
Journal of Machine Learning Research 11 (2010) 815-848 Submitted 5/09; Published 2/10

Iterative Scaling and Coordinate Descent Methods for
Maximum Entropy Models

Fang-Lan Huang d93011@csie.ntu.edu.tw

Cho-Jui Hsieh b92085@csie.ntu.edu.tw

Kai-Wei Chang b92084@csie.ntu.edu.tw

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science

National Taiwan University

Taipei 106, Taiwan

Editor: Michael Collins

Abstract

Maximum entropy (Maxent) is useful in natural language processing and many other areas.
Iterative scaling (IS) methods are one of the most popular approaches to solve Maxent.
With many variants of IS methods, it is difficult to understand them and see the differences.
In this paper, we create a general and unified framework for iterative scaling methods.
This framework also connects iterative scaling and coordinate descent methods. We prove
general convergence results for IS methods and analyze their computational complexity.
Based on the proposed framework, we extend a coordinate descent method for linear SVM
to Maxent. Results show that it is faster than existing iterative scaling methods.

Keywords: maximum entropy, iterative scaling, coordinate descent, natural language
processing, optimization

1. Introduction

Maximum entropy (Maxent) is widely used in many areas such as natural language pro-
cessing (NLP) and document classification. It is suitable for problems needing probability
interpretations. For many NLP tasks, given a word sequence, we can use Maxent models to
predict the label sequence with the maximal probability (Berger et al., 1996). Such tasks are
different from traditional classification problems, which assign label(s) to a single instance.

Maxent models the conditional probability as:

Pw(y|x) ≡ Sw(x, y)

Tw(x)
,

Sw(x, y) ≡ e
∑

t wtft(x,y), Tw(x) ≡
∑
y

Sw(x, y),
(1)

where x indicates a context, y is the label of the context, and w ∈ Rn is the weight vector.
A real-valued function ft(x, y) denotes the t-th feature extracted from the context x and
the label y. We assume a finite number of features. In some cases, ft(x, y) is 0/1 to indicate
a particular property. Tw(x) is a normalization term applied to make

∑
y Pw(y|x) = 1.

c©2010 Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin.

Huang, Hsieh, Chang and Lin

Given an empirical probability distribution P̃ (x, y) obtained from training samples,
Maxent minimizes the following negative log-likelihood:

min
w
−
∑
x,y

P̃ (x, y) logPw(y|x),

or equivalently,

min
w

∑
x

P̃ (x) log Tw(x)−
∑
t

wtP̃ (ft), (2)

where P̃ (x, y) = Nx,y/N , Nx,y is the number of times that (x, y) occurs in training data, and
N is the total number of training samples. P̃ (x) =

∑
y P̃ (x, y) is the marginal probability

of x, and P̃ (ft) =
∑

x,y P̃ (x, y)ft(x, y) is the expected value of ft(x, y). To avoid overfitting
the training samples, some add a regularization term to (2) and solve:

min
w

L(w) ≡ min
w

∑
x

P̃ (x) log Tw(x)−
∑
t

wtP̃ (ft) +
1

2σ2

∑
t

w2
t , (3)

where σ is a regularization parameter. More discussion about regularization terms for
Maxent can be seen in, for example, Chen and Rosenfeld (2000). We focus on (3) in this
paper because it is strictly convex. Note that (2) is convex, but may not be strictly convex.
We can further prove that a unique global minimum of (3) exists. The proof, omitted here,
is similar to Theorem 1 in Lin et al. (2008).

Iterative scaling (IS) methods are popular in training Maxent models. They all share the
same property of solving a one-variable sub-problem at a time. Existing IS methods include
generalized iterative scaling (GIS) by Darroch and Ratcliff (1972), improved iterative scaling
(IIS) by Della Pietra et al. (1997), and sequential conditional generalized iterative scaling
(SCGIS) by Goodman (2002). The approach by Jin et al. (2003) is also an IS method, but
it assumes that every class uses the same set of features. As this assumption is not general,
in this paper we do not include this approach for discussion. In optimization, coordinate
descent (CD) is a popular method which also solves a one-variable sub-problem at a time.
With these many IS and CD methods, it is difficult to see their differences. In Section 2, we
propose a unified framework to describe IS and CD methods from an optimization viewpoint.
We further analyze the theoretical convergence as well as computational complexity of IS
and CD methods. In particular, general linear convergence is proved. In Section 3, based
on a comparison between IS and CD methods, we propose a new and more efficient CD
method. These two results (a unified framework and a faster CD method) are the main
contributions of this paper.

Besides IS methods, numerous optimization methods have been applied to train Maxent.
For example, Liu and Nocedal (1989), Bottou (2004), Daumé (2004), Keerthi et al. (2005),
McDonald and Pereira (2006), Vishwanathan et al. (2006), Koh et al. (2007), Genkin et al.
(2007), Andrew and Gao (2007), Schraudolph et al. (2007), Gao et al. (2007), Collins et al.
(2008), Lin et al. (2008) and Friedman et al. (2010). They do not necessarily solve the opti-
mization problem (3). Some handle more complicated log linear models such as Conditional
Random Fields (CRF), but their approaches can be modified for Maxent. Some focus on
logistic regression, which is a special form of Maxent if the number of labels is two. More-
over, some consider the L1 regularization term

∑
t |wt| in (3). Several papers have compared

816

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

optimization methods for Maxent, though it is difficult to have a complete study. Malouf
(2002) compares methods for NLP data, while Minka (2003) focuses on logistic regression
for synthesis data. In this paper, we are interested in a detailed investigation of IS methods
because they remain one of the most used approaches to train Maxent. This fact can be
easily seen from popular NLP software. The Stanford Log-linear POS Tagger1 supports two
optimization methods, where one is IIS. The OpenNLP Maxent package (Baldridge et al.,
2001) provides only one optimization method, which is GIS.

This paper is organized as follows. In Section 2, we present a unified framework for
IS/CD methods and give theoretical results. Section 3 proposes a new CD method. Its
advantages over existing IS/CD methods are discussed. In Section 4, we investigate some
implementation issues for IS/CD methods. Section 5 presents experimental results. With
a careful implementation, our CD outperforms IS and quasi-Newton techniques. Finally,
Section 6 gives discussion and conclusions.

Part of this work appears in a short conference paper (Huang et al., 2009).
Notation X, Y , and n are the numbers of contexts, class labels, and features, respec-

tively. The total number of nonzeros in training data and the average number of nonzeros
per feature are respectively

#nz ≡
∑
x,y

∑
t:ft(x,y)6=0

1 and l̄ ≡ #nz

n
. (4)

In this paper, we assume non-negative feature values:

ft(x, y) ≥ 0, ∀t, x, y. (5)

Most NLP applications have non-negative feature values. All existing IS methods use this
property.

2. A Framework for Iterative Scaling and Coordinate Descent Methods

An important characteristic of IS and CD methods is that they solve a one-variable op-
timization problem and then modify the corresponding element in w. Conceptually, the
one-variable sub-problem is related to the function reduction

L(w + ztet)− L(w),

where et ≡ [0, . . . , 0︸ ︷︷ ︸
t−1

, 1, 0, . . . , 0]T . Then IS methods differ in how they approximate the

function reduction. They can also be categorized according to whether w’s components are
updated in a sequential or parallel way. In this section, we create a framework for these
methods. A hierarchical illustration of the framework is in Figure 1.

2.1 The Framework

To introduce the framework, we separately discuss coordinate descent methods according
to whether w is sequentially or parallely updated.

1. Stanford Log-linear POS Tagger can be found at http://nlp.stanford.edu/software/tagger.shtml.

817

http://nlp.stanford.edu/software/tagger.shtml

Huang, Hsieh, Chang and Lin

Iterative scaling

Sequential update

Find At(zt) to approximate
L(w + ztet)− L(w)

SCGIS

Let At(zt) =
L(w + ztet)− L(w)

CD

Parallel update

Find a separable function A(z)
to approximate L(w+z)−L(w)

GIS, IIS

Figure 1: An illustration of various iterative scaling methods.

2.1.1 Sequential Update

For a sequential-update algorithm, once a one-variable sub-problem is solved, the corre-
sponding element in w is updated. The new w is then used to construct the next sub-
problem. The procedure is sketched in Algorithm 1. If the t-th component is selected for
update, a sequential IS method solves the following one-variable sub-problem:

min
zt

At(zt),

where At(zt) is twice differentiable and bounds the function difference:

At(zt) ≥ L(w + ztet)− L(w), ∀zt. (6)

We hope that by minimizing At(zt), the resulting L(w + ztet) can be smaller than L(w).
However, (6) is not enough to ensure this property, so we impose an additional condition

At(0) = 0 (7)

on the approximate function At(zt). The explanation below shows that we can strictly
decrease the function value. If A′t(0) 6= 0 and assume z̄t ≡ arg minzt At(zt) exists, with the
condition At(0) = 0, we have At(z̄t) < 0. This property and (6) then imply L(w + z̄tet) <
L(w). If A′t(0) = 0, we can prove that ∇tL(w) = 0,2 where ∇tL(w) = ∂L(w)/∂wt. In
this situation, the convexity of L(w) and ∇tL(w) = 0 imply that we cannot decrease the
function value by modifying wt, so we should move on to modify other components of w.

A CD method can be viewed as a sequential-update IS method. Its approximate function
At(zt) is simply the function difference:

ACD
t (zt) = L(w + ztet)− L(w). (8)

Other IS methods consider approximations so that At(zt) is simpler for minimization. More
details are in Section 2.2. Note that the name “sequential” comes from the fact that each
sub-problem At(zt) depends on w obtained from the previous update. Therefore, sub-
problems must be sequentially solved.

2. Define a function D(zt) ≡ A(zt)−(L(w+ztet)−L(w)). We have D′(0) = A′(0)−∇tL(w). If∇tL(w) 6= 0
and A′t(0) = 0, then D′(0) 6= 0. Since D(0) = 0, we can find a zt such that A(zt)−(L(w+ztet)−L(w)) <
0, a contradiction to (6).

818

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

Algorithm 1 A sequential-update IS method

While w is not optimal
For t = 1, . . . , n

1. Find an approximate function At(zt) satisfying (6)-(7).
2. Approximately solve minzt At(zt) to get z̄t.
3. wt ← wt + z̄t.

Algorithm 2 A parallel-update IS method

While w is not optimal
1. Find approximate functions At(zt) ∀zt satisfying (9).
2. For t = 1, . . . , n

Approximately solve minzt At(zt) to get z̄t.
3. For t = 1, . . . , n

wt ← wt + z̄t.

