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Abstract Most optimization methods for logistic regression or maximum entropy

solve the primal problem. They range from iterative scaling, coordinate descent, quasi-

Newton, and truncated Newton. Less efforts have been made to solve the dual problem.

In contrast, for linear support vector machines (SVM), methods have been shown to be

very effective for solving the dual problem. In this paper, we apply coordinate descent

methods to solve the dual form of logistic regression and maximum entropy. Interest-

ingly, many details are different from the situation in linear SVM. We carefully study

the theoretical convergence as well as numerical issues. The proposed method is shown

to be faster than most state of the art methods for training logistic regression and

maximum entropy.

1 Introduction

Logistic regression (LR) is useful in many areas such as document classification and

natural language processing (NLP). It models the conditional probability as:

Pw(y = ±1|x) ≡ 1

1 + e−ywTx
,

where x is the data, y is the class label, and w ∈ Rn is the weight vector. Given

two-class training data {xi, yi}li=1,xi ∈ R
n, yi ∈ {1,−1}, logistic regression minimizes

the following regularized negative log-likelihood:

P LR(w) = C

l∑
i=1

log
(

1 + e−yiw
Txi

)
+

1

2
wTw, (1)
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where C > 0 is a penalty parameter. Problem (1) is referred to as the primal form of

logistic regression, as one may instead solve the following dual problem.

min
α

DLR(α) =
1

2
αTQα+

∑
i:αi>0

αi logαi +
∑

i:αi<C

(C − αi) log(C − αi)

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,

(2)

where Qij = yiyjx
T
i xj ∀i, j.

1 By defining 0 log 0 = 0, (2) becomes

min
α

DLR(α) =
1

2
αTQα+

l∑
i=1

αi logαi + (C − αi) log(C − αi)

subject to 0 ≤ αi ≤ C, i = 1, . . . , l.

(3)

We omit the derivation of the dual problem as later we show details for the more

general maximum entropy model.

Numerous optimization methods have been applied to train logistic regression, as

surveyed in, for example, Minka (2003). Most of them solve the primal problem. Dar-

roch and Ratcliff (1972), Della Pietra et al. (1997), Goodman (2002), Jin et al. (2003)

and many others have proposed iterative scaling methods. Huang et al. (2010) apply

a coordinate descent approach. A quasi-Newton method is included in the comparison

by Minka (2003). Komarek and Moore (2005) and Lin et al. (2008) propose truncated

Newton techniques. Less efforts have been made to solve the dual problem. A few ex-

isting studies include Jaakkola and Haussler (1999) and Keerthi et al. (2005). These

works, interested in kernel LR, consider the dual because of the easy embedding of

kernels. In contrast to LR, for linear support vector machines (SVM),2 optimization

methods have been shown to be very effective for solving the dual problem (e.g., Hsieh

et al., 2008). Note that LR is very related to linear SVM, which takes the following

primal and dual forms:

min
w

P SVM(w) = C

l∑
i=1

max(1− yiwTxi, 0) +
1

2
wTw, (4)

and

min
α

DSVM(α) =
1

2
αTQα−

l∑
i=1

αi

subject to 0 ≤ αi ≤ C, ∀i,

where Qij = yiyjx
T
i xj . An overview of dual forms of various regularized classifiers

including LR and SVM can be found in Zhang (2002) though it does not explore detailed

optimization algorithms for each classifier.

Coordinate descent methods, a classic optimization approach, have been very suc-

cessfully applied to solve the dual form of large linear SVM (Hsieh et al., 2008). Moti-

vated by their work, in this paper we study if coordinate descent methods are useful for

solving the dual problem of LR. Interestingly, we find that many details are different

from the situation in support vector machines. In particular, numerical issues due to

1 In this work we do not consider kernel LR.
2 By linear SVM we mean that kernel tricks are not employed.
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logarithmic evaluations must be properly handled. We carefully design a coordinate

descent algorithm to avoid numerical difficulties and prove the convergence. The pro-

posed method is shown to be faster than most state of the art methods for training

logistic regression.

Maximum Entropy (ME) is a generalization of logistic regression for multi-class

scenarios.3 Thus we also study a coordinate descent method for the dual form of ME.

ME models the conditional probability as:

Pw(y|x) ≡ exp(wTf(x, y))∑
y′ exp(wTf(x, y′))

,

where x denotes a context, y is the label of the context, and w ∈ Rn is the weight

vector. A function vector f(x, y) ∈ Rn indicates features extracted from the context x

and the label y. Assume N training samples {(x, y)} are given, and we have grouped x’s

to l unique contexts {xi} and calculate the empirical probability distribution P̃(xi, y) =

Nxi,y/N , where Nxi,y is the number of times that (xi, y) occurs in the training data.

ME minimizes the following regularized negative log-likelihood:

min
w

PME(w) =−
l∑
i=1

∑
y

P̃(xi, y) logPw(y|xi) +
1

2σ2
wTw

=

l∑
i=1

P̃(xi) log

(∑
y

exp(wTf(xi, y))

)
−wT f̃ +

1

2σ2
wTw,

(5)

where σ is the penalty parameter similar to C in (1), P̃(xi) =
∑
y P̃(xi, y) is the

marginal probability of xi, and

f̃ =

l∑
i=1

∑
y

P̃(xi, y)f(xi, y) (6)

is the expected vector of f(xi, y). For convenience, we assume that

yi ∈ Y ≡ {1, 2, . . . , |Y |}.

Many optimization methods have been applied to train ME, as discussed in Malouf

(2002), Gao et al. (2007), Huang et al. (2010) and references therein. Most exist-

ing methods solve the primal problem, though there are a few exceptions: Memisevic

(2006) applies a two-level coordinate descent method. Collins et al. (2008) propose an

exponentiated gradient (EG) algorithm for conditional random fields (CRF) and their

methods can be modified for dual ME. In this paper, we extend the two-level coordi-

nate descent method (Memisevic, 2006) to a numerically robust algorithm. Moreover,

we carefully study the theoretical convergence.

This paper is organized as follows. In Section 2, we discuss basic concepts of coor-

dinate descent methods and show some existing examples for SVM and primal LR. In

Sections 3 and 4, we describe our proposed algorithms for LR and ME, respectively. A

related optimization method for LR/ME duals is discussed in Section 5. In Section 6,

we compare our method with state of the art implementations. Results show that the

new methods are more efficient. We conclude our work in Section 7.

