-vector multiplications in a Newton method for large-
scale logistic regression. Various implementations from easy to
sophisticated ones are analyzed and compared. Results indicate
that under suitable settings excellent speedup can be achieved.

Keywords-sparse matrix; parallel matrix-vector multiplication;
classification; Newton method

I. INTRODUCTION

Classification algorithms are now widely used in many
machine learning and data mining applications, but training
large-scale data remains a time-consuming process. To reduce
the training time, many parallel classification algorithms have
been proposed for shared-memory or distributed systems.
In this work, we target at shared-memory systems because
nowadays a typical server possesses enough memory to store
reasonably large data and multi-core CPUs are widely used.

Existing parallel machine learning algorithms for classifica-
tion include, for example, [1], [2], [3], [4], [5], [6]. Some target
at distributed systems, but some others are for shared-memory
systems. These algorithms are often designed by extending
existing machine learning algorithms to parallel settings. For
example, stochastic gradient (SG) and coordinate descent (CD)
methods are efficient methods for data classification [7], [8],
but they process one data instance at a time. The algorithm is
inherently sequential because the next iteration relies on the
result of the current one. For parallelization, researchers have
proposed modifications so that each node or thread indepen-
dently conducts SG or CD iterations on a subset of data. To
avoid synchronization between threads, the machine learning
model may be updated by one thread without considering the
progress in others [1], [9]. An issue of the existing works is
that convergence must be proved and analyzed following the
modification from the serial setting.

Instead of modifying algorithms to achieve parallelism, it
may be simpler to consider machine learning algorithms that
can take the advantage of fast and parallel linear algebra

modules. The core computational tasks of some popular
machine learning algorithms are sparse matrix operations.
For example, if Newton methods are used to train logistic
regression for large-scale document data, the data matrix is
sparse and sparse matrix-vector multiplications are the main
computational bottleneck [10], [11]. If we can apply fast
implementations of matrix operations, then machine learning
algorithms can be parallelized without any modification. Such
an approach possesses the following advantages.

1) Because the machine learning algorithm is not modified, the
convergence analysis still holds.

2) The training speed keeps improving along with the advent
on fast matrix operations.

3) By considering the whole data matrix rather than some
instances, it is easier to improve the memory access.
In shared-memory systems, moving data from lower-level
memory (e.g., main memory) to upper level (e.g., cache)
may be a more serious bottleneck than the synchronization
or communication between threads.
Although our goal is to employ fast sparse matrix operations

for machine learning algorithms, we must admit that unlike
dense matrix operations, the development has not been as
successful. It is known that sparse matrix operations may
be memory bound [12], [13], [14]. That is, CPU waits for
data being read from lower-level to upper-level memory. The
same situation has appeared for dense matrix operations, but
optimized implementations have been well studied by the
numerical analysis community. The result is the successful
optimized BLAS in the past several decades. BLAS (Basic
Linear Algebra Subprograms) is a standard set of functions
defined for vector and dense matrix operations [15], [16], [17].
By carefully designing the algorithm to reduce cache/memory
accesses, an optimized matrix-matrix or matrix-vector mul-
tiplication can be much faster than a naive implementation.
However, because of the complication on the quantity and
positions of non-zero values, such huge success has not applied
to sparse matrices. Fortunately, intensive research has been
conducted recently so some tools for fast sparse matrix-vector
multiplications are available (e.g., [12], [13]).

With the recent progress on the fast implementation of
matrix-vector multiplications, it is time to investigate if ap-
plying them to some machine learning algorithms can reduce
the running time. In this paper, we focus on Newton methods



for large-scale logistic regression. In past works [10], [11] and
the widely used software LIBLINEAR [18] for linear classifi-
cation, it is known that the main computational bottleneck in
a Newton method is matrix-vector multiplications. We investi-
gate various implementations of matrix-vector multiplications
when they are applied to the Newton method. Experiments
show that we can achieve significant speedup on a typical
server. In particular, a carefully designed implementation using
OpenMP [19] is simple and efficient.

In Section II, we point out that the computational bottleneck
of Newton methods for logistic regression is on matrix-
vector multiplications. We then investigate several state-of-the-
art strategies for sparse matrix-vector multiplications. Thor-
ough experiments are in Section III to illustrate how we
achieve good speedup. An extension of LIBLINEAR based
on this work is available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/multicore-liblinear. Supplementary materials in-
cluding the connection to [1] can be found at the same page.