2.1.2 Parallel Update

A parallel-update IS method simultaneously constructs n independent one-variable sub-
problems. After (approximately) solving all of them, the whole vector w is updated.
Algorithm 2 gives the procedure. The function A(z), z ∈ Rn, is an approximation of
L(w + z)− L(w) satisfying

A(z) ≥ L(w + z)− L(w), ∀z, A(0) = 0, and A(z) =

n∑
t=1

At(zt). (9)

The first two conditions are similar to (6) and (7). By a similar argument, we can ensure
that the function value is strictly decreasing. The last condition indicates that A(z) is
separable, so

min
z
A(z) =

n∑
t=1

min
zt

At(zt).

That is, we can minimize At(zt), ∀zt simultaneously, and then update wt ∀t together.
We show in Section 4 that a parallel-update method possesses some nicer implementation
properties than a sequential method. However, as sequential approaches update w as soon
as a sub-problem is solved, they often converge faster than parallel methods.

If A(z) satisfies (9), taking z = ztet implies that (6) and (7) hold for At(zt), ∀t =
1, . . . , n. A parallel-update method could thus be transformed to a sequential-update
method using the same approximate function. Contrarily, a sequential-update algorithm
cannot be directly transformed to a parallel-update method because the summation of the
inequality in (6) does not imply (9).

2.2 Existing Iterative Scaling Methods

We introduce GIS, IIS and SCGIS via the proposed framework. GIS and IIS use a parallel
update, but SCGIS is sequential. Their approximate functions aim to bound the change of

819

Huang, Hsieh, Chang and Lin

the function values

L(w + z)− L(w) =
∑
x

P̃ (x) log
Tw+z(x)

Tw(x)
+
∑
t

Qt(zt), (10)

where Tw(x) is defined in (1) and

Qt(zt) ≡
2wtzt + z2

t

2σ2
− ztP̃ (ft). (11)

Then GIS, IIS and SCGIS use similar inequalities to get approximate functions. With

Tw+z(x)

Tw(x)
=

∑
y Sw+z(x, y)

Tw(x)
=

∑
y Sw(x, y)

(
e
∑

t ztft(x,y)
)

Tw(x)

=
∑
y

Pw(y|x)e
∑

t ztft(x,y),

they apply logα ≤ α− 1 ∀α > 0 and
∑

y Pw(y|x) = 1 to get

(10) ≤
∑
t

Qt(zt) +
∑
x

P̃ (x)

(∑
y

Pw(y|x)e
∑

t ztft(x,y) − 1

)
=
∑
t

Qt(zt) +
∑
x,y

P̃ (x)Pw(y|x)
(
e
∑

t ztft(x,y) − 1
)
.

(12)

GIS defines

f# ≡ max
x,y

f#(x, y), f#(x, y) ≡
∑
t

ft(x, y),

and adds a feature fn+1(x, y) ≡ f# − f#(x, y) with zn+1 = 0. Using Jensen’s inequality
and the assumption of non-negative feature values (5),

e
∑n

t=1 ztft(x,y) = e
∑n+1

t=1
ft(x,y)

f#
ztf#

(13)

≤
n+1∑
t=1

ft(x, y)

f#
eztf

#
=

n∑
t=1

ft(x, y)

f#
eztf

#
+
f# − f#(x, y)

f#
=

n∑
t=1

(
eztf

− 1

f#
ft(x, y)

)
+ 1.

Substituting (13) into (12), the approximate function of GIS is

AGIS(z) =
∑
t

Qt(zt) +
∑
x,y

P̃ (x)Pw(y|x)
∑
t

(
eztf

− 1

f#
ft(x, y)

)
.

Then we obtain n independent one-variable functions:

AGIS
t (zt) = Qt(zt) +

eztf
− 1

f#

∑
x,y

P̃ (x)Pw(y|x)ft(x, y).

820

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

IIS assumes ft(x, y) ≥ 0 and applies Jensen’s inequality

e
∑

t ztft(x,y) = e
∑

t
ft(x,y)

f#(x,y)
ztf#(x,y) ≤

∑
t

ft(x, y)

f#(x, y)
eztf

#(x,y)

on (12) to get the approximate function

AIIS
t (zt) = Qt(zt) +

∑
x,y

P̃ (x)Pw(y|x)ft(x, y)
eztf

#(x,y) − 1

f#(x, y)
.

SCGIS is a sequential-update algorithm. It replaces f# in GIS with

f#
t ≡ max

x,y
ft(x, y). (14)

Using ztet as z in (10), a derivation similar to (13) gives

eztft(x,y) ≤ ft(x, y)

f#
t

eztf
#
t +

f#
t − ft(x, y)

f#
t

. (15)

The approximate function of SCGIS is

ASCGIS
t (zt) = Qt(zt) +

eztf
#
t − 1

f#
t

∑
x,y

P̃ (x)Pw(y|x)ft(x, y).

As a comparison, we expand ACD
t (zt) in (8) to the following form:

ACD
t (zt) = Qt(zt) +

∑
x

P̃ (x) log
Tw+ztet(x)

Tw(x)
(16)

= Qt(zt) +
∑
x

P̃ (x) log

(
1 +

∑
y

Pw(y|x)(eztft(x,y) − 1)

)
, (17)

where (17) is from (1) and

Sw+ztet(x, y) = Sw(x, y)eztft(x,y), (18)

Tw+ztet(x) = Tw(x) +
∑
y

Sw(x, y)(eztft(x,y) − 1). (19)

A summary of approximate functions of IS and CD methods is in Table 1.

2.3 Convergence of Iterative Scaling and Coordinate Descent Methods

The convergence of CD methods has been well studied (e.g., Bertsekas, 1999; Luo and Tseng,
1992). However, for methods like IS which use only an approximate function to bound the
function difference, the convergence is less studied. In this section, we generalize the linear
convergence proof in Chang et al. (2008) to show the convergence of IS and CD methods.
To begin, we consider any convex and differentiable function L: Rn → R satisfying the
following conditions in the set

U = {w | L(w) ≤ L(w0)}, (20)

where w0 is the initial point of an IS/CD algorithm:

821

Huang, Hsieh, Chang and Lin

AGIS
t (zt) = Qt(zt) +

eztf
− 1

f#

∑
x,y

P̃ (x)Pw(y|x)ft(x, y)

AIIS
t (zt) = Qt(zt) +

∑
x,y

P̃ (x)Pw(y|x)ft(x, y)
eztf

#(x,y) − 1

f#(x, y)

ASCGIS
t (zt) = Qt(zt) +

eztf
#
t − 1

f#
t

∑
x,y

P̃ (x)Pw(y|x)ft(x, y)

ACD
t (zt) = Qt(zt) +

∑
x

P̃ (x) log

(
1 +

∑
y

Pw(y|x)(eztft(x,y) − 1)

)

Table 1: Approximate functions of IS and CD methods.

1. ∇L is bi-Lipschitz: there are two positive constants τmax and τmin such that for any
u,v ∈ U ,

τmin‖u− v‖ ≤ ‖∇L(u)−∇L(v)‖ ≤ τmax‖u− v‖. (21)

2. Quadratic bound property: there is a constant K > 0 such that for any u,v ∈ U ,

|L(u)− L(v)−∇L(v)T (u− v)| ≤ K‖u− v‖2. (22)

The following theorem proves that (3) satisfies these two conditions.

Theorem 1 L(w) defined in (3) satisfies (21) and (22).

The proof is in Section 7.1.
We denote wk as the point after each iteration of the while loop in Algorithm 1 or 2.

Hence from wk to wk+1, n sub-problems are solved. The following theorem establishes our
main linear convergence result for IS methods.

Theorem 2 Consider Algorithm 1 or 2 to minimize a convex and twice differentiable func-
tion L(w). Assume L(w) attains a unique global minimum w∗ and L(w) satisfies (21)-(22).
If the algorithm satisfies

‖wk+1 −wk‖ ≥ η‖∇L(wk)‖, (23)

L(wk+1)− L(wk) ≤ −ν‖wk+1 −wk‖2, (24)

for some positive constants η and ν, then the sequence {wk} generated by the algorithm
linearly converges. That is, there is a constant µ ∈ (0, 1) such that

L(wk+1)− L(w∗) ≤ (1− µ)(L(wk)− L(w∗)), ∀k.

The proof is in Section 7.2. Note that this theorem is not restricted to L(w) in (3). Next,
we show that IS/CD methods discussed in this paper satisfy (23)-(24), so they all possess
the linear convergence property.

822

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

Theorem 3 Consider L(w) defined in (3) and assume At(zt) is exactly minimized in GIS,
IIS, SCGIS, or CD. Then {wk} satisfies (23)-(24).

The proof is in Section 7.3.

2.4 Solving One-variable Sub-problems

After generating approximate functions, GIS, IIS, SCGIS and CD need to minimize one-
variable sub-problems. In general, the approximate function possesses a unique global
minimum. We do not discuss some rare situations where this property does not hold (for
example, minzt A

GIS
t (zt) has an optimal solution zt = −∞ if P̃ (ft) = 0 and the regulariza-

tion term is not considered).

Without the regularization term, by A′t(zt) = 0, GIS and SCGIS both have a simple
closed-form solution of the sub-problem:

zt =
1

fs
log

(
P̃ (ft)∑

x,y P̃ (x)Pw(y|x)ft(x, y)

)
, where fs ≡

{
f# if s is GIS,

f#
t if s is SCGIS.

(25)

For IIS, the term eztf
#(x,y) in AIIS

t (zt) depends on x and y, so it does not have a closed-form
solution. CD does not have a closed-form solution either.

With the regularization term, the sub-problems no longer have a closed-form solution.
While many optimization methods can be applied, in this section we analyze the complexity
of using the Newton method to solve one-variable sub-problems. The Newton method
minimizes Ast (zt) by iteratively updating zt:

zt ← zt −Ast ′(zt)/Ast ′′(zt), (26)

where s indicates an IS or a CD method. This iterative procedure may diverge, so we often
need a line search procedure to ensure the function value is decreasing (Fletcher, 1987, p.
47). Due to the many variants of line searches, here we discuss only the cost for finding the
Newton direction. The Newton directions of GIS and SCGIS are similar:

−A
s
t
′(zt)

Ast
′′(zt)

= −
Q′t(zt) + eztf

s∑
x,y P̃ (x)Pw(y|x)ft(x, y)

Q′′t (zt) + f seztfs
∑

x,y P̃ (x)Pw(y|x)ft(x, y)
, (27)

where fs is defined in (25). For IIS, the Newton direction is:

−A
IIS
t
′
(zt)

AIIS
t
′′
(zt)

= −
Q′t(zt) +

∑
x,y P̃ (x)Pw(y|x)ft(x, y)eztf

#(x,y)

Q′′t (zt) +
∑

x,y P̃ (x)Pw(y|x)ft(x, y)f#(x, y)eztf#(x,y)
. (28)

The Newton directions of CD is:

− ACD
t
′
(zt)

ACD
t
′′
(zt)

, (29)

823

Huang, Hsieh, Chang and Lin

where

ACD
t
′
(zt) = Q′t(zt) +

∑
x,y

P̃ (x)Pw+ztet(y|x)ft(x, y), (30)

ACD
t
′′
(zt) = Q′′t (zt) +

∑
x,y

P̃ (x)Pw+ztet(y|x)ft(x, y)2 −

∑
x

P̃ (x)

(∑
y

Pw+ztet(y|x)ft(x, y)

)2

. (31)

Eqs. (27)-(28) can be easily obtained using formulas in Table 1. We show details of deriving
(30)-(31) in Section 7.4.