3 See the derivation in Section 6.1 of Huang et al. (2010). If xi ∈ Rn, ∀i, are training

instances, then in ME, w ∈ Rn|Y |. LR formulation in (1) is a simplified form because its w
has n instead of 2n elements.
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2 Coordinate Descent Methods

This section gives an overview of coordinate descent methods by considering the fol-

lowing optimization problem with linear constraints:

min
α∈Rl

F (α)

subject to Aα = b, and 0 ≤ α ≤ Ce, (7)

where A ∈ Rm×l, b ∈ Rm, 0 < C ≤ ∞ and e ∈ Rl is the vector of all ones. Coordinate

descent methods iteratively update a block of variables because optimizing all variables

together is more difficult. At each iteration, a nonempty subset B ⊂ {1, . . . , l} is chosen

to construct the following sub-problem.

min
z

F (α+ z) (8)

subject to zi = 0, ∀i /∈ B,
Az = 0, and 0 ≤ αi + zi ≤ C, ∀i ∈ B.

That is, we consider changing αB using the solution of (8), while fixing all other

elements.

The two design considerations for coordinate descent methods are how to select

a block B and how to solve the sub-problem (8). We take SVM and primal LR as

examples and discuss different situations.

2.1 Exactly Solving One-Variable Sub-Problem

If the sub-problem has a closed-form solution, we can exactly solve it without using

optimization software. We discuss Hsieh et al. (2008) for dual SVM as an example.

They restrict B to contain only one element and sequentially select an element from

{1, . . . , l}. If αi is being updated, the one-variable sub-problem is

min
z

DSVM(α1, . . . , αi + z, . . . , αl)

=
1

2
Qiiz

2 +∇iDSVM(α)z + constant,

subject to 0 ≤ αi + z ≤ C,

(9)

where ∇iDSVM(α) is the ith component of the gradient. As (9) is a quadratic function

of z, if Qii > 0, easily the solution is:

z = min

(
max

(
αi −

∇iDSVM(α)

Qii
, 0

)
, C

)
− αi. (10)

We need to calculate:

∇iDSVM(α) = (Qα)i − 1 =

l∑
j=1

Qijαj − 1, (11)

which costs O(ln) for calculating the ith row of the matrix Qα. Such operations are

expensive. Hsieh et al. (2008) propose an efficient way of O(n) to calculate (11). This
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technique is applied to our method for logistic regression. We will have a detailed

discussion in Section 3. Algorithm 1 summarizes Hsieh et al. (2008)’s procedure.

In practice, for every round of going through l variables, Hsieh et al. (2008) ran-

domly permute l indices to decide the order for update. They report this setting yields

better convergence than sequential updates. In all coordinate descent methods we will

discuss, this technique can be applied.

2.2 Approximately Solving One-Variable Sub-Problem

If the sub-problem does not have a closed-form solution, optimization methods must

be used to solve the sub-problem. We show the work by Huang et al. (2010) as an

example. They apply a one-variable coordinate descent method to solve the primal

form of LR. If wj is being updated, the sub-problem minimizes

g(z) = P LR(w + zej)

=
z2

2
+ zwj + C

 l∑
i=1

log(1 +
ezxij − 1

1 + e−wTxi
)− z

l∑
i=1,yi=1

xij

+ P LR(w),
(12)

where ej is the indicator vector for the jth element. This sub-problem does not have

a closed-form solution, so Huang et al. (2010) consider the Newton method with the

following update rule:

z ← z − g′(z)/g′′(z).

The first and second derivatives of g(z) are respectively:

g′(z) = wj + z + C

 l∑
i=1

xije
zxij

ezxij + e−wTxi
−

l∑
i=1,yi=1

xij

 , (13)

and

g′′(z) = 1 + C

(
l∑
i=1

x2ije
−wTxiezxij

(ezxij + e−wTxi)2

)
. (14)

If wTxi is available, (13) and (14) cost O(l). In particular, there are l exponential

operations, each of which is much more expensive than a multiplication or a division

on most computers. As each Newton update is not cheap, Huang et al. (2010) apply

only one update and obtain an approximate solution of the sub-problem (12). They

also need a line search procedure to guarantee the convergence.

Compared to Section 2.1, clearly the situation is more complicated if the sub-

problem does not have a closed-form solution.

2.3 Constrained Problems and Using More Than One Variable

Examples in Sections 2.1 and 2.2 choose one variable at a time, so the sub-problem

is simple. Instead, we can choose more than one variable. This is particularly needed

for constrained problems as a one-variable update may fail to change the solution (i.e.,

z = 0 is optimal for the sub-problem). We show several examples in this section.
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For most classical SVM software, they solve SVM with a bias term b. That is, wTxi
in (4) is replaced by wTxi+ b. The dual problem then contains an equality constraint:

min
α

1

2
αTQα−

l∑
i=1

αi

subject to

l∑
i=1

yiαi = 0, and 0 ≤ αi ≤ C, ∀i.

(15)

Due to the equality constraint, the sub-problem must contain at least two variables.

Another example needing more than one variable per sub-problem is multi-lass

SVM. Assume there are |Y | classes. Then yi ∈ {1, . . . , |Y |} instead of {1,−1}. We

discuss the multi-class SVM approach by Crammer and Singer (2000) because its for-

mulation is related to maximum entropy discussed later. The dual problem is

min
α

DCS(α) =
1

2

|Y |∑
y=1

l∑
i=1

l∑
j=1

αiyαjyx
T
i xj +

l∑
i=1

|Y |∑
y=1,y 6=yi

αiy (16)

subject to

|Y |∑
y=1

αiy = 0, ∀i = 1, . . . , l, and

αiy ≤ Cyyi , ∀i = 1, . . . , l, y = 1, . . . , |Y |,

where

α = [α11, . . . , α1|Y |, . . . , αl1, . . . , αl|Y |]
T , and Cyyi =

{
0 if yi 6= y,

C if yi = y.