II. SPARSE MATRIX-VECTOR MULTIPLICATIONS IN
NEWTON METHODS FOR LOGISTIC REGRESSION

Logistic regression is widely used for classification. Given
training instances {(yi,xi)}li=1 with label yi = ±1 and feature
vector xi ∈ Rn, logistic regression solves the following
convex optimization problem to obtain a model vector w.

min
w

f(w) ≡ 1

2
wTw + C

∑l

i=1
log(1 + e−yiw

Txi), (1)

where C > 0 is the regularization parameter, l is the number
of instances, n is the number of features. Many optimization
methods have been proposed for training large-scale logistic
regression. Among them, Newton methods are reliable ap-
proaches [20], [10], [11]. Assume the data matrix is

X =
[
x1, . . . ,xl

]T ∈ Rl×n.
It is known that at each Newton iteration the main computa-
tional task is on a sequence of Hessian-vector products.

∇2f(w)d = (I + CXTDX)d, (2)

where ∇2f(w) is the Hessian, I is the identity matrix, D is
a diagonal matrix associated with the current w, and d is an
intermediate vector. Because of space limit, we leave detailed
derivations in supplementary materials. Our focus in this paper
is thus on how to speedup the calculation of (2).

From (2), the Hessian-vector multiplication involves
Xd, D(Xd), XT (DXd).

The second step takes only O(l) because D is diagonal.
Subsequently we investigate efficient methods for the first and
the third steps.

A. Baseline: Single-core Implementation in LIBLINEAR
By the nature of data classification, currently LIBLINEAR

implements an instance-based storage so that non-zero entries
in each xi can be easily accessed. Specifically, xi is an array
of nodes and each node contains feature index and value:

xi → index1
value1

index2
value2

index4
value4

index4
value4

. . .

Note that we modify a figure in [21] here. This type of row-
based storage is common for sparse matrices, where the most
used one is the CSR (Compressed Sparse Row) format [22].
However, we note that the CSR format separately saves feature
indices (i.e., column indices of X) and feature values in two
arrays, so it is slightly different from the above implementation
in LIBLINEAR.

For the matrix-vector multiplication,
u = Xd ,

LIBLINEAR implements the following simple loop
1: for i = 1, . . . , l do
2: ui = xT

i d

For the other matrix-vector multiplication
ū = XTu, where u = DXd,

we can use the following loop
1: for i = 1, . . . , l do
2: ū← ū + uixi

because ū = u1x1 + · · · + ulxl. By this setting there is no
need to calculate and store XT .

B. Parallel Matrix-vector Multiplication by OpenMP
We aim at parallelizing the two loops in Section II-A

by OpenMP [19], which is simple and common in shared-
memory systems. For the first loop, because xT

i d,∀i are
independent, we can easily parallelize it by

1: for i = 1, . . . , l do in parallel
2: ui = xT

i d

It is known [12] that parallelizing the second loop is more
difficult because threads cannot update ū at the same time. A
common solution is that, after ui(xi)s is calculated, we update
ūs by an atomic operation that avoids other threads to write
ūs at the same time. Specifically, we have the following loop.

1: for i = 1, . . . , l do in parallel
2: for (xi)s 6= 0 do
3: atomic: ūs ← ūs + ui(xi)s

This loop of calculating XTu by atomic operations is related
to the recent asynchronous parallel coordinate descent methods
for linear classification [1]. In supplementary materials, we
discuss the relationship between our results and theirs.

An alternative approach to calculate XTu without using
atomic operations is to store

ûp =
∑
{uixi | i run by thread p}

during the computation, and sum up these vectors in the end.
This approach essentially simulates a reduction operation in
parallel computation: each thread has a local copy of the
results and these local copies are combined for the final result.
Currently, OpenMP supports reduction for scalars rather than
arrays for C/C++, so we must handle these local arrays by
ourself. The extra storage is in general not a concern because
if the data set is not extremely sparse and the number of cores
is not super high, then the size of ûp,∀p is relatively smaller
than the data size. Similarly, the extra cost for summing ûp,
∀p should be minor, but we will show in Section III-D that
appropriate settings are needed to ensure fast computation.