We separate the complexity analysis to two parts. One is on calculating of Pw(y|x) ∀x, y,
and the other is on the remaining operations.

For Pw(y|x) = Sw(x, y)/Tw(x), parallel-update approaches calculate it once every n
sub-problems. To get Sw(x, y) ∀x, y, the operation∑

t

wtft(x, y) ∀x, y

needs O(#nz) time. If XY ≤ #nz, the cost for obtaining Pw(y|x), ∀x, y is O(#nz), where
X and Y are respectively the numbers of contexts and labels.3 Therefore, on average
each sub-problem shares O(#nz/n) = O(l̄) cost. For sequential-update methods, they
expensively update Pw(y|x) after every sub-problem. A trick to trade memory for time is
to store all Sw(x, y) and Tw(x), and use (18) and (19). Since Sw+ztet(x, y) = Sw(x, y), if
ft(x, y) = 0, this procedure reduces the number of operations from the O(#nz) operations
to O(l̄). However, it needs O(XY) extra spaces to store all Sw(x, y) and Tw(x). This trick
has been used in the SCGIS method (Goodman, 2002).

From (27) and (28), all remaining operations of GIS, IIS, and SCGIS involve the calcula-
tion of ∑

x,y

P̃ (x)Pw(y|x)ft(x, y)(a function of zt), (32)

which needs O(l̄) under a fixed t. For GIS and SCGIS, since the function of zt in (32) is
independent of x, y, we can calculate and store

∑
x,y P̃ (x)Pw(y|x)ft(x, y) in the first Newton

iteration. Therefore, the overall cost (including calculating Pw(y|x)) is O(l̄) for the first

Newton iteration and O(1) for each subsequent iteration. For IIS, because eztf
#(x,y) in

(28) depends on x and y, we need O(l̄) for every Newton direction. For CD, it calculates
Pw+ztet(y|x) for every zt, so the cost per Newton direction is O(l̄). We summarize the cost
for solving sub-problems of GIS, SCGIS, IIS and CD in Table 2.

2.5 Related Work

Our framework for IS methods includes two important components:

1. Approximate L(w + ztet)− L(w) or L(w + z)− L(w) to obtain functions At(zt).

3. If XY > #nz, one can calculate ewtft(x,y), ∀ft(x, y) 6= 0 and then the product
∏

t:ft(x,y)6=0 e
wtft(x,y).

The complexity is still O(#nz).

824

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

CD GIS SCGIS IIS

1st Newton direction O(l̄) O(l̄) O(l̄) O(l̄)
Each subsequent Newton direction O(l̄) O(1) O(1) O(l̄)

Table 2: Cost for finding Newton directions if the Newton method is used to minimize
At(zt).

2. Sequentially or parallely minimize approximate functions.

Each component has been well discussed in many places. However, ours may be the first to
investigate IS methods in detail. Below we discuss some related work.

The closest work to our framework might be Lange et al. (2000) from the statistics
community. They discuss “optimization transfer” algorithms which construct At(zt) or
A(z) satisfying conditions similar to (6)-(7) or (9). However, they do not require one-
variable sub-problems, so A(z) of a parallel-update method may be non-separable. They
discuss that “optimization transfer” algorithms can be traced back to EM (Expectation
Maximization). In their paper, the function At(zt) or A(z) is called a “surrogate” function
or a “majorizing” function. Some also call it an “auxiliary” function. Lange et al. (2000)
further discuss several ways to construct A(z), where Jensen’s inequality used in (13) is one
of them. An extension along this line of research is by Zhang et al. (2007).

The concept of sequential- and parallel-update algorithms is well known in many sub-
jects. For example, these algorithms are used in iterative methods for solving linear systems
(Jacobi and Gauss-Seidel methods). Some recent machine learning works which mention
them include, for example, Collins et al. (2002) and Dud́ık et al. (2004). Dud́ık et al. (2004)
propose a variant of IS methods for L1-regularized maximum entropy. They consider both
sequential- and parallel-update algorithms using certain approximate functions. Their se-
quential methods greedily choose coordinates minimizing At(zt), while ours in Section 2.1.1
chooses coordinates cyclicly.

Regarding the convergence, if the sub-problem has a closed-form solution like (25), it
is easy to apply the result in Lange et al. (2000). However, the case with regularization
is more complicated. For example, Dud́ık et al. (2004) point out that Goodman (2002)
does not give a “complete proof of convergence.” Note that the strict decrease of function
values following conditions (6)-(7) or (9) does not imply the convergence to the optimal
function value. In Section 2.3, we prove not only the global convergence but also the linear
convergence for a general class of IS/CD methods.

3. Comparison and a New Coordinate Descent Method

Using the framework in Section 2, we compare CD and IS methods in this section. Based
on the comparison, we propose a new and fast CD method.

3.1 Comparison of Iterative Scaling and Coordinate Descent Methods

An IS or CD method falls into a place between two extreme designs:

825

Huang, Hsieh, Chang and Lin

At(zt) a loose bound ⇐⇒ At(zt) a tight bound
Easy to minimize At(zt) Hard to minimize At(zt)

That is, there is a tradeoff between the tightness to bound the function difference and
the hardness to solve the sub-problem. To check how IS and CD methods fit into this
explanation, we obtain the following relationship of their approximate functions:

ACD
t (zt) ≤ ASCGIS

t (zt) ≤ AGIS
t (zt),

ACD
t (zt) ≤ AIIS

t (zt) ≤ AGIS
t (zt) ∀ zt.

(33)

The derivation is in Section 7.5. From (33), CD considers more accurate sub-problems than
SCGIS and GIS. However, when solving the sub-problem, from Table 2, CD’s each Newton
step takes more time. The same situation occurs in comparing IIS and GIS.

The above discussion indicates that while a tight At(zt) can give faster convergence by
handling fewer sub-problems, the total time may not be less due to the higher cost of each
sub-problem.

3.2 A Fast Coordinate Descent Method

Based on the discussion in Section 3.1, we develop a CD method which is cheaper in solving
each sub-problem but still enjoys fast final convergence. This method is modified from
Chang et al. (2008), a CD approach for linear SVM. They approximately minimize ACD

t (zt)
by applying only one Newton iteration. This approach is a truncated Newton method: In
the early stage of the coordinate descent method, we roughly minimize ACD

t (zt) but in the
final stage, one Newton update can quite accurately solve the sub-problem. The Newton
direction at zt = 0 is

d = −A
CD
t
′
(0)

ACD
t
′′
(0)

. (34)

We discuss in Section 2.4 that the update rule (26) may not decrease the function value.
Hence we need a line search procedure to find λ ≥ 0 such that zt = λd satisfies the following
sufficient decrease condition:

ACD
t (zt)−ACD

t (0) = ACD
t (zt) ≤ γztACD

t
′
(0) ≤ 0, (35)

where γ is a constant in (0, 1/2). Note that ztA
CD
t
′
(0) is negative under the definition of d

in (34). Instead of (35), Grippo and Sciandrone (1999) and Chang et al. (2008) use

ACD
t (zt) ≤ −γz2

t (36)

as the sufficient decrease condition. We prefer (35) as it is scale-invariant. That is, if ACD
t

is linearly scaled, then (35) holds under the same γ. In contrast, γ in (36) may need to
be changed. To find λ for (35), a simple way is by sequentially checking λ = 1, β, β2, . . . ,
where β ∈ (0, 1). We choose β as 0.5 for experiments. The following theorem proves that
the condition (35) can always be satisfied.

Theorem 4 Given the Newton direction d as in (34). There is λ̄ > 0 such that zt = λd
satisfies (35) for all 0 ≤ λ < λ̄.

826

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

Algorithm 3 A fast coordinate descent method for Maxent

• Choose β ∈ (0, 1) and γ ∈ (0, 1/2). Give initial w and calculate Sw(x, y), Tw(x), ∀x, y.
• While w is not optimal

– For t = 1, . . . , n
1. Calculate the Newton direction

d = −ACD
t
′
(0)/ACD

t
′′
(0)

=
−
(∑

x,y P̃ (x)Pw(y|x)ft(x, y) + wt
σ2 − P̃ (ft)

)
∑

x,y P̃ (x)Pw(y|x)ft(x, y)2 −∑x P̃ (x)
(∑

y Pw(y|x)ft(x, y)
)2

+ 1
σ2

,

where

Pw(y|x) =
Sw(x, y)

Tw(x)
.

2. While λ = 1, β, β2, . . .
(a) Let zt = λd.
(b) Calculate

ACD
t (zt) = Qt(zt) +

∑
x

P̃ (x) log

(
1 +

∑
y

Sw(x, y)

Tw(x)
(eztft(x,y) − 1)

)
.

(c) If ACD
t (zt) ≤ γztACD

t
′
(0), then break.

3. wt ← wt + zt.
4. Update Sw(x, y) and Tw(x) ∀x, y by (18)-(19).

The proof is in Section 7.6. The new CD procedure is in Algorithm 3. In the rest of this
paper, we refer to CD as this new algorithm.

In Section 2.3 we prove the linear convergence of IS/CD methods. In Section 7.7, we use
the same framework to prove that Algorithm 3 linearly converges:

Theorem 5 Algorithm 3 satisfies (23)-(24) and linearly converges to the global optimum
of (3).

As evaluating ACD
t (zt) via (17)-(19) needs O(l̄) time, the line search procedure takes

O(l̄)× (# line search steps).

This causes the cost of solving a sub-problem higher than that of GIS/SCGIS (see Table 2).
Fortunately, we show that near the optimum, the line search procedure needs only one step:

Theorem 6 In a neighborhood of the optimal solution, the Newton direction d defined in
(34) satisfies the sufficient decrease condition (35) with λ = 1.

The proof is in Section 7.8. If the line search procedure succeeds at λ = 1, then the cost
for each sub-problem is similar to that of GIS and SCGIS.

827

Huang, Hsieh, Chang and Lin

Next we show that near the optimum, one Newton direction of CD’s tight ACD
t (zt)

already reduces the objective function L(w) more rapidly than directions by exactly min-
imizing a loose At(zt) of GIS, IIS or SCGIS. Thus Algorithm 3 has faster final convergence
than GIS, IIS, or SCGIS.