The optimization problem (16) has |Y |l variables. The l equalities imply that several

variables must be chosen for a sub-problem. As each equality involves variables asso-

ciated with an instance, Crammer and Singer (2000) decompose α to l blocks with

ᾱi = [αi1, . . . , αi|Y |]
T , i = 1, . . . , l, and update one block at a time. The sub-problem

is

min
z

DCS(ᾱ1, . . . , ᾱi + z, . . . , ᾱl)

=
1

2

|Y |∑
y=1

xTi xiz
2
y +

|Y |∑
y=1

∇iyDCS(α)zy + constant,

subject to
∑
y

zy = 0 and 0 ≤ αiy + zy ≤ Cyyi , ∀y = 1, . . . , |Y |,

(17)

where ∇iyDCS(α) is the partial derivative with respect to αiy. Crammer and Singer

(2000, Section 6) show that a closed-form solution of this sub-problem can be obtained

in O(|Y | log |Y |) time. Alternatively, we can apply general optimization methods.
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Algorithm 1 Dual coordinate descent method for linear SVM

1. Given initial α ∈ [0, C]l.
2. While α is not optimal

– Choose an index i from {1, . . . , l}.
– Solve the sub-problem (9) exactly by the analytic form (10).
– Update αi .

Algorithm 2 Dual coordinate descent method for logistic regression

1. Given initial α ∈ (0, C)l.
2. While α is not optimal

– Choose an index i from {1, . . . , l}.
– Solve the sub-problem (18) exactly or approximately.
– Update αi.

3 A Dual Coordinate Descent Method for Logistic Regression

We begin with discussing difficulties for applying coordinate descent methods for LR.

Next we devise an effective method to solve the sub-problem and present our overall

procedure. Earlier studies employing coordinate descent methods for dual LR include

Minka (2003, Section 9) and Keerthi et al. (2005). We also discuss the differences

between ours and their works.

3.1 Issues in Applying Coordinate Descent Methods for Logistic Regression

Since the dual form for LR is very close to SVM dual, naturally we try to extend

existing methods for SVM (e.g., Algorithm 1). In the following we check if each step of

Algorithm 1 is applicable to LR.

To give an initial α, Algorithm 1 allows any point in a closed interval [0, C]l and

one often uses α = 0 due to the sparsity at the SVM dual optimal solution. However,

for dual LR the objective function is not well defined at αi = 0 or αi = C. Therefore,

an initial α must be in an open interval (0, C)l. Further, as lim
αi→0+

αi logαi = 0, it is

unclear if an optimal solution occurs at αi = 0 or C. The following theorem shows that

(3) attains a unique minimum in (0, C)l:

Theorem 1 The LR dual problem (3) attains a unique optimal solution α∗ and α∗ ∈
(0, C)l.

The proof is in Appendix A.2. In Section 3.4, we discuss how to choose an appropriate

initial point in (0, C)l.

Another important difference from SVM is that the sub-problem no longer has a

closed-form solution. If the ith variable is selected, the sub-problem is

min
z

g(z) ≡ (c1 + z) log(c1 + z) + (c2 − z) log(c2 − z) +
a

2
z2 + bz

subject to − c1 ≤ z ≤ c2,
(18)

where

c1 = αi, c2 = C − αi, a = Qii, and b = (Qα)i.
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Table 1: Cost of operations at a Newton iteration.

Operation Cost
Constructing the sub-problem O(n)
Finding Newton direction d O(1)

Calculating g(zk + λd) in line search O(1)

This sub-problem has been studied in, for example, Keerthi et al. (2005) and Memisevic

(2006).4 We will discuss the difference between our approach and theirs.

If using Newton methods to solve (18), the update rule without considering the

constraint −c1 ≤ z ≤ c2 is

zk+1 = zk + d, d = − g
′(zk)

g′′(zk)
, (19)

where k is the index of iterations and ∀z ∈ (−c1, c2)

g′(z) = az + b+ log
c1 + z

c2 − z
, and g′′(z) = a+

c1 + c2
(c1 + z)(c2 − z)

. (20)

To ensure the convergence of Newton methods, we often need a line search procedure

to check the sufficient decrease of function values. For example, we may search for the

first λ = 1, β, β2, . . . , such that

g(zk + λd)− g(zk) ≤ γλg′(zk)d, (21)

where γ, β ∈ (0, 1). In Keerthi et al. (2005), they suggest a combination of Newton

and bisection methods to ensure the convergence, but details are not given. We give

an implementation in Section 6.3 and compare it with our proposed method.

We can apply many or few Newton iterations to accurately or loosely solve the sub-

problem, respectively. The decision relies on analyzing the cost per iteration; see Table

1. In the beginning, we must construct the sub-problem by calculating coefficients in

(18). Since Qii can be pre-stored, the main cost is O(nl) for calculating (Qα)i. The

same operation is needed for SVM; see (11). To reduce the cost, we adopt a commonly

used trick in linear SVM (e.g., Hsieh et al., 2008) by maintaining a vector:

w(α) ≡
l∑
i=1

yiαixi. (22)

Then the cost is reduced to O(n):

(Qα)i =

l∑
j=1

yiyjαjx
T
j xi = yi(

l∑
j=1

yjαjx
T
j )xi = yiw(α)Txi. (23)

To apply (23), w(α) should be maintained throughout the procedure. By

w(α+ zei) = w(α) + zyixi, (24)

4 Their sub-problem, though in the same form as (18), is from solving maximum entropy
instead of logistic regression. See more discussion in Section 4.
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z

g′(z)

zk

zk+1

z∗

zm−c1 c2

(a) zk > z∗

z

g′(z)

zk zk+1z∗

zm−c1 c2

(b) zk < z∗ and zk + d > c2

Fig. 1: Newton steps for finding a root of g′(z). zk is an initial point, zk+1 is derived

from zk by the Newton step, z∗ is the optimizer, and zm ≡ (c2−c1)/2 is the mid-point

of (−c1, c2). Figure 1(a) shows that Newton step works fine with a good starting point.

Figure 1(b) shows the situation that Newton step zk + d walks outside the interior.

where z is the solution of the sub-problem (18) and ei is the indicator vector for the ith

component,w(α) can be maintained in O(n) time. Hence constructing the sub-problem

costs O(n). From Table 1, the complexity of solving the sub-problem is

O(n) + #Newton steps× (O(1) +O(1)× (#Line search steps)) . (25)

Because of the cheap O(1) cost for finding Newton directions and conducting line

search, we should accurately solve the sub-problem. Interestingly, the situation is very

different for solving primal LR via coordinate descent methods (Section 2.2). The sub-

problem (12) does not have a closed-form solution either, but Huang et al. (2010)

conduct only one Newton iteration (with line search). The reason is that both finding

Newton directions and conducting line searches are expensive.