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear


TABLE I
LEFT: DATA STATISTICS. DENSITY IS THE AVERAGE RATIO OF NON-ZERO FEATURES PER INSTANCE. RIGHT: NUMBER OF ITERATIONS AND PERCENTAGE
OF RUNNING TIME SPENT ON MATRIX-VECTOR MULTIPLICATIONS IN THE NEWTON METHOD. WE USE THE BASELINE LIBLINEAR WITH ONE THREAD.
Data set #instances #features #nonzeros density #class C # iters # and ratio of matrix-vector multiplications
KDD2010-b 19,264,097 29,890,095 566,345,668 0.000% 2 0.0625 77 1,221 3,902.65 / 4,752.93 = 82.11%
url combined 2,396,130 3,231,961 277,058,644 0.004% 2 1 8 44 87.82 / 92.61 = 94.83%
webspam 350,000 16,609,143 1,304,697,446 0.022% 2 1 6 50 530.66 / 541.80 = 97.95%
rcv1 binary 677,399 47,236 49,556,258 0.155% 2 1 5 43 14.70 / 15.02 = 97.88%
covtype binary 581,012 54 6,940,438 22.12% 2 1 4 60 1.80 / 2.02 = 89.20%
epsilon 400,000 2,000 800,000,000 100.00% 2 1 4 46 124.70 / 124.85 = 99.88%
rcv1 multiclass 518,571 47,236 33,486,015 0.137% 53 1 451 1,696 563.65 / 580.85 = 97.04%
covtype multiclass 581,012 54 6,972,144 22.22% 7 1 51 630 19.62 / 22.02 = 89.06%

C. Combining Matrix-vector Operations

Although in Section II-B we have two separate loops for
Xd and XT (DXd), from

XTDXd =
∑l

i=1
xiDiix

T
i d, (3)

the two loops can be combined together. For example, if
we take the approach of temporarily storing arrays ûp, p =
1, . . . , P , where P is the total number of threads, then the
implementation becomes

1: for i = 1, . . . , l do in parallel
2: ui = Diix

T
i d

3: ûp = ûp + uixi, where p is the thread ID

Although the number of operations is the same, because
of accessing x1, . . . ,xl only once rather than twice, this
approach should be better than the two-loop setting in Section
II-B. However, currently this is not what implemented in
LIBLINEAR.

Regarding the implementation efforts and the availability,
this approach can be easily implemented by OpenMP. How-
ever, for existing sparse matrix packages such as those we
will discuss in Sections II-D and II-E, currently they do
not support XTXd type of operations. Therefore, the two
operations involving X and XT must be separately conducted.

The formulation (3) is the foundation of distributed Newton
methods in [2], [21], where data are split to disjoint blocks,
each node considers its local block and calculates

ûp =
∑
{uixi | i run by node p}

and then a reduce operation sums all ûp up to get ū. In a
shared-memory system, a core does not have its local subset,
but we show in Section III-E that letting each thread work on a
block of instances is very essential to achieve better speedup.

D. Sparse Matrix-vector Multiplications by Intel MKL

Intel Math Kernel Library (MKL) is a commercial library
including optimized routines for linear algebra. It supports fast
matrix-vector multiplications for different sparse formats. We
consider the commonly used CSR format to store X . Note
that MKL provides subroutines for XTu with X as the input.

E. Sparse Matrix-vector Multiplications with the Recursive
Sparse Blocks Format

Following the concept of splitting the matrix to blocks for
dense BLAS implementations, [13] applies a similar idea for
sparse matrix-vector multiplications. For example,

X =

[
X1,1 X1,2

X2,1 X2,2

]
⇒ u = Xd =

[
X1,1d1 + X1,2d2

X2,1d1 + X2,2d2

]
.

This setting possesses the following advantages. First, X1,1d1

and X1,2d2 are independent to each other, so two threads can
be used to compute them simultaneously. Second, Each sub-
matrix is smaller, so it occupies a smaller part of the higher-
level memory (e.g., cache). Then the chance that u and d are
thrown out of cache during the computation becomes smaller.
We illustrate this point by an extreme example. Suppose the
cache is not enough to store xi and d together. In calculating
xT
1 d, we sequentially load elements in x1 and d to cache.

By the time the inner product is done, d’s first several entries
have been removed from the cache. Then for xT

2 d, the vector
d must be loaded again. In contrast, by using blocks, each time
only part of xi and d are used, so the above situation may
not occur. In any program, if data are accessed from a lower-
level memory frequently, then CPUs must wait until they are
available.

While the concept of using blocks is the same as that
for dense matrices, the design as well as the implementation
for sparse matrices are more sophisticated. Recently, RSB
(Recursive Sparse Blocks) format [23] has been proposed as an
effective format for fast sparse matrix-vector multiplications. It
recursively partitions a matrix in quadrants. In the end a tree
structure with sub-matrices in the leaves is generated. The
recursive partition terminates according to some conditions
on the sub-matrix (e.g., number of non-zeros). The following
figure shows an example of an 8×8 matrix in the RSB format.