Theorem 7 Assume w∗ is the global optimum of (3). There is an ε > 0 such that the
following result holds. For any w satisfying ‖w − w∗‖ ≤ ε, if we select an index t and
generate directions

d = −ACD
t
′
(0)/ACD

t
′′
(0) and ds = arg min

zt
Ast (zt), s = GIS, IIS or SCGIS, (37)

then

δt(d) < min
(
δt(d

GIS), δt(d
IIS), δt(d

SCGIS)
)
,

where

δt(zt) ≡ L(w + ztet)− L(w).

The proof is in Section 7.9. Theorems 6 and 7 show that Algorithm 3 improves upon the
traditional CD by approximately solving sub-problems, while still maintaining fast conver-
gence. That is, it attempts to take both advantages of the two designs mentioned in Section
3.1.

3.2.1 Efficient Line Search

We propose a technique to speed up the line search procedure. We derive a function ĀCD
t (zt)

so that it is cheaper to calculate than ACD
t (zt) and satisfies ĀCD

t (zt) ≥ ACD
t (zt) ∀zt. Then,

ĀCD
t (zt) ≤ γztACD

t
′
(0) (38)

implies (35), so we can save time by replacing step 2 of Algorithm 3 with

2’. While λ = 1, β, β2, . . .
(a) Let zt = λd.
(b) Calculate ĀCD

t (zt).
(c) If ĀCD

t (zt) ≤ γztACD
t
′
(0), then break.

(d) Calculate ACD
t (zt).

(e) If ACD
t (zt) ≤ γztACD

t
′
(0), then break.

We assume non-negative feature values and obtain

ĀCD
t (zt) ≡ Qt(zt) + P̃t log

(
1 +

eztf
#
t − 1

f#
t P̃t

∑
x,y

P̃ (x)Pw(y|x)ft(x, y)

)
, (39)

where f#
t is defined in (14),

P̃t ≡
∑
Ωt

P̃ (x), and Ωt ≡ {x : ∃y such that ft(x, y) 6= 0}. (40)

828

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

The derivation is in Section 7.10. Because∑
x,y

P̃ (x)Pw(y|x)ft(x, y), t = 1, . . . , n (41)

are available from finding ACD
t
′
(0), getting ĀCD

t (zt) and checking (38) take only O(1), smaller
than O(l̄) for (35). Using logα ≤ α− 1 ∀α > 0, it is easy to see that

ĀCD
t (zt) ≤ ASCGIS

t (zt), ∀zt.

Therefore, we can simply replace ASCGIS
t (zt) of the SCGIS method with ĀCD

t (zt) to have a
new IS method.

4. Implementation Issues

In this section we analyze some implementation issues of IS and CD methods.

4.1 Row Versus Column Format

In many Maxent applications, data are sparse with few nonzero ft(x, y). We store such
data by a sparse matrix. Among many ways to implement sparse matrices, two common
ones are “row format” and “column format.” For the row format, each (x, y) corresponds
to a list of nonzero ft(x, y), while for the column format, each feature t is associated with a
list of (x, y). The loop to access data in the row format is (x, y)→ t, while for the column
format it is t→ (x, y). By (x, y)→ t we mean that the outer loop goes through (x, y) values
and for each (x, y), there is an inner loop for a list of feature values. For sequential-update
algorithms such as SCGIS and CD, as we need to maintain Sw(x, y) ∀x, y via (18) after
solving the t-th sub-problem, an easy access of t’s corresponding (x, y) elements is essential.
Therefore, the column format is more suitable. In contrast, parallel-update methods can use
either row or column formats. For GIS, we can store all n elements of (41) before solving n
sub-problems by (25) or (27). The calculation of (41) can be done by using the row format
and a loop of (x, y)→ t. For IIS, an implementation by the row format is more complicated

due to the eztf
#(x,y) term in AIIS

t (zt). Take the Newton method to solve the sub-problem
as an example. We can calculate and store (28) for all t = 1, . . . , n by a loop of (x, y)→ t.
That is, n Newton directions are obtained together before conducting n updates.

4.2 Memory Requirement

For sequential-update methods, to save the computational time of calculating Pw(y|x), we
use (18)-(19), so Sw(x, y) ∀x, y must be stored. Therefore, O(XY) storage is needed. For
parallel-update methods, they also need O(XY) spaces if using the column format: To
calculate e

∑
t wtft(x,y) ∀x, y via a loop of t → (x, y), we need O(XY) positions to store∑

twtft(x, y) ∀x, y. In contrast, if using the row format, the loop is x → y → t, so for
each fixed x, we need only O(Y) spaces to store S(x, y) ∀y and then obtain Tw(x). This
advantage makes the parallel update a viable approach if Y (the number of labels) is very
large.

829

Huang, Hsieh, Chang and Lin

Data set X Y n #nz

CoNLL2000-P 197,979 44 168,674 48,030,163
CoNLL2000-C 197,252 22 273,680 53,396,844
BROWN 935,137 185 626,726 601,216,661

Table 3: Statistics of NLP data (0/1 features). X: number of contexts, Y : number of class
labels, n: number of features, and #nz: number of total non-zero feature values;
see (4).

4.3 Number of exp and log Operations

Many exp/log operations are needed in training a Maxent model. On most computers,
exp/log operations are much more expensive than multiplications/divisions. It is important
to analyze the number of exp/log operations in IS and CD methods.

We first discuss the number of exp operations. A simple check of (27)-(31) shows that
the numbers are the same as those in Table 2. IIS and CD need O(l̄) exp operations for every

Newton direction because they calculate eztf
#(x,y) in (28) and eztft(x,y) in (17), respectively.

CD via Algorithm 3 takes only one Newton iteration, but each line search step also needs
O(l̄) exp operations. If feature values are binary, eztft(x,y) in (17) becomes ezt , a value
independent of x, y. Thus the number of exp operations is significantly reduced from O(l̄)
to O(1). This property implies that Algorithm 3 is more efficient if data are binary valued.
In Section 5, we will confirm this result through experiments.

Regarding log operations, GIS, IIS and SCGIS need none as they remove the log function
in At(zt). CD via Algorithm 3 keeps log in ACD

t (zt) and requires O(|Ωt|) log operations at
each line search step, where Ωt is defined in (40).

4.4 Permutation of Indices in Solving Sub-problems

For sequential-update methods, one does not have to follow a cyclic way to update w1, . . . , wn.
Chang et al. (2008) report that in their CD method, a permutation of {1, . . . , n} as the order
for solving n sub-problems leads to faster convergence. For sequential-update IS methods
adopting this strategy, the linear convergence in Theorem 2 still holds.

5. Experiments

In this section, we compare IS/CD methods to reconfirm properties discussed in earlier sec-
tions. We consider two types of data for NLP (Natural Language Processing) applications.
One is Maxent for 0/1-featured data and the other is Maxent (logistic regression) for doc-
ument data with non-negative real-valued features. Programs used for experiments in this
paper are online available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

830

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

10
2

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

GIS
SCGIS
CD
LBFGS
TRON

(a) CoNLL2000-P

0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

GIS
SCGIS
CD
LBFGS
TRON

(b) CoNLL2000-C

0 500 1000 1500 2000
10

−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

GIS
SCGIS
CD
LBFGS
TRON

(c) BROWN

0 50 100 150

10
1

10
2

10
3

Training Time (s)

||∇
 L

(w
)|

|

GIS
SCGIS
CD
LBFGS
TRON

(d) CoNLL2000-P

0 50 100 150 200

10
1

10
2

10
3

Training Time (s)

||∇
 L

(w
)|

|

GIS
SCGIS
CD
LBFGS
TRON

(e) CoNLL2000-C

0 500 1000 1500 2000

10
2

10
3

10
4

Training Time (s)

||∇
 L

(w
)|

|

GIS
SCGIS
CD
LBFGS
TRON

(f) BROWN

0 50 100 150
94

94.5

95

95.5

96

96.5

97

97.5

98

Training Time (s)

T
es

tin
g

A
cc

ur
ac

y

GIS
SCGIS
CD
LBFGS
TRON

(g) CoNLL2000-P

0 50 100 150 200
90

90.5

91

91.5

92

92.5

93

93.5

Training Time (s)

F
1

m
ea

su
re

GIS
SCGIS
CD
LBFGS
TRON

(h) CoNLL2000-C

0 500 1000 1500 2000
94

94.5

95

95.5

96

96.5

97

Training Time (s)

T
es

tin
g

A
cc

ur
ac

y

GIS
SCGIS
CD
LBFGS
TRON

(i) BROWN

Figure 2: Results on 0/1-featured data. The first row shows time versus the relative function
difference (42). The second and third rows show ‖∇L(w)‖ and testing perfor-
mances along time, respectively. Time is in seconds.

5.1 Maxent for 0/1-featured Data in NLP

We apply Maxent models to part of speech (POS) tagging and chunking tasks. In POS
tagging, we mark a POS tag to the word in a text based on both its definition and context.
In a chunking task, we divide a text into syntactically correlated parts of words. That is,
given words in a sentence annotated with POS tags, we label each word with a chunk tag.
Other learning models such as CRF (Conditional Random Fields) may outperform Maxent
for these NLP applications. However, we do not consider other learning models as the focus
of this paper is to study IS methods for Maxent.

831

Huang, Hsieh, Chang and Lin

We use CoNLL2000 shared task data4 for chunking and POS tagging, and BROWN cor-
pus5 for POS tagging. CoNLL2000-P indicates CoNLL2000 for POS tagging, and CoNLL2000-
C means CoNLL2000 for chunking. CoNLL2000 data consist of Sections 15-18 of the Wall
Street Journal corpus as training data and Section 20 as testing data. For the BROWN
corpus, we randomly select four-fifth articles for training and use the rest for testing. We
omit the stylistic tag modifiers “fw,”“tl,”“nc,”and “hl,” so the number of labels is reduced
from 472 to 185. Our implementation is built upon the OpenNLP package (Baldridge et al.,
2001). We use the default setting of OpenNLP to extract binary features (0/1 values) sug-
gested by Ratnaparkhi (1998). The OpenNLP implementation assumes that each feature
index t corresponds to a unique label y. In prediction, we approximately maximize the
probability of tag sequences to the word sequences by a beam search (Ratnaparkhi, 1998).
Table 3 lists the statistics of data sets.

We implement the following methods for comparisons.

1. GIS and SCGIS: To minimize At(zt), we run Newton updates (without line search)
until |A′t(zt)| ≤ 10−5. We can afford many Newton iterations because, according to
Table 2, each Newton direction costs only O(1) time.