From (20), the time for calculating d is dominated by the log operation, which is

much more expensive than addition and multiplication operations. In the line search

procedure, calculating one function value g(z + λd) involves two log operations; see

(18). Hence line search is more expensive than finding the Newton direction. In Section

3.2, we propose a modified Newton method so that line search is not needed but the

convergence still holds. Moreover, our approach will take the constraint −c1 ≤ z ≤ c2
into consideration.

The discussion so far indicates that while LR dual is very close to SVM dual, many

details in applying coordinate descent methods are different.

3.2 A Modified Newton Method for Solving the Sub-problem

We propose a modified Newton method for (18) without needing line search proce-

dures. Besides, we properly handle the inequality constraint and establish the global
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convergence. To begin, we follow Theorem 2 to show that the optimum of (18) is in

the open interval (−c1, c2):

Theorem 2 The sub-problem (18) has a unique minimum z∗. Moreover, z∗ ∈ (−c1, c2)

and g′(z∗) = 0.

The proof is in Appendix A.3. We draw Figure 1 to analyze how Newton updates (19)

may find a root of g′(z). By considering two different situations, we can draw some

crucial observations:

– From Figure 1(a), if zk is on the “correct” side of z∗, then not only subsequent

points generated by (19) are in (−c1, c2), but also the Newton method converges

to z∗.
– From Figure 1(b), if zk is on the “wrong” side of z∗, then zk+1 by (19) may be

outside (−c1, c2).

We need a mechanism so that eventually all points are on the “correct” side of z∗. To do

so a good understanding of “correct” and “wrong” sides is needed. Let zm ≡ (c2−c1)/2

be the mid-point of the interval (−c1, c2). From Figure 1, we can see that g′(z) is

concave in (−c1, zm], and convex in [zm, c2).5 The following theorem shows that we

can check the position of z∗ and zm to see if zk is on the correct side:

Theorem 3 Let z∗ be the optimizer of (18) and zm = (c2 − c1)/2. If z∗ ≥ zm, then

{zk} generated by (19) converges to z∗ for any starting point in [z∗, c2). If z∗ ≤ zm,

then {zk} converges to z∗ for any starting point in (−c1, z∗]. For any zk satisfying

these conditions, we say it is on the “correct” side of z∗.

This theorem can be easily obtained by the standard convergence proof of Newton

methods.6

For any zk on the “wrong” side, there are two cases. The first one is zk + d ∈
(−c1, c2). If zk + d falls on the “correct” side, Theorem 3 implies that subsequent

Newton updates converge. If zk + d is still on the “wrong” side, it at least gets closer

to z∗. Thus we take zk + d as zk+1. The second case is that zk + d /∈ (−c1, c2).

Because (−c1, c2) is an open interval, it is not possible to do a direct projection.

Assume zk + d ≥ c2 as Figure 1(b). We propose finding a point z in [zk, c2) closer to

the “correct” side by

zk+1 = ξzk + (1− ξ)c2, (26)

where ξ ∈ (0, 1). For any zk on the “wrong” side, we prove that the above setting

eventually reaches a point on the “correct” side. Then this point can be considered as

a starting point in Theorem 3 for the convergence.

Theorem 4 Assume z∗ ≥ zm. If we generate a sequence of Newton iterations by

starting from zk < z∗ (i.e., zk on the “wrong” side of z∗), and applying the update

rule:

zk+1 =

{
zk + d if zk + d < c2,

ξzk + (1− ξ)c2 if zk + d ≥ c2,

then there is k′ > k such that zk
′
≥ z∗. That is, zk

′
is on the “correct” side. The

situation for z∗ ≤ zm and zk > z∗ is similar.

5 Formally, we can prove g′′′(zm) = 0, g′′′(z) > 0 if z > zm, and g′′′(z) < 0 if z < zm.
6 For example, http://planetmath.org/encyclopedia/NewtonsMethodWorksForConvexRealFunctions.

html

http://planetmath.org/encyclopedia/NewtonsMethodWorksForConvexRealFunctions.html
http://planetmath.org/encyclopedia/NewtonsMethodWorksForConvexRealFunctions.html
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Algorithm 3 A modified Newton method to solve (18)

– Given coefficients: a, b, c1, and c2.
– Set initial z0 ∈ (−c1, c2).
– For k = 0, 1 . . .

– If g′(zk) = 0, break.
– d← −g′(zk)/g′′(zk).
–

zk+1 =


zk + d if zk + d ∈ (−c1, c2),

ξzk + (1− ξ)(−c1) if zk + d ≤ −c1,
ξzk + (1− ξ)c2 if zk + d ≥ c2.

(30)

The proof is in Appendix A.4.

We describe the modified Newton method in Algorithm 3. The update rule is

very simple and no line search is needed. Combining Theorems 3 and 4, the global

convergence of Algorithm 3 is established.

Theorem 5 The sequence {zk} generated by Algorithm 3 converges to the optimum

z∗ of (18) for any z0 ∈ (−c1, c2).

The initial z0 can be any value in (−c1, c2), but we hope it is close to z∗ for fast

convergence of the Newton method. In the final stage of the decomposition method,

αi does not change much and z∗ ≈ 0, so z0 = 0 is a reasonable choice. However, in

the early stage of the decomposition method, this z0 may be far away from z∗. While

we cannot easily find a z0 on the “correct” side, Theorem 3 indicates that z0 should

satisfy

z0 ∈

{
(−c1, zm) if z∗ ≤ zm,
[zm, c2) if z∗ ≥ zm.

(27)

Later in Section 3.3 we show an easy way to check if zk ≤ zm or not; see (34). Thus

we use z0 = 0 in general, but also ensure that z0 satisfies (27). This is achieved by

z0 =


(1− ξ0)(−c1) if z∗ ≤ zm ≤ 0,

(1− ξ0)(c2) if z∗ ≥ zm ≥ 0,

0 otherwise.