An important concern for using the RSB format is the cost
of initial construction, where details are in [24]. Practically,
it is observed in [13] that when single thread is used for
initial construction as well as matrix-vector multiplication, the
construction cost is about 20 to 30 multiplications. This cost
is not negligible, but for Newton methods which need quite a
few multiplications, we will check in Section III if using RSB
is cost-effective.

Like MKL, the package librsb that we will use includes
XTu subroutines by taking X as the input. We do not compare
with another block-based approach CSB [12] because [13] has
shown that RSB is often competitive with CSB.

III. EXPERIMENTS

We compare various implementations of sparse matrix-
vector multiplications when they are used in a Newton method.

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear


(a) KDD2010-b (b) url combined (c) webspam (d) epsilon

(e) rcv1 binary (f) covtype binary (g) rcv1 multiclass (h) covtype multiclass
Fig. 1. Speedup of calculating Xd

(a) KDD2010-b (b) url combined (c) webspam (d) epsilon

(e) rcv1 binary (f) covtype binary (g) rcv1 multiclass (h) covtype multiclass
Fig. 2. Speedup of calculating XTu, where u = DXd.

A. Data Sets and Experimental Settings

We carefully choose data sets to cover different density
and different relationships between numbers of instances and
features. All data sets listed in Table I are available at the
LIBSVM data set page. Note that we use the tri-gram version
of webspam in our experiments.

Besides two-class data sets, we consider several multi-class
problems. In LIBLINEAR, a K-class problem is decomposed
to K two-class problems by the one-versus-the-rest strategy.
Because each two-class problem treats one class as positive
and the rest as negative, all the K problems share the same
x1, . . . ,xl. Their matrix-vector multiplications involve the
same X and XT . We are interested in such cases because
approaches like RSB need the initial construction only once.

We choose C = 1 as the regularization parameter in (1). An
exception is C = 0.0625 for KDD2010-b for shorter training
time. Our code is based on LIBLINEAR [18], which imple-
ments a trust region Newton method [11]. We compare the

following approaches to conduct matrix-vector multiplications
in the Newton method.
• Baseline: The one-core implementation in LIBLINEAR

(Section II-A) serves as the baseline in our investigation
of the speedup. We use version 1.96.

• OpenMP: We employ OpenMP to parallelize the loops
for matrix-vector multiplications. The scheduling we used
is schedule(dynamic,256), where details will be
discussed in Section III-D. For XTu we have two settings
OpenMP-atomic and OpenMP-array. The first one con-
siders atomic operations, while the second stores results of
each thread to an array; see Section II-B.

• MKL: We use Intel MKL version 11.2; see Section II-D.
• RSB: the approach described in Section II-E by using the

recursive sparse block format. We use version 1.2.0 of the
package librsb at http://librsb.sourceforge.net.
Experiments are conducted on machines with 12 cores of

Intel Xeon E5-2620 CPUs which has 32K L1-cache, 256K L2-
cache and 15360K shared L3-cache. Because past comparisons

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://librsb.sourceforge.net


(a) rcv1 binary (b) covtype binary
Fig. 3. Speedup of calculating Xd and XTu separately and together

(e.g., [13]) involving MKL often use the Intel icc compiler,
we use it for all our programs with the option -O3 -xAVX
-fPIC -openmp. Our experiment uses 1, 2, 4, 6, 8, 10, 12
threads because the machine we used has up to 12 cores.

B. Running Time of Sparse Matrix-vector Multiplications in
Newton Methods

Although past works have pointed out the importance of
sparse matrix-vector multiplications in Newton methods for
data classification, no numerical results have been reported
to show their cost in the entire optimization procedure. In
Table I, we show the percentage of running time spent on
matrix-vector multiplications. Clearly matrix-vector multipli-
cations are the computational bottleneck because for almost
all problems, more than 90% of the running time is spent on
them. Therefore, it is very essential to parallelize the sparse
matrix-vector multiplications in a Newton method.

C. Comparison on Matrix-vector Multiplications

Although past works from numerical analysis and parallel
processing communities have compared different strategies for
matrix-vector multiplications, they did not use matrices from
machine learning problems. It is interesting to see if our results
are consistent with theirs. We present the result of

speedup =
running time of LIBLINEAR

running time of the compared approach

versus the number of threads. Note that the speedup may be
bigger than the number of threads because of the storage and
algorithmic differences from the baseline. The speedup for Xd
and XT (DXd) may be different, so we separately present
results in Figures 1 and 2.