2. CD: the coordinate descent method proposed in Section 3.2.

3. LBFGS: a limited memory quasi Newton method for general unconstrained optimiza-
tion problems (Liu and Nocedal, 1989).

4. TRON: a trust region Newton method for logistic regression (Lin et al., 2008). We
extend the method for Maxent.

We consider LBFGS as Malouf (2002) reports that it is better than other approaches
including GIS and IIS. Lin et al. (2008) show that TRON is faster than LBFGS for document
classification, so we include TRON for comparison. We exclude IIS because of its higher cost
per Newton direction than GIS/SCGIS (see Table 2). Indeed Malouf (2002) reports that GIS
outperforms IIS. Our implementation of all methods takes the property of 0/1 features. We
use the regularization parameter σ2 = 10 as under this value Maxent models achieve good
testing performances. We set β = 0.5 and γ = 0.001 for the line search procedure (35) in
CD. The initial w of all methods is 0.

We begin at checking time versus the relative difference of the function value to the
optimum:

L(w)− L(w∗)

L(w∗)
, (42)

where w∗ is the optimal solution of (3). As w∗ is not available, we obtain a reference point
satisfying ‖∇L(w)‖ ≤ 0.01. Results are in the first row of Figure 2. Next, we check these
methods’ gradient values. As ‖∇L(w)‖ = 0 implies that w is the global minimum, usually
‖∇L(w)‖ is used in a stopping condition. The second row of Figure 2 shows time versus
‖∇L(w)‖. We are also interested in the time needed to achieve a reasonable testing result.
We measure the performance of POS tagging by accuracy and chunking by F1 measure.

4. Data can be found at http://www.cnts.ua.ac.be/conll2000/chunking.
5. Corpus can be found at http://www.nltk.org.

832

http://www.cnts.ua.ac.be/conll2000/chunking
http://www.nltk.org

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

Problem l n #nz σ2

astro-physic 62,369 99,757 4,834,550 8l
yahoo-japan 176,203 832,026 23,506,415 4l
rcv1 677,399 47,236 49,556,258 8l

Table 4: Statistics of document data (real-valued features). l: number of instances, n:
number of features, #nz: number of total non-zero feature values, and σ2: best
regularization parameter from five-fold cross validation.

The third row of Figure 2 presents the testing accuracy/F1 versus training time. Note that
(42) and ‖∇L(w)‖ in Figure 2 are both log scaled.

We give some observations from Figure 2. Among the three IS/CD methods compared,
the new CD approach discussed in Section 3.2 is the fastest. SCGIS comes the second, while
GIS is the last. This result is consistent with the tightness of their approximate functions;
see (33). Regarding IS/CD methods versus LBFGS/TRON, the three IS/CD methods more
quickly decrease the function value in the beginning, but LBFGS has faster final convergence.
In fact, if we draw figures with longer training time, TRON’s final convergence is the fastest.
This result is reasonable as LBFGS and TRON respectively have superlinear and quadratic
convergence, higher than the linear rate proved in Theorem 2 for IS methods. The choice
of methods thus relies on whether one prefers getting a reasonable model quickly (IS/CD
methods) or accurately minimizing the function (LBFGS/TRON). Practically CD/IS may
be more useful as they reach the final testing accuracy rapidly. Finally, we compare LBFGS
and TRON. Surprisingly, LBFGS outperforms TRON, a result opposite to that in Lin et al.
(2008). We do not have a clear explanation yet. A difference is that Lin et al. (2008) deal
with document data of real-valued features, but here we have 0/1-featured NLP applications.
Therefore, one should always be careful that for the same approaches, observations made
on one type of data may not extend to another.

In Section 4, we discussed a strategy of permuting n sub-problems to speed up the
convergence of sequential-update IS methods. However, in training Maxent models for 0/1-
featured NLP data, with/without permutation gives similar performances. We find that
this strategy tends to work better if features are related. Hence we suspect that features
used in POS tagging or chunking tasks are less correlated than those in documents and the
order of sub-problems is not very important.

5.2 Maxent (Logistic Regression) for Document Classification

In this section, we experiment with logistic regression on document data with non-negative
real-valued features. Chang et al. (2008) report that their CD method is very efficient for
linear SVM, but is slightly less effective for logistic regression. They attribute the reason to
that logistic regression requires expensive exp/log operations. In Section 4, we show that
for 0/1 features, the number of IS methods’ exp operations is smaller. Experiments here
help to check if IS/CD methods are more suitable for 0/1 features than real values.

Logistic regression is a special case of maximum entropy with two labels +1 and −1.
Consider training data {x̄i, ȳi}li=1, x̄i ∈ Rn, ȳi = {1,−1}. Assume x̄it ≥ 0, ∀i, t. We set

833

Huang, Hsieh, Chang and Lin

0 0.5 1 1.5 2 2.5 3 3.5 4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

SCGIS
CD
LBFGS
TRON

(a) astro-physic

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

SCGIS
CD
LBFGS
TRON

(b) yahoo-japan

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

SCGIS
CD
LBFGS
TRON

(c) rcv1

0 0.5 1 1.5 2 2.5 3 3.5 4
10

0

10
1

10
2

10
3

10
4

Training Time (s)

||∇
 L

(w
)|

|

SCGIS
CD
LBFGS
TRON

(d) astro-physic

0 10 20 30 40 50

10
1

10
2

10
3

Training Time (s)

||∇
 L

(w
)|

|

SCGIS
CD
LBFGS
TRON

(e) yahoo-japan

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

Training Time (s)

||∇
 L

(w
)|

|

SCGIS
CD
LBFGS
TRON

(f) rcv1

0 0.5 1 1.5 2 2.5 3 3.5 4
96

96.5

97

97.5

Training Time (s)

T
es

tin
g

A
cc

ur
ac

y

SCGIS
CD
LBFGS
TRON

(g) astro-physic

0 10 20 30 40 50
92

92.1

92.2

92.3

92.4

92.5

92.6

92.7

92.8

92.9

93

Training Time (s)

T
es

tin
g

A
cc

ur
ac

y

SCGIS
CD
LBFGS
TRON

(h) yahoo-japan

0 10 20 30 40 50 60
97

97.1

97.2

97.3

97.4

97.5

97.6

97.7

97.8

97.9

98

Training Time (s)

T
es

tin
g

A
cc

ur
ac

y

SCGIS
CD
LBFGS
TRON

(i) rcv1

Figure 3: Results on real-valued document data. The first row shows time versus the rel-
ative function difference (42). The second and third rows show ‖∇L(w)‖ and
testing performances along time, respectively. Time is in seconds.

the feature ft(xi, y) as

ft(xi, y) =

{
x̄it if y = 1,

0 if y = −1,

where xi denotes the index of the i-th training instance x̄i. Then

Sw(xi, y) = e
∑

t wtft(xi,y) =

{
ew

T x̄i if y = 1,

1 if y = −1,

and

Pw(y|xi) =
Sw(xi, y)

Tw(xi)
=

1

1 + e−ywT x̄i
. (43)

834

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

10
2

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

SCGIS
CD
CDD

(a) CoNLL2000-P σ2=10

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

SCGIS
CD
CDD

(b) yahoo-japan σ2=4l

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

10
2

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

SCGIS
CD
CDD

(c) CoNLL2000-P σ2=1

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

SCGIS
CD
CDD

(d) yahoo-japan σ2=0.5l

Figure 4: This figure shows the effect of using (38) to do line search. The first and second
rows show time versus the relative function difference with different σ2. CDD
indicates the CD method without using (38). Time is in seconds.

From (2) and (43),

L(w) =
1

2σ2

∑
t

w2
t +

1

l

∑
i

log
(

1 + e−ȳiw
T x̄i

)
is the common form of regularized logistic regression. We give approximate functions of
IS/CD methods in Section 7.11.

We compare the same methods: SCGIS, CD, LBFGS, and TRON. GIS is not included
because of its slow convergence shown in Section 5.1. Our implementations are based on
sources used in Chang et al. (2008).6 We select three data sets considered in Chang et al.
(2008). Each instance has been normalized to ‖x̄i‖ = 1. Data statistics and σ2 for each
problem are in Table 4. We set β = 0.5 and γ = 0.01 for the line search procedure (35)
in CD. Figure 3 shows the results of the relative function difference to the optimum, the
gradient ‖∇L(w)‖, and the testing accuracy.

From Figure 3, the relation between the two IS/CD methods is similar to that in Figure
2, where CD is faster than SCGIS. However, in contrast to Figure 2, here TRON/LBFGS
may surpass IS/CD in an earlier stage. Some preliminary analysis on the cost per iteration
seems to indicate that IS/CD methods are more efficient on 0/1-featured data due to a
smaller number of exp operations, but more experiments/data are needed to draw definitive
conclusions.

In Figure 3, TRON is only similarly to or moderately better than LBFGS, but Lin et al.
(2008) show that TRON is much better. The only difference between their setting and ours

6. Source can be found at http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

835

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html

Huang, Hsieh, Chang and Lin

is that Lin et al. (2008) add one feature to each data instance. That is, they modify x̄i to[
x̄i
1

]
, so weights of Maxent become [wb], where b is called the bias term. It is surprising

that this difference affects LBFGS’ performance that much.

6. Discussion and Conclusions

In (38), we propose a way to speed up the line search procedure of Algorithm 3. Figure
4 shows how effective this trick is by varying the value of σ2. Clearly, the trick is more
useful if σ2 is small. In this situation, the function L(w) is well conditioned (as it is closer
to a quadratic function

∑
tw

2
t). Hence (38) more easily holds at λ = 1. Then the line

search procedure costs only O(1) time. However, a too small σ2 may downgrade the testing
accuracy. For example, the final accuracy for yahoo-japan is 92.75% with σ2 = 4l, but is
92.31% with σ2 = 0.5l.

Some work has concluded that approaches like LBFGS or nonlinear conjugate gradi-
ent are better than IS methods for training Maxent (e.g., Malouf, 2002; Daumé, 2004).
However, experiments in this paper show that comparison results may vary under different
circumstances. For example, comparison results can be affected by:

1. Data of the target application. IS/CD methods seem to perform better if features are
0/1 and if implementations have taken this property.

2. The IS method being compared. Our experiments indicate that GIS is inferior to
many methods, but other IS/CD methods like SCGIS or CD (Algorithm 3) are more
competitive.

In summary, we create a general framework for iterative scaling and coordinate descent
methods for maximum entropy. Based on this framework, we discuss the convergence,
computational complexity, and other properties of IS/CD methods. We further develop a
new coordinate decent method for Maxent. It is more efficient than existing iterative scaling
methods.

7. Proofs and Derivations

We define 1-norm and 2-norm of a vector w ∈ Rn:

‖w‖1 ≡
n∑
t=1

|wt|, ‖w‖2 ≡

√√√√ n∑
t=1

w2
t .