(28)

We explain that 0 < ξ0 ≤ 0.5 will let z0 satisfy (27). If

− c1 < z∗ ≤ zm ≤ 0 < c2, (29)

then −(1−ξ0)c1 ∈ (−c1, 0) and is closer to −c1. Since zm is the mid-point of (−c1, c2),

we have −(1− ξ0)c1 ≤ zm. The situation for z∗ ≥ zm ≥ 0 is similar.

3.3 Numerical Difficulties

Unfortunately, a direct implementation of Algorithm 3 may face numerical difficulties.

Keerthi et al. (2005) point out that when αi is close to 0 or C, it may be difficult to

reach a solution z∗ satisfying

g′(z∗) = Qiiz
∗ + (Qα)i + log(αi + z∗)− log(C − αi − z∗) ≈ 0.



12

They explain that if C is large (say 105), (Qα)i is large as well. Then αi + z∗ may

be too small (e.g., e−10
5

) to be represented as a floating-point number. They propose

some ways to handle such a situation. However, through experiments we find that

even if C is as large as 105, (Qα)i is generally much smaller (e.g., a few hundreds

or thousands). The reason seems to be that from (23), (Qα)i is the sum of positive

and negative terms, so the value is not as large as αi. Instead, we find that numerical

difficulties occur because of catastrophic cancellations (i.e., subtraction between two

nearly-equal floating-point numbers) when αi + z is close to zero. That is, if z ≈ −αi,
the relative numerical error of calculating αi + z can be large (Goldberg, 1991). Then

log(αi + z) is erroneous. A common solution to avoid catastrophic cancellation is by

some reformulations.

Let Z1 = c1 + z and s = c1 + c2. An equivalent form to (18) is

min
Z1

g1(Z1) = Z1 logZ1 + (s− Z1) log(s− Z1) +
a

2
(Z1 − c1)2 + b1(Z1 − c1)

subject to 0 ≤ Z1 ≤ s, b1 = b.

Clearly, when z ≈ −c1,

s− Z1 = c2 − z ≈ c2 + c1 = s (31)

is far away from zero. Thus we avoid a catastrophic cancellation. However, a new

subtraction Z1 − c1 occurs. In calculating the Newton direction, Z1 − c1 appears only

in g′1(Z1); see (32). If Z1 − c1 ≈ 0, then a(Z1 − c1) + b1 ≈ b1 and the large relative

error in calculating Z1 − c1 does not cause serious problems.

Similarly, if z ≈ c2, we let Z2 = c2 − z and adopt the following reformulation.

min
Z2

g2(Z2) = Z2 logZ2 + (s− Z2) log(s− Z2) +
a

2
(Z2 − c2)2 + b2(Z2 − c2)

subject to 0 ≤ Z2 ≤ s, b2 = −b.

Therefore, instead of minimizing on z, we now work on the distance from z to the lower

(or upper) bound. To minimize gt(Zt), t = 1, 2 by the Newton method, we need the

first and the second derivatives:

g′t(Zt) = log
Zt

s− Zt
+ a(Zt − ct) + bt and g′′t (Zt) = a+

s

Zt(s− Zt)
. (32)

Next we check if g1(Z1) or g2(Z2) should be used. From the above discussion,

g1(Z1) aims to handle the situation of z ≈ −c1, while g2(Z2) is for z ≈ c2. As {zk}
generated by Algorithm 3 converges to z∗, most of the points in {zk} are close to z∗.
Hence we can choose g1(Z1) or g2(Z2) based on z∗’s closeness to the two bounds:

z∗ closer to

{
−c1
c2

⇒ choose

{
g1(Z1),

g2(Z2).
(33)

To use (33), as z∗ is unknown before applying the Newton method, we consider the

following property:

z∗ closer to

{
−c1
c2

⇔ z∗
{
≤ zm
≥ zm

⇔ g′(zm)

{
≥ 0

≤ 0
⇔ zm

{
≥ −b/a,
≤ −b/a.

(34)
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Algorithm 4 A new modified Newton method for (18)

– Given coefficients: a, b, c1, and c2. Let s = c1 + c2

– t←
{

1 if zm ≥ −ba ,
2 if zm < −b

a
.

– Z0
t ∈ (0, s).

– For k = 0, 1, . . .
– If g′t(Z

k
t ) = 0 , break.

– d← −g′t(Zkt )/g′′t (Zkt ).

– Zk+1
t =

{
ξZkt if Zkt + d ≤ 0,

Zkt + d otherwise.

–

{
Zk2 = s− Zk1 if t = 1,

Zk1 = s− Zk2 if t = 2.

– return (Zk1 , Z
k
2 ).

The proof is in Appendix A.5. Thus the decision is by easily comparing zm and −b/a.

Using Z1 = c1 + z, Z2 = c2− z, and (34), a direct calculaton shows that the initial

z0 considered in (28) becomes

Z0
1 =

{
ξ0c1 if c1 ≥ s/2,
c1 otherwise,

and Z0
2 =

{
ξ0c2 if c2 ≥ s/2,
c2 otherwise.

(35)

We also need to adjust (26), which handles the situation if zk + d > c2. Assume

g2(Z2) is used. Eq. (26) becomes

c2 − Zk+1
2 = ξ(c2 − Zk2 ) + (1− ξ)c2

and can be simplified to

Zk+1
2 = ξZk2 .

The situation for g1(Z1) is similar. By minimizing g1(Z1) or g2(Z2), Algorithm 3

becomes Algorithm 4. The returned values can be either (t, Zkt ) or (Zk1 , Z
k
2 ). We adopt

the latter to avoid possible catastrophic cancellations in calculating c1 and c2 for the

next sub-problem. See details in Section 3.4.

3.4 The Overall Procedure

Different from the situation in SVM, now α = 0 is not a valid starting point. A

naive choice is to set αi = C/2 ∈ (0, C), ∀i. However, experiments show that this

initialization is far away from the optimal solution. Note that for SVM, α = 0 is a

reasonable choice because at the final solution many elements remain at zero (i.e., the

solution is sparse). Though LR does not produce a sparse solution, we explain that

many αi values are small. From the optimality condition7, the optimal (w,α) satisfies

αi =
C exp(−yiwTxi)

1 + exp(−yiwTxi)
, ∀i.