Results indicate that all approaches give excellent speedup
for calculating Xd. For some problems, the speedup is so
good that it is much higher than the number of threads. For
example, using eight threads, RSB achieves speedup higher
than 12. This result is possible because while the baseline
uses a row-based storage, RSB applies a block storage for
better data locality. Between RSB and MKL there is no clear
winner. This observation is slightly different from [13], which
shows that RSB is better than MKL. One reason might be
that [13] experimented with matrices close to squared ones,
but ours here are not. Although OpenMP’s implementation is
the simplest, it enjoys good speedup.

For XTu with u = DXd, in general the speedup becomes
worse than that for Xd. For a few cases the difference is
significant (e.g., RSB for covtype binary). Like the situation

for Xd, there is no clear winner between RSB and MKL.
For the two OpenMP implementations for XTu, OpenMP-
atomic completely fails to gain any speedup. Although we
pointed out in Section II-B the possible delay of using atomic
operations, such poor results are not what we expected. In
contrast, OpenMP-array gives good speedup and is some-
times even better than RSB or MKL. From this experiment we
see that even for the simple implementation by OpenMP, a
careful design of algorithms for the loops can make significant
differences.

D. Detailed Analysis on Implementations using OpenMP

Following the dramatic difference between OpenMP-
atomic and OpenMP-array for XT (DXd), we learned that
having a suitable implementation by OpenMP is non-trivial.
Therefore, we devote this subsection to thoroughly investigate
some implementation issues.

First we discuss the two implementations of computing
Xd and XT (DXd) separately (Section II-B) and together by
(Section II-C). Note that OpenMP-array is used here because
of the much better speedup than OpenMP-atomic. Figure
3 presents the speedup of the two settings. The approach
of using (3) in Section II-C is better because data instances
x1, . . . ,xl are accessed once rather than twice. We already see
improvement in the one-core situation, so (3) is what should
have been implemented in LIBLINEAR. Interestingly, the gap
between the two approaches widens as the number of threads
increases. An explanation is that the doubled number of data
accesses cause problems when more threads are accessing data
at the same time. Based on this experiment, from now on when
we refer to the OpenMP implementation, we mean (3) with
the OpenMP-array setting.

Next we investigate the implementation of OpenMP-array.
We show in supplementary materials that without suitable
settings (in particular, the scheduling of OpenMP loops),
speedup can be poor.

E. Results on Newton Methods for Solving (1)

Figure 4 presents the speedup of the Newton method us-
ing various implementations for matrix-vector multiplications.
Note that we consider end-to-end running time after excluding
the initial data loading and the final model writing. Therefore,
the construction time for transforming the row-based format
to RSB is now included. This transformation does not occur
for other approaches.

For RSB, results in Section III-C indicate that its speedup
for Xd is excellent, but is poor for XTu. Therefore, we
consider a variant RSBt that generates and stores the RSB
format of XT in the beginning. Although more memory is
used, we hope that the speedup for XTu can be as good as
that for Xd.

Results in Figure 4 show that OpenMP (the version pre-
sented in Section II-C) is the best for almost all cases, while
MKL comes the second. RSB is worse than MKL mainly
because of the following reasons. First, from Figure 2, RSB is
mostly worse than MKL for XTu. Second, the construction

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear


(a) KDD2010-b (b) url combined (c) webspam (d) epsilon

(e) rcv1 binary (f) covtype binary (g) rcv1 multiclass (h) covtype multiclass
Fig. 4. Speedup of the Newton method for training logistic regression

time is not entirely negligible. Regarding RSBt, although we
see better speedup for XTu, where details are not shown
because of space limitation, the overall speed is worse than
RSB for two-class problems. The reason is because that
the construction time is doubled. However, for multi-class
problems, RSBt may become better than RSB. Because several
binary problems on the same data instances are solved, the
construction time for the RSB format of XT has less impact
on the total training time.

The speedup for KDD2010-b is worse than others because
it has the lowest percentage of running time on matrix-vector
multiplications (see Table I).

We must point out that one factor to the superiority of
OpenMP over others is that it implements (3) by considering
Xd and XTu together. In this regard, future development
and support of XXT (·) type of operations in sparse matrix
packages is a important direction.

F. Summary of Experiments

1) It is more difficult to gain speedup for XTu than Xd.
Improving the speedup of XTu should be a focus for the
future development of programs for sparse matrix-vector
multiplications.