The following inequality is useful in our proofs.

‖w‖2 ≤ ‖w‖1 ≤
√
n‖w‖2, ∀w ∈ Rn. (44)

Subsequently we simplify ‖w‖2 to ‖w‖.

7.1 Proof of Theorem 1

Due to the regularization term 1
2σ2w

Tw, one can prove that the set U defined in (20) is
bounded; see, for example, Theorem 1 of Lin et al. (2008). As ∇2L(w) is continuous in the

836

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

bounded set U , the following τmax and τmin exist:

τmax ≡ max
w∈U

λmax(∇2L(w)) and τmin ≡ min
w∈U

λmin(∇2L(w)), (45)

where λmax(·) and λmin(·) mean the largest and the smallest eigenvalues of a matrix, re-
spectively. To show that τmax and τmin are positive, it is sufficient to prove τmin > 0. As
∇2L(w) is I/σ2 plus a positive semi-definite matrix, it is easy to see τmin ≥ 1/(σ2) > 0.

To prove (21), we apply the multi-dimensional Mean-Value Theorem (Apostol, 1974,
Theorem 12.9) to ∇L(w). If u,v ∈ Rn, then for any a ∈ Rn, there is a c = αu + (1− α)v
with 0 ≤ α ≤ 1 such that

aT (∇L(u)−∇L(v)) = aT∇2L(c)(u− v). (46)

Set

a = u− v.

Then for any u,v ∈ U , there is a point c such that

(u− v)T (∇L(u)−∇L(v)) = (u− v)T∇2L(c)(u− v). (47)

Since U is a convex set from the convexity of L(w), c ∈ U . With (45) and (47),

‖u− v‖‖∇L(u)−∇L(v)‖ ≥ (u− v)T (∇L(u)−∇L(v)) ≥ τmin‖u− v‖2.

Hence

‖∇L(u)−∇L(v)‖ ≥ τmin‖u− v‖. (48)

By applying (46) again with a = ∇L(u)−∇L(v),

‖∇L(u)−∇L(v)‖2 ≤‖∇L(u)−∇L(v)‖‖∇2L(c)(u− v)‖
≤‖∇L(u)−∇L(v)‖‖u− v‖τmax.

Therefore,

‖∇L(u)−∇L(v)‖ ≤ τmax‖u− v‖. (49)

Then (21) follows from (48) and (49)
To prove the second property (22), we write the Taylor expansion of L(u):

L(u) = L(v) +∇L(v)T (u− v) +
1

2
(u− v)T∇2L(c)(u− v),

where c ∈ U . With (45), we have

τmin

2
‖u− v‖2 ≤ L(u)− L(v)−∇L(v)T (u− v) ≤ τmax

2
‖u− v‖2.

Since τmax ≥ τmin > 0, L satisfies (22) by choosing K = τmax/2.

837

Huang, Hsieh, Chang and Lin

7.2 Proof of Theorem 2

The following proof is modified from Chang et al. (2008). Since L(w) is convex and w∗ is
the unique solution, the optimality condition shows that

∇L(w∗) = 0. (50)

From (21) and (50),

‖∇L(wk)‖ ≥ τmin‖wk −w∗‖. (51)

With (23) and (51),

‖wk+1 −wk‖ ≥ ητmin‖wk −w∗‖. (52)

From (24) and (52),

L(wk)− L(wk+1) ≥ νη2τ2
min‖wk −w∗‖2. (53)

Combining (22) and (50),

L(wk)− L(w∗) ≤ K‖wk −w∗‖2. (54)

Using (53) and (54),

L(wk)− L(wk+1) ≥ νη2τ2
min

K

(
L(wk)− L(w∗)

)
.

This is equivalent to(
L(wk)− L(w∗)

)
+
(
L(w∗)− L(wk+1)

)
≥ νη2τ2

min

K

(
L(wk)− L(w∗)

)
.

Finally, we have

L(wk+1)− L(w∗) ≤
(

1− νη2τ2
min

K

)(
L(wk)− L(w∗)

)
. (55)

Let µ ≡ νη2τ2
min/K. As all constants are positive, µ > 0. If µ > 1, L(wk) > L(w∗) implies

that L(wk+1) < L(w∗), a contradiction to the definition of L(w∗). Thus we have either
µ ∈ (0, 1) or µ = 1, which suggests we get the optimum in finite steps.

7.3 Proof of Theorem 3

We prove the result for GIS and IIS first. Let z̄ = arg minz A
s(z), where s indicates GIS or

IIS method.7 From the definition of As(z) and its convexity,8

∇As(0) = ∇L(wk) and ∇As(z̄) = 0.9 (56)

7. The existence of z̄ follows from that U is bounded. See the explanation in the beginning of Section 7.1.
8. It is easy to see that all At(zt) in Table 1 are strictly convex.

9. Because ∇tL(wk) = ACD
t
′
(0), we can easily obtain ∇As(0) = ∇L(wk) by checking As

t
′(0) = ACD

t
′
(0),

where s is GIS or IIS. See formulas in Table 1.

838

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

Note that ∇As(z) is the gradient with respect to z, but ∇L(w) is the gradient with respect
to w. Since U is bounded, the set {(w, z) | w ∈ U and w + z ∈ U} is also bounded. Thus
we have that

max
w∈U

max
z:w+z∈U

λmax

(
∇2As(z)

)
is bounded by a constant K. Here λmax(·) means the largest eigenvalue of a matrix. To
prove (23), we use

‖wk+1 −wk‖ = ‖z̄ − 0‖

≥ 1

K
‖∇As(z̄)−∇As(0)‖ =

1

K
‖∇As(0)‖ =

1

K
‖∇L(wk)‖,

(57)

where the inequality is from the same derivation for (49) in Theorem 1. The last two
equalities follow from (56).

Next, we prove (24). By (56) and the fact that the minimal eigenvalue of ∇2As(z) is
greater than or equal to 1/(σ2), we have

As(0) ≥ As(z̄)−∇As(z̄)T z̄ +
1

2σ2
z̄T z̄ = As(z̄) +

1

2σ2
z̄T z̄. (58)

From (9) and (58),

L(wk)−L(wk+1) = L(wk)−L(wk + z̄) ≥ As(0)−As(z̄) ≥ 1

2σ2
z̄T z̄ =

1

2σ2
‖wk+1 −wk‖2.

Let ν = 1/(2σ2) and we obtain (24).

We then prove results for SCGIS and CD. For the convenience, we define some notation.
A sequential algorithm starts from an initial point w0, and produces a sequence {wk}∞k=0.
At each iteration, wk+1 is constructed by sequentially updating each component of wk. This
process generates vectors wk,t ∈ Rn, t = 1, . . . , n, such that wk,1 = wk, wk,n+1 = wk+1,
and

wk,t = [wk+1
1 , . . . , wk+1

t−1 , w
k
t , . . . , w

k
n]T for t = 2, . . . , n.

By an argument similar to (57) and (58), we can prove that the one-variable function Ast (zt),
where s is SCGIS or CD, satisfies

|wk,t+1
t − wk,tt | ≥ η̄|Ast ′(0)| = η̄|∇L(wk,t)t| and (59)

L(wk,t)− L(wk,t+1) ≥ 1

2σ2
|wk,t+1
t − wk,tt |2. (60)

Note that η̄ > 0 is a positive constant. To prove (23), taking the summation of (59) from
t = 1 to n,

‖wk+1 −wk‖1 ≥ η̄
n∑
t=1

|∇L(wk,t)t| ≥ η̄
n∑
t=1

(
|∇L(wk,1)t| − |∇L(wk,t)t −∇L(wk,1)t|

)
= η̄

(
‖∇L(wk,1)‖1 −

n∑
t=1

|∇L(wk,t)t −∇L(wk,1)t|
)
. (61)

839

Huang, Hsieh, Chang and Lin

Since L(w) satisfies (21), using (44),

n∑
t=1

|∇L(wk,t)t −∇L(wk,1)t| ≤
n∑
t=1

‖∇L(wk,t)−∇L(wk,1)‖1

≤
n∑
t=1

√
nτmax‖wk,t −wk,1‖1 ≤ n

√
nτmax‖wk+1 −wk‖1.

(62)

From (61) and (62), we have

‖wk+1 −wk‖1 ≥
η̄

1 + η̄n
√
nτmax

‖∇L(wk,1)‖1.

This inequality and (44) imply

‖wk+1 −wk‖ ≥ 1√
n
‖wk+1 −wk‖1 ≥ η̄√

n+η̄n2τmax
‖∇L(wk)‖.

Let η = η̄/(
√
n+ η̄n2τmax). We then have (23).

Taking the summation of (60) from t = 1 to n, we get (24):

L(wk)− L(wk+1) ≥ 1

2σ2
‖wk+1 −wk‖2.

7.4 Derivation of (30)-(31)

Using (18)-(19), we have

dSw+ztet(x, y)

dzt
= Sw(x, y)eztft(x,y)ft(x, y) = Sw+ztet(x, y)ft(x, y)

and

dTw+ztet(x)

dzt
=
∑
y

Sw(x, y)eztft(x,y)ft(x, y) =
∑
y

Sw+ztet(x, y)ft(x, y).

Then (30) can be obtained from (16), the definition of Tw+ztet(x) in (1), and the following
calculation:

d log Tw+ztet(x)

dzt
=

∑
y Sw+ztet(x, y)ft(x, y)

Tw+ztet(x)
=
∑
y

Pw+ztet(y|x)ft(x, y).

840

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

For (31), we use

d
∑

y Pw+ztet(y|x)ft(x, y)

dzt

=
∑
y

ft(x, y)
Tw+ztet(x)

dSw+ztet (x,y)
dzt

− dTw+ztet (x)
dzt

Sw+ztet(x, y)

Tw+ztet(x)2

=
∑
y

ft(x, y)

ft(x, y)Pw+ztet(y|x)− Sw+ztet(x, y)

Tw+ztet(x)

∑
y′

Pw+ztet(y
′|x)ft(x, y

′)


=
∑
y

Pw+ztet(y|x)ft(x, y)2 −
∑
y

Pw+ztet(y|x)ft(x, y)
∑
y′

Pw+ztet(y
′|x)ft(x, y

′)


=
∑
y

Pw+ztet(y|x)ft(x, y)2 −
(∑

y

Pw+ztet(y|x)ft(x, y)

)2

.

7.5 Derivation of (33)

From (6) and (9), we immediately have ASCGIS
t (zt) ≥ ACD

t (zt) and AIIS
t (zt) ≥ ACD

t (zt). Next
we prove that AGIS

t (zt) ≥ ASCGIS
t (zt). Assume D(zt) ≡ AGIS

t (zt)−ASCGIS
t (zt). Then

D′(zt) =
(
eztf

− eztf#t
)∑
x,y

P̃ (x)Pw(y|x)ft(x, y).