7 We do not show the optimality condition for LR, but a similar form can be found in (75)
for ME.
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Algorithm 5 A dual coordinate descent method for logistic regression

– Set initial αi = min(ε1C, ε2) ∀i and the corresponding w ←
∑
i αiyixi.

– α′i ← C − αi and Qii ← xTi xi ∀i.
– While α is not optimal

For i = 1, . . . , l
1. Construct the sub-problem (18) for instance xi by

c1 = αi, c2 = α′i, a = Qii, and b = yiw
Txi.

2. Solve (18) by Algorithm 4 and get Z1 and Z2. Note that in Algorithm 4, s ≡
c1 + c2 = C.

3. w ← w + (Z1 − αi)yixi.
4. αi ← Z1, α′i ← Z2.

As exp(−yiwTxi) quickly decays to zero for negative −yiwTxi, many correctly classi-

fied instances have their corresponding αi/C close to zero. Therefore, similar to SVM,

we should use an initial point close to the zero vector. We consider

αi = min(ε1C, ε2) ∀i, (36)

where ε1 and ε2 are small positive values less than one. Keerthi et al. (2005) consider

αi = C/l+ if yi = 1 and C/l− if yi = −1, where l+ and l− are the numbers of

positive/negative data, respectively. Ours differs from them in ε2, which ensures that

the initial αi is sufficiently small regardless of the C value.

In constructing the sub-problem (18), another catastrophic cancellation may occur.

If αi ≈ C, then calculating c2 = C−αi is a catastrophic cancellation. An erroneous c2
then causes more numerical errors in subsequent calculations. To remedy this problem,

a reformulation can be performed in the previous update of αi: From the definition of

Z2 in Section 3.3,

Z2 = c2 − z = C − αold
i − z = C − αnew

i .

Therefore, if earlier g2(Z2) is considered, the returned Z2 can be directly used as c2
for the current sub-problem. Alternatively, if g1(Z1) is used, we calculate Z2 = s−Z1

in the end of Algorithm 4. According to (31), this is not a catastrophic cancellation.

The discussion here explains why we choose to output both (Z1, Z2) in Algorithm 4.

Algorithm 5 gives details of the proposed coordinate descent method for LR dual.

To update w(α) via (24), we need to obtain z, but Algorithm 4 gives only Z1 and Z2.

We can consider either Z1−αi or C−Z2 though a catastrophic cancellation may occur.

However, the situation seems to be less serious than that in Section 3.2, which involves

a log operation after a catastrophic cancellation. Finally, the following theorem shows

the linear convergence of Algorithm 5.

Theorem 6 Let αs denote the vector in the beginning of each iteration in the while

loop of Algorithm 5. The sequence {αs} globally converges to the unique optimum α∗.
The convergence rate is at least linear: there are 0 < µ < 1 and an iteration s0 such

that

DLR(αs+1)−DLR(α∗) ≤ µ(DLR(αs)−DLR(α∗)), ∀s ≥ s0. (37)

The proof is in Appendix A.6.
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4 A Two-Level Dual Coordinate Descent Method for Maximum Entropy

Based on the experience for LR in Section 3, this section investigates a two-level dual

coordinate descent method for ME. The outer level considers a block of variables at a

time. The resulting sub-problem is then solved by an inner loop of coordinate descent

updates. Our method extends that in Memisevic (2006), but we give more complete

analysis.

4.1 Dual of ME and Coordinate Descent Methods

We derive in Appendix A.7 the following dual form for (5):

min
α

DME(α) =
1

2σ2
w(α)Tw(α) +

∑
i

∑
y:αiy>0

αiy logαiy

subject to
∑
y

αiy = P̃(xi) and αiy ≥ 0 ∀i, y,
(38)

where

w(α) ≡ σ2
f̃ −∑

i,y

αiyf(xi, y)

 (39)

and f̃ is defined in (6). The vector α ∈ Rl|Y | can be decomposed to l blocks

α = [ᾱ1, . . . , ᾱl]
T and ᾱi = [αi1, . . . , αi|Y |]

T , (40)

where ᾱi corresponds to the unique context xi in the data set. If w∗ and α∗ are

respectively the optimal solution of primal and dual problems, then w(α∗) = w∗.
Eq. (39) is slightly different from the formulation considered in Lebanon and Laf-

ferty (2002); Memisevic (2006); Collins et al. (2008), where

w(α) ≡ σ2
∑
i,y

αiy (f(xi, yi)− f(xi, y)) . (41)

The difference is due to that these works additionally assume that there is a unique yi
for each xi among all training data. That is, P̃(xi, yi) = P̃(xi) and P̃(xi, y) = 0 ∀y 6=
yi. Under this assumption and using the equality constraint in (38), (39) can be reduced

to (41):

σ2
(
f̃ −

∑
i,y

αiyf(xi, y)
)

= σ2
(∑
i,y

(P̃(xi, y)− αiy)f(xi, y)
)

= σ2
(∑
i

P̃(xi)f(xi, yi)−
∑
i,y

αi,yf(xi, y)
)

= σ2
∑
i,y

αiy (f(xi, yi)− f(xi, y)) .

Like the situation in LR, the following theorem shows that the optimal α∗ for (38)

is in general an interior point.

Theorem 7 The ME dual problem (38) attains a unique optimal solution α∗ and for

any i, y

α∗iy

{
= 0 if P̃(xi) = 0,

∈ (0, P̃(xi)) otherwise.
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The proof is in Appendix A.8.

Next we design a coordinate descent method to solve (38). We observe that (38) is

very similar to (16) for multi-class SVM in several aspects. First, the α vector can be

decomposed to several blocks, and each block is associated with an xi and all labels;

see (40).8 Second, each equality constraint corresponds to a single xi. Therefore, we

follow Memisevic (2006) and earlier SVM works (Crammer and Singer, 2000; Hsu and

Lin, 2002; Keerthi et al., 2008) to consider variables associated with an xi as a block.

The sub-problem is:

min
z

h(z)

subject to
∑
y

zy = 0 and zy ≥ −αiy ∀y,
(42)

where

h(z) ≡ DME(ᾱ1, . . . , ᾱi + z, . . . , ᾱl) (43)

=
∑
y

(αiy + zy) log(αiy + zy) +
1

2σ2

∥∥w(α)− σ2
∑
y

zyf(xi, y)
∥∥2 + constant

=
∑
y

(αiy + zy) log(αiy + zy)−
∑
y

zyw(α)Tf(xi, y) +
σ2

2
zTKiz + constant,

where Ki ∈ R|Y |×|Y | is a matrix with Ki
yy′ = f(xi, y)Tf(xi, y

′), ∀y, y′ ∈ Y .