2) With settings discussed in Section III-D, simple implemen-
tations by OpenMP can achieve excellent speedup and beat
existing state-of-the-art packages.

REFERENCES

[1] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon, “PASSCoDe: Parallel asyn-
chronous stochastic dual coordinate descent,” in ICML, 2015.

[2] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin, “Distributed Newton
method for regularized logistic regression,” in PAKDD, 2015.

[3] T. Yang, “Trading computation for communication: Distributed stochas-
tic dual coordinate ascent,” in NIPS, 2013.

[4] M. Jaggi, V. Smith, M. Takáč, J. Terhorst, T. Hofmann, and M. I. Jordan,
“Communication-efficient distributed dual coordinate ascent,” in NIPS,
2014.

[5] C.-P. Lee and D. Roth, “Distributed box-constrained quadratic optimiza-
tion for dual linear SVM,” in ICML, 2015.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, pp. 1–122, 2011.

[7] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan,
“A dual coordinate descent method for large-scale linear SVM,” in
ICML, 2008.

[8] A. Bordes, L. Bottou, and P. Gallinari, “SGD-QN: Careful quasi-Newton
stochastic gradient descent,” JMLR, vol. 10, pp. 1737–1754, 2009.

[9] F. Niu, B. Recht, C. Ré, and S. J. Wright, “HOGWILD!: a lock-free
approach to parallelizing stochastic gradient descent,” in NIPS, 2011.

[10] S. S. Keerthi and D. DeCoste, “A modified finite Newton method for
fast solution of large scale linear SVMs,” JMLR, vol. 6, pp. 341–361,
2005.

[11] C.-J. Lin, R. C. Weng, and S. S. Keerthi, “Trust region Newton method
for large-scale logistic regression,” JMLR, vol. 9, pp. 627–650, 2008.

[12] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in SPAA, 2009.

[13] M. Martone, “Efficient multithreaded untransposed, transposed or sym-
metric sparse matrix–vector multiplication with the recursive sparse
blocks format,” Parallel Comput., vol. 40, pp. 251–270, 2014.

[14] J.-H. Byun, R. Lin, K. A. Yelick, and J. Demmel, “Autotuning sparse
matrix-vector multiplication for multicore,” EECS, UC Berkeley, Tech.
Rep., 2012.

[15] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for Fortran usage,” ACM TOMS, vol. 5, pp.
308–323, 1979.

[16] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An
extended set of Fortran basic linear algebra subprograms,” ACM TOMS,
vol. 14, pp. 1–17, 1988.

[17] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of
level 3 basic linear algebra subprograms,” ACM TOMS, vol. 16, pp.
1–17, 1990.

[18] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: a library for large linear classification,” JMLR, vol. 9,
pp. 1871–1874, 2008.

[19] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” IEEE Computational Science and En-
gineering, vol. 5, pp. 46–55, 1998.

[20] P. Komarek and A. W. Moore, “Making logistic regression a core data
mining tool,” Carnegie Mellon University, Tech. Rep., 2005.

[21] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin, “Large-scale logistic
regression and linear support vector machines using Spark,” in IEEE
BigData, 2014.

[22] W. F. Tinney and J. W. Walker, “Direct solutions of sparse network
equations by optimally ordered triangular factorization,” PIEEE, vol. 55,
pp. 1801–1809, 1967.

[23] M. Martone, S. Filippone, S. Tucci, M. Paprzycki, and M. Ganzha,
“Utilizing recursive storage in sparse matrix-vector multiplication-
preliminary considerations,” in CATA, 2010.

[24] M. Martone, S. Filippone, S. Tucci, and M. Paprzycki, “Assembling
recursively stored sparse matrices,” in IMCSIT, 2010.


	Introduction
	Sparse Matrix-vector Multiplications in Newton Methods for Logistic Regression
	Baseline: Single-core Implementation in LIBLINEAR
	Parallel Matrix-vector Multiplication by OpenMP
	Combining Matrix-vector Operations
	Sparse Matrix-vector Multiplications by Intel MKL
	Sparse Matrix-vector Multiplications with the Recursive Sparse Blocks Format

	Experiments
	Data Sets and Experimental Settings
	Running Time of Sparse Matrix-vector Multiplications in Newton Methods
	Comparison on Matrix-vector Multiplications
	Detailed Analysis on Implementations using OpenMP
	Results on Newton Methods for Solving (1)
	Summary of Experiments

	References