Since f# ≥ f#
t ≥ 0,

D′(zt) ≥ 0 if zt > 0,

D′(zt) ≤ 0 if zt < 0.
(63)

From Taylor expansion, there exists h between 0 and zt such that

D(zt) = D(0) + ztD
′(h).

From ASCGIS
t (0) = AGIS

t (0) = 0, we have D(0) = 0. By (63), ztD
′(h) ≥ 0, so

AGIS
t (zt)−ASCGIS

t (zt) = D(zt) ≥ D(0) = 0.

We can use a similar method to prove AGIS
t (zt) ≥ AIIS

t (zt).

7.6 Proof of Theorem 4

From (31), we can define

H = max
t

(
1

σ2
+
∑
x,y

P̃ (x)ft(x, y)2

)
≥ ACD

t
′′
(zt), ∀zt. (64)

841

Huang, Hsieh, Chang and Lin

From the Taylor expansion of ACD
t (zt) at zt = 0, there exists h between 0 and d such that

zt = λd satisfies

ACD
t (λd)− γλdACD

t
′
(0)

= ACD
t (0) +ACD

t
′
(0)λd+

1

2
ACD
t
′′
(h)λ2d2 − γλdACD

t
′
(0)

≤ ACD
t
′
(0)λd+

1

2
Hλ2d2 − γλdACD

t
′
(0)

= −λA
CD
t
′
(0)2

ACD
t
′′
(0)

+
1

2
Hλ2 A

CD
t
′
(0)2

ACD
t
′′
(0)2

+ γλ
ACD
t
′
(0)2

ACD
t
′′
(0)

= λ
ACD
t
′
(0)2

ACD
t
′′
(0)

(
λ

(
H

2ACD
t
′′
(0)

)
− 1 + γ

)
. (65)

If we choose

λ̄ =
2ACD

t
′′
(0)(1− γ)

H
, (66)

then for λ ≤ λ̄, (65) is non-positive. Therefore, (35) is satisfied for all 0 ≤ λ ≤ λ̄.

7.7 Proof of Theorem 5

Following the proof in Section 7.3, it is sufficient to prove inequalities in the same form
as (59) and (60). By Theorem 4, any λ ∈ [βλ̄, λ̄], where β ∈ (0, 1) and λ̄ is defined in
(66), satisfies the sufficient decrease condition (35). Since Algorithm 3 selects λ by trying
{1, β, β2, . . . }, with (64), the selected value λ satisfies

λ ≥ βλ̄ = β
2ACD

t
′′
(0)(1− γ)

H
.

This and (34) suggest that the step size zt = λd in Algorithm 3 satisfies

|zt| = λ

∣∣∣∣∣−ACD
t
′
(0)

ACD
t
′′
(0)

∣∣∣∣∣ ≥ 2β(1− γ)

H

∣∣∣ACD
t
′
(0)
∣∣∣ . (67)

From (34), (35), zt = λd, ACD
t
′′
(0) ≥ 1/σ2 and λ ≤ 1, we have

ACD
t (zt)−ACD

t (0) ≤ γztACD
t
′
(0) = −γztdACD

t
′′
(0) ≤ − γ

λσ2
z2
t ≤ −

γ

σ2
z2
t . (68)

Note that zt is the step taken for updating wk,tt to wk,t+1
t . With ACD

t (zt) = L(wk,t+1) −
L(wk,t), (67)-(68) are in the same form as (59)-(60). In Section 7.3, (59)-(60) are sufficient
to prove the desired conditions (23)-(24) for the linear convergence (Theorem 2). Therefore,
Algorithm 3 linearly converges.

7.8 Proof of Theorem 6

A direct calculation of ACD
t
′′′

(zt) shows that it is bounded for all zt and wkt . We assume
that a bound is M . Using ACD

t (0) = 0, (34) and Taylor expansion, there exists h between

842

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

0 and d such that

ACD
t (d) = ACD

t
′
(0)d+

1

2
ACD
t
′′
(0)d2 +

1

6
ACD
t
′′′

(h)d3

= −1

2

ACD
t
′
(0)2

ACD
t
′′
(0)

+
1

6
ACD
t
′′′

(h)d3

≤ −1

2
ACD
t
′′
(0)d2 +

1

6
M
∣∣d3
∣∣ (69)

= −γd2ACD
t
′′
(0) +

(
γACD

t
′′
(0)− 1

2
ACD
t
′′
(0) +

1

6
M |d|

)
d2

= γdACD
t
′
(0) +

(
γACD

t
′′
(0)− 1

2
ACD
t
′′
(0) +

1

6
M |d|

)
d2.

Note that γ < 1/2. As ACD
t
′′
(0) ≥ 1/σ2 and |ACD

t
′
(0)| → 0 when w converges to the optimal

solution w∗, near the optimum, d is small enough so that

0 ≤ |d| ≤ 6

M

(
1

2
− γ
)
ACD
t
′′
(0).

Then we obtain ACD
t (d) ≤ γdACD

t
′
(0) and (35) is satisfied.

7.9 Proof of Theorem 7

The following lemma, needed for proving Theorem 7, shows that the direction taken by CD
is bigger than that of GIS, IIS, or SCGIS.

Lemma 8 There exists a positive constant λ such that in a neighborhood of w∗,

|ds|(1 + λ) ≤ |d| =
∣∣∣∣ δ′t(0)

δ′′t (0)

∣∣∣∣ , (70)

where d and ds are defined in (37).

Proof. Since ds = arg minzt A
s
t (zt) and Ast (zt) is strictly convex,

Ast
′(ds) = 0. (71)

We separate the proof to two cases: Ast
′(0) > 0 and Ast

′(0) < 0. If Ast
′(0) = 0, then ds = 0,

so (70) immediately holds.
If Ast

′(0) > 0, from the strict convexity of Ast (zt) and (71), ds < 0. It is sufficient to
prove that there is λ such that Ast

′(d/(1 + λ)) ≤ 0. This result implies d/(1 + λ) ≤ ds, so
we obtain (70) .

Using Taylor expansion, if ztf
s(x, y) < 0, then

eztf
s(x,y) ≤ 1 + ztf

s(x, y) +
1

2
z2
t (fs(x, y))2, (72)

where

fs(x, y) ≡


f# if s is GIS,

f#
t if s is SCGIS,

f#(x, y) if s is IIS.

843

Huang, Hsieh, Chang and Lin

From Table 1 and (72),

Ast
′(zt) =

∑
x,y

P̃ (x)Pw(y|x)ft(x, y)eztf
s(x,y) +Q′t(zt) (73)

≤
(∑
x,y

P̃ (x)Pw(y|x)ft(x, y) +
wt
σ2
− P̃ (ft)

)
+

(
R1(w) +

1

σ2

)
zt +

1

2
z2
tR2(w)

= Ast
′(0) +

(
R1(w) +

1

σ2
− 1

2
|zt|R2(w)

)
zt,

where

R1(w) ≡
∑
x,y

P̃ (x)Pw(y|x)ft(x, y)fs(x, y) and

R2(w) ≡
∑
x,y

P̃ (x)Pw(y|x)ft(x, y)fs(x, y)2.

Now the Newton direction is

d = −A
CD
t
′
(0)

ACD
t
′′
(0)

= − δ
′
t(0)

δ′′t (0)
= −A

s
t
′(0)

δ′′t (0)
< 0. (74)

From (31),

δ′′t (0) =
∑
x,y

P̃ (x)Pw(y|x)ft(x, y)2 −
∑
x

P̃ (x)

(∑
y

Pw(y|x)ft(x, y)

)2

+
1

σ2

≤ R1(w)−R3(w) +
1

σ2
,

(75)

where

R3(w) ≡
∑
x

P̃ (x)

(∑
y

Pw(y|x)ft(x, y)

)2

.

When w → w∗, R1(w), R2(w), R3(w) respectively converge to R1(w∗), R2(w∗), R3(w∗).
Moreover, as w + dset ∈ {w̄ | L(w̄) ≤ L(w)}, ds → 0 when w → w∗. Therefore,

lim
w→w∗

δ′′t (0)

R1(w) + 1
σ2 − 1

2 |ds|R2(w)
= 1− R3(w∗)

R1(w∗) + 1
σ2

. (76)

Here we can assume R3(w∗) > 0. If not, ft(x, y) = 0 for all x, y. Then w∗t = 0 is obtained
in just one iteration. From (76), we can choose a positive λ such that

1

1 + λ
> 1− R3(w∗)

R1(w∗) + 1
σ2

. (77)

From (76) and (77), for any w in a neighborhood of w∗,

δ′′t (0) ≤ R1(w) + 1
σ2 − 1

2 |ds|R2(w)

1 + λ
.

844

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

From (74),
d

1 + λ
≤ − Ast

′(0)

R1(w) + 1
σ2 − 1

2 |ds|R2(w)
. (78)

From (73) with zt = d/(1 + λ) and (78),

Ast
′
(

d

1 + λ

)
≤ Ast ′(0)−Ast ′(0) = 0.

Therefore, d/(1 + λ) ≤ ds < 0.
If Ast

′(0) < 0, then ds > 0. Using Taylor expansion, if ztf
s(x, y) > 0, we have

eztf
s(x,y) ≥ 1 + ztf

s(x, y).

Then (73) becomes

Ast
′(zt) ≥

(∑
x,y

P̃ (x)Pw(y|x)ft(x, y) +
wt
σ2
− P̃ (ft)

)
+

(
R1(w) +

1

σ2

)
zt

= Ast
′(0) +

(
R1(w) +

1

σ2

)
zt.

(79)

From (75) and a derivation similar to (76), there is a λ > 0 such that

δ′′t (0)(1 + λ) ≤ R1(w) +
1

σ2
.

Let zt = d/(1 + λ) in (79). With (74),

Ast
′
(

d

1 + λ

)
≥ Ast ′(0)−Ast ′(0) = 0.