4.2 Solving the Sub-problem

Clearly, (42) is very similar to the sub-problem in (17) because of the same equality

constraint. Eq. (17) has a closed-form solution, but (42) has not due to the log terms in

the objective function. Many optimization methods can be applied to solve (42). Collins

et al. (2008) propose an exponentiated gradient (EG) method to get an approximate

solution. We leave details of EG in Section 5. We follow Memisevic (2006) to use

a coordinate descent method, so the procedure for solving (38) becomes a two-level

coordinate descent method. Each step of the outer level considers variables associated

with an xi as a block and gets the sub-problem (42). The inner level then solves (42)

via coordinate descent methods. Such two-level approaches have been considered in

training SVM (e.g., Rüping, 2000; Pérez-Cruz et al., 2004).

To solve the sub-problem (42), each time we select two variables αiy1 and αiy2 .

Using the equality constraint, we obtain a one-variable sub-problem:

min
d

h(z + d (ey1 − ey2)) ≡ (αiy1 + zy1 + d) log(αiy1 + zy1 + d)

+ (αiy2 + zy2 − d) log(αiy2 + zy2 − d)

+
(
σ2
(
(Kiz)y1 − (Kiz)y2

)
−w(α)T

(
f(xi, y1)− f(xi, y2)

))
d

+
σ2

2
(Ki

y1y1 +Ki
y2y2 − 2Ki

y1y2)d2 + constant

subject to −
(
αiy1 + zy1

)
≤ d ≤ αiy2 + zy2 .

(44)

8 In fact, by defining w(α) =


∑
i αi1xi

...∑
i αi|Y |xi

, (16) also has a w(α)Tw(α) term like (38).
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Algorithm 6 Solving the sub-problem (42) by a coordinate descent method with

maximal violating pairs. We assume the property (48).

– Given αi,w(α),Ki
yy , ∀y.

– ẑ0 ← αi.
– vy ← w(α)T f(xi, y), ∀y.
– Find the initial gradient

Gy ← log(ẑ0y) + 1− vy , ∀y.
– For k = 0, 1, 2 . . .,

– If maxy Gy = miny Gy , break
– y1 ← arg maxy Gy , y2 ← arg miny Gy .
– Calculate coefficients of (44) by using the variable ẑ

a← σ2
(
Ki
y1y1

+Ki
y2y2

)
b← σ2

(
(ẑky1 − αiy1 )Ki

y1y1
− (ẑky2 − αiy2 )Ki

y2y2

)
− vy1 + vy2

c1 ← ẑky1 , c2 ← ẑky2

(47)

– Solve (44) by Algorithm 4 and get the optimal Z∗1 , Z
∗
2 .

– ẑk+1
y1 ← Z∗1 , ẑk+1

y2 ← Z∗2 .
– Update the gradient

Gy1 ← log(ẑk+1
y1

) + 1 + σ2Ki
y1y1

(ẑk+1
y1
− αiy1 )− vy1 ,

Gy2 ← log(ẑk+1
y2

) + 1 + σ2Ki
y2y2

(ẑk+1
y2
− αiy2 )− vy2 .

By assigning

a← σ2
(
Ki
y1y1 +Ki

y2y2 − 2Ki
y1y2

)
b← σ2

(
(Kiz)y1 − (Kiz)y2

)
−w(α)T (f(xi, y1)− f(xi, y2))

c1 ← αiy1 + zy1 and c2 ← αiy2 + zy2 ,

(45)

(44) is in the same form as (18), so Algorithm 4 can be applied.

There are many ways to select the two indices y1 and y2. In SVM, this issue, called

the working set selection, has been thoroughly studied. For example, we can sequen-

tially go through all pairs of indices. Alternatively, using gradient information (e.g.,

Joachims, 1998; Keerthi et al., 2001; Fan et al., 2005) may lead to faster convergence.

Memisevic (2006) adopts the “maximal violating pair” (Keerthi et al., 2001) by select-

ing the two indices violating the optimality condition the most. From a proof similar to

Theorem 1, the optimal z∗ of (42) satisfies z∗y > −αiy, ∀y. Thus without considering

inequality constraints, the optimality condition implies

∇zyh(z∗) = ∇zy′h(z∗), ∀y, y′,

where

∇zyh(z) ≡ log(αiy + zy) + 1 + σ2(Kiz)y −w(α)Tf(xi, y). (46)

We can select the maximal violating pair by

y1 = arg max
y
∇zyh(z) and y2 = arg min

y
∇zyh(z).
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Algorithm 7 A coordinate descent method for the dual of ME (38)

– Set initial α by (51).

– w(α)← σ2
(∑

i

∑
y

(
P̃(xi, y)− αiy

)
f(xi, y)

)
.

– While α is not optimal
For i = 1, . . . , l
• Solve the sub-problem (42) by Algorithm 6 and get the optimal ẑ∗.
• Update α and w(α) by (50).

Once the optimum d∗ of (44) is obtained, for the next coordinate descent step

we need the new ∇h(z) for selecting the maximal violating pair. As w(α)Tf(xi, y) is

considered as a constant in (46), the main cost is on updating Kiz to Ki(z + d(ey1 −
ey2)). The vector Kiz should be maintained as it is also used in (45). Therefore, each

iteration to solve (42) requires

cost for Ki
yy1d and −Ki

yy2d, ∀y + cost for finding pairs + cost for solving (44).