Therefore, 0 < ds ≤ d/(1 + λ).
Proof of Theorem 7 We prove this theorem by calculating a lower bound of δt(d

s)−
δt(d). From (69),

δt(d) ≤ −1

2

δ′t(0)2

δ′′t (0)
+

1

6
Md3, (80)

where M is an upper bound of δ′′′t (zt). If w is sufficiently close to w∗,

δt(d
s) = δ′t(0)ds +

1

2
δ′′t (0)(ds)2 +

1

6
δ′′′t (h)(ds)3

=
1

2
δ′′t (0)

(
δ′t(0)

δ′′t (0)
− ds

)2

− 1

2

δ′t(0)2

δ′′t (0)
+

1

6
δ′′′t (h)(ds)3

≥ 1

2
δ′′t (0)

(
λ

1 + λ

)
δ′t(0)2

δ′′t (0)2
− 1

2

δ′t(0)2

δ′′t (0)
− 1

6
M |d3|

=
1

2

(−1

1 + λ

)
δ′t(0)2

δ′′t (0)
− 1

6
M |d3|,

(81)

845

Huang, Hsieh, Chang and Lin

where h is between 0 and ds and the inequality is from Lemma 8. Combining (80) and (81),

δt(d
s)− δt(d) ≥ 1

2

(
1− 1

1 + λ

)
δ′t(0)2

δ′′t (0)
− 1

3
M |d3|

=

(
1

2

(
λ

1 + λ

)
− 1

3
M
|δ′t(0)|
δ′′t (0)2

)
δ′t(0)2

δ′′t (0)
.

Since δ′′t (0) ≥ 1/(σ2) and δ′t(0)→ ∇tL(w∗) = 0, there is a neighborhood of w∗ so that δ′t(0)
is small enough and

1

2

(
λ

1 + λ

)
>

1

3
M
|δ′t(0)|
δ′′t (0)2

.

Therefore, δt(d
s) > δt(d) in a neighborhood of w∗.

7.10 Derivation of (39)

From Jensen’s inequality and the fact that log(x) is a concave function,∑
Ωt
P̃ (x) log

Tw+ztet (x)

Tw(x)∑
Ωt
P̃ (x)

≤ log

∑Ωt
P̃ (x)

Tw+ztet (x)

Tw(x)∑
Ωt
P̃ (x)

 .

With (16), (19) and (40), we have

ACD
t (zt) ≤ Qt(zt) + P̃t log

(
1 +

∑
Ωt
P̃ (x)

∑
y Pw(y|x)(eztft(x,y) − 1)

P̃t

)
.

By the inequality (15),

ACD
t (zt) ≤ Qt(zt) + P̃t log

1 +

∑
Ωt
P̃ (x)

∑
y Pw(y|x)

(
ft(x,y)eztf

#
t

f#t
+

f#t −ft(x,y)

f#t
− 1

)
P̃t


= Qt(zt) + P̃t log

1 +

(
eztf

#
t − 1

)∑
Ωt
P̃ (x)

∑
y Pw(y|x)ft(x, y)

f#
t P̃t


= ĀCD

t (zt).

Note that replacing P̃t with
∑

x P̃ (x) leads to another upper bound of ACD
t (zt). It is,

however, looser than ĀCD
t (zt).

7.11 Logistic Regression

We list approximate functions of IS/CD methods for logistic regression. Note that

P̃ (xi, y) =

{
1
l if y = ȳi,

0 otherwise,
and P̃ (ft) =

∑
i:ȳi=1

1

l
x̄it. (82)

846

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

For GIS, using the formula in Table 1 and (43),

AGIS
t (zt) = Qt(zt) +

1

l

(
eztf

− 1

f#

∑
i

x̄it

1 + e−wT x̄i

)
,

where from (11) and (82),

Qt(zt) =
2wtzt + z2

t

2σ2
− zt

l

∑
i:ȳi=1

x̄it and f# ≡ max
j
f#(i).

Similarly, IIS and SCGIS respectively solve

AIIS
t (zt) = Qt(zt) +

1

l

(∑
i

x̄it

1 + e−wTxi

eztf
#(i) − 1

f#(i)

)
,

ASCGIS
t (zt) = Qt(zt) +

1

l

(
eztf

#
t − 1

f#
t

∑
i

x̄it

1 + e−wTxi

)
,

where f#
t = maxi x̄it and f#(i) =

∑
t x̄it. Finally, from (17), (30), and (31),

ACD
t (zt) = Qt(zt) +

1

l

∑
i

log

(
1 +

eztx̄it − 1

1 + e−wT x̄i

)
,

ACD
t
′
(0) =

wt
σ2

+
1

l

∑
i

x̄it

1 + e−wT x̄i
−
∑
i:ȳi=1

x̄it

 ,

ACD
t
′′
(0) =

1

σ2
+

1

l

(∑
i

e−w
T x̄i x̄2

it

(1 + e−wT x̄i)2

)
.

Acknowledgments

The authors thank anonymous reviewers and associate editor for helpful comments.

References

Galen Andrew and Jianfeng Gao. Scalable training of L1-regularized log-linear models.
In Proceedings of the Twenty Fourth International Conference on Machine Learning
(ICML), 2007.

Tom M. Apostol. Mathematical Analysis. Addison-Wesley, second edition, 1974.

Jason Baldridge, Tom Morton, and Gann Bierner. OpenNLP package, 2001. URL http:

//opennlp.sourceforge.net/.

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71, 1996.

847

http://opennlp.sourceforge.net/
http://opennlp.sourceforge.net/

Huang, Hsieh, Chang and Lin

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA 02178-9998,
second edition, 1999.

Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg, editors, Ad-
vanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176,
pages 146–168. Springer Verlag, 2004.

Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent method for large-
scale L2-loss linear SVM. Journal of Machine Learning Research, 9:1369–1398, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf.

Stanley F. Chen and Ronald Rosenfeld. A survey of smoothing techniques for ME models.
IEEE Transactions on Speech and Audio Processing, 8(1):37–50, January 2000.

Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, AdaBoost and
Bregman distances. Machine Learning, 48(1–3):253–285, 2002.

Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter Bartlett. Ex-
ponentiated gradient algorithms for conditional random fields and max-margin Markov
networks. Journal of Machine Learning Research, 9:1775–1822, 2008.

John N. Darroch and Douglas Ratcliff. Generalized iterative scaling for log-linear models.
The Annals of Mathematical Statistics, 43(5):1470–1480, 1972.

Hal Daumé, III. Notes on CG and LM-BFGS optimization of logistic regression. 2004. URL
http://www.cs.utah.edu/~hal/megam/.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393,
1997.

Miroslav Dud́ık, Steven J. Phillips, and Robert E. Schapire. Performance guarantees for
regularized maximum entropy density estimation. In Proceedings of the 17th Annual
Conference on Computational Learning Theory, pages 655–662, New York, 2004. ACM
press.

Roger Fletcher. Practical Methods of Optimization. John Wiley and Sons, 1987.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for general-
ized linear models via coordinate descent. Journal of Statistical Software, 33, 2010.

Jianfeng Gao, Galen Andrew, Mark Johnson, and Kristina Toutanova. A comparative study
of parameter estimation methods statistical natural language processing. In Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics (ACL), pages
824–831, 2007.

Alexandar Genkin, David D. Lewis, and David Madigan. Large-scale Bayesian logistic
regression for text categorization. Technometrics, 49(3):291–304, 2007.

848

http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf
http://www.cs.utah.edu/~hal/megam/

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models

Joshua Goodman. Sequential conditional generalized iterative scaling. In Proceedings of
the 40th Annual Meeting of the Association of Computational Linguistics (ACL), pages
9–16, 2002.

Luigi Grippo and Marco Sciandrone. Globally convergent block-coordinate techniques for
unconstrained optimization. Optimization Methods and Software, 10:587–637, 1999.

Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Iterative scaling and
coordinate descent methods for maximum entropy. In Proceedings of the 47th Annual
Meeting of the Association of Computational Linguistics (ACL), 2009. Short paper.

Rong Jin, Rong Yan, Jian Zhang, and Alex G. Hauptmann. A faster iterative scaling algo-
rithm for conditional exponential model. In Proceedings of the Twentieth International
Conference on Machine Learning (ICML), 2003.

S. Sathiya Keerthi, Kaibo Duan, Shirish Shevade, and Aun Neow Poo. A fast dual algorithm
for kernel logistic regression. Machine Learning, 61:151–165, 2005.

Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-
scale l1-regularized logistic regression. Journal of Machine Learning Research, 8:1519–
1555, 2007. URL http://www.stanford.edu/~boyd/l1_logistic_reg.html.

Kenneth Lange, David R. Hunter, and Ilsoon Yang. Optimization transfer using surrogate
objective functions. Journal of Computational and Graphical Statistics, 9(1):1–20, March
2000.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for
large-scale logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1):503–528, 1989.

Zhi-Quan Luo and Paul Tseng. On the convergence of coordinate descent method for
convex differentiable minimization. Journal of Optimization Theory and Applications, 72
(1):7–35, 1992.

Robert Malouf. A comparison of algorithms for maximum entropy parameter estimation.
In Proceedings of the 6th conference on Natural language learning, pages 1–7. Association
for Computational Linguistics, 2002.

Ryan McDonald and Fernando Pereira. Online learning of approximate dependency parsing
algorithms. In Proceedings of 11th Conference of the European Chapter of the Association
for Computational Linguistics (EACL), pages 81–88, 2006.

Thomas P. Minka. A comparison of numerical optimizers for logistic regression, 2003. URL
http://research.microsoft.com/~minka/papers/logreg/.

Adwait Ratnaparkhi. Maximum Entropy Models For Natural Language Ambiguity Resolu-
tion. PhD thesis, University of Pennsylvania, 1998.

849

http://www.stanford.edu/~boyd/l1_logistic_reg.html
http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf
http://research.microsoft.com/~minka/papers/logreg/

Huang, Hsieh, Chang and Lin

Nicol N. Schraudolph, Jin Yu, and Simon Gunter. A stochastic quasi-Newton method for
online convex optimization. In Proceedings of the 11th International Conference Artificial
Intelligence and Statistics (AISTATS), pages 433–440, 2007.

S.V.N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin Murphy. Ac-
celerated training of conditional random fields with stochastic gradient methods. In
Proceedings of the 23rd International Conference on Machine Learning (ICML), pages
969–976, 2006.

Zhihua Zhang, James T. Kwok, and Dit-Yan Yeung. Surrogate maximization/minimization
algorithms and extensions. Machine Learning, 69(1):1–33, October 2007.

850

	Introduction
	A Framework for Iterative Scaling and Coordinate Descent Methods
	The Framework
	Sequential Update
	Parallel Update

	Existing Iterative Scaling Methods
	Convergence of Iterative Scaling and Coordinate Descent Methods
	Solving One-variable Sub-problems
	Related Work

	Comparison and a New Coordinate Descent Method
	Comparison of Iterative Scaling and Coordinate Descent Methods
	A Fast Coordinate Descent Method
	Efficient Line Search

	Implementation Issues
	Row Versus Column Format
	Memory Requirement
	Number of exp and log Operations
	Permutation of Indices in Solving Sub-problems

	Experiments
	Maxent for 0/1-featured Data in NLP
	Maxent (Logistic Regression) for Document Classification

	Discussion and Conclusions
	Proofs and Derivations
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Derivation of (30)-(31)
	Derivation of (33)
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Derivation of (39)
	Logistic Regression