The first term needs |Y | inner products as in general storing Ki, ∀i is not possible. This

is much more expensive than the second term involving only finding the largest/smallest

entries of |Y | values. Moreover, solving (44) is cheap due to the small number of Newton

updates. The discussion raises a question if using/maintaining the gradient is cost-

effective. For SVM, the same reason leads Hsieh et al. (2008, Section 4) to suggest that

for linear SVM we should avoid using gradients for selecting working sets. Fortunately,

for most ME applications, features often specify an indicator function of properties of

xi and a class y (Jurafsky and Martin, 2008), so

f(x, y)Tf(x, y′) = 0, if y 6= y′. (48)

Thus Ki
yy′ = 0 if y 6= y′ and (46) is reduced to

∇zyh(z) = log(αiy + zy) + 1 + σ2Ki
yyzy −w(α)Tf(xi, y). (49)

As Ki
yy, ∀y can be pre-stored, the cost for calculating the gradient is significantly

reduced to constant time. Therefore, using gradients for the working set selection is

very suitable for most ME applications.9

For practical implementations, we must handle the numerical issue discussed in

Section 3.2 when solving (44). If using Algorithm 4, what we have obtained are Z∗1 and

Z∗2 :

Z∗1 = αiy1 + zy1 + d∗, Z∗2 = αiy2 + zy2 − d
∗.

Therefore, instead of maintaining the vector z, we work on ẑ ≡ ᾱi + z. From (45)

and (48), the coefficients of problem (44) using the variable ẑ are described in (47).

Algorithm 6 gives details for solving (42). In particular, it shows the loop to update the

vector ẑ. Note that w(α)Tf(xi, y), ∀y is a constant vector independent of the loop,

so we pre-calculate and pre-store it as a vector v. The following theorem shows that

Algorithm 6 solves (42):

Theorem 8 The sequence {ẑ0, ẑ1, . . .} generated by Algorithm 6 converges to αi+z
∗,

where z∗ is the optimum of (42).

The proof is omitted because it is very similar to Theorem 1 in Keerthi et al. (2005).

9 If using a heap structure for the gradient, then maintaining the heap and getting the
maximal violating pair cost only O(log |Y |). However, this is only useful when |Y | is large.
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Algorithm 8 A randomized online EG algorithm (Collins et al., 2008)

– Given maxTrial and a learning rate ηi = 0.5 ∀i = 1, . . . , l. Set initial α.
– w(α) ≡ σ2

∑
i,y αiy (f(xi, yi)− f(xi, y)).

– While α is not optimal
– Randomly choose i from the set {1, . . . , l}.
– trial = 0
– While trial < maxTrial

• Calculate α′iy by (52).

• If DME(α′)−DME(α) ≤ 0
· ηi ← 1.05ηi.
· Update α and w(α) by Eqs. similar to (50).
· Break.

• Else
· ηi ← ηi/2.

• trial← trial + 1.

4.3 The Overall Procedure

The overall procedure to solve ME dual is in Algorithm 7. Under the coordinate descent

setting, we sequentially update ᾱi by solving (42). Once (42) is solved and ẑ∗ = z∗+ᾱi
is obtained, α and w(α) are respectively updated by

ᾱi ← ẑ∗,

w(α)← w(α)− σ2
∑
y

(
ẑ∗y − αiy

)
f(xi, y). (50)

This calculation needs to access f(xi, y), ∀y. As finding w(α)Tf(xi, y), ∀y before

solving (42) requires the same data access, the update in (50) is affordable.

Regarding the initial point, similar to the case in LR, α = 0 is not a valid

point. Memisevic (2006) simply sets αiy = P̃(xi)/|Y | to satisfy the equality constraint∑
y αiy = P̃(xi). From the optimality condition (75), we think that αiy should be

related to P̃(xi, y). For each i, we consider two cases based on the unseen label set

Ei ≡ {y | P̃(xi, y) = 0} and heuristically set

αiy =


P̃(xi, y) if |Ei| = 0,{

(1− ε)P̃(xi, y) ∀y /∈ Ei
ε
|Ei| P̃(xi) ∀y ∈ Ei

if |Ei| 6= 0,
(51)

where ε is a small positive value. The following theorem shows that Algorithm 7 solves

(38).

Theorem 9 The sequence generated by Algorithm 7 converges to the optimum α∗ of

(38).

The proof is in Appendix A.9.

5 A Related Method

In this section, we describe an existing method which also solves dual ME.
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5.1 Exponentiated Gradient Method

Collins et al. (2008) propose batch and online exponentiated gradient (EG) algorithms

for CRF. Their methods are applicable to ME as ME is a special case of CRF. Here we

discuss only their online EG algorithm, as it is more related to our coordinate descent

methods. At each iteration an example i is randomly chosen from {1, . . . , l} and ᾱi is

updated to ᾱ′i by the following way.

α′iy =
αiy exp(−ηi∇iy)∑
y′ αiy′ exp(−ηi∇iy′)

, ∀y, (52)

where

∇iy ≡
∂DME(α)

∂αiy
= 1 + logαiy +w(α)T (f(xi, yi)− f(xi, y)) (53)

and ηi > 0 is a learning rate. Note that we follow Collins et al. (2008) to use w(α) in

(41).

To improve the convergence, Collins et al. (2008) adaptively adjust the learning

rate ηi for each instance. If the function value does not decrease, they iteratively halve

ηi at most maxTrial times (maxTrial is set by users). Finally, they slightly increase ηi
to avoid it being too small. The detailed procedure is in Algorithm 8.

The most expensive operation in Algorithm 8 is to calculate the function difference.

Using (38),

DME(α′)−DME(α)

=
∑
y

α′iy logα′iy −
∑
y

αiy logαiy

+
1

2σ2
(
‖w(α) + σ2

∑
y

(α′iy − αiy)f(xi, y)‖2 − ‖w(α)‖2
)

=
∑
y

α′iy logα′iy −
∑
y

αiy logαiy +
∑
y

(α′iy − αiy)w(α)Tf(xi, y)

+
σ2

2
(ᾱ′i − ᾱi)K

i(ᾱ′i − ᾱi). (54)

The vectorw(α) is maintained in a way similar to (50), so the most expensive operation

in (54) is for inner products between features (see the last term). If the condition (48)

holds and Ki
yy, ∀y are pre-calculated, then (54) needs O(|Y |) time. Thus each of the

maxTrial iterations in Algorithm 8 costs O(|Y |), comparable to each coordinate descent

step in Algorithm 6.

EG differs from our Algorithm 6 mainly on solving the sub-problem (42). Ours more

accurately solves the sub-problem, while EG uses only the update rule (52). Therefore,

EG’s convergence may be slower. However, EG’s implementation is easier and we do

not observe numerical difficulties such as catastrophic cancellations described in Section

3.3.

6 Experiments

In this section, we investigate the performance of the proposed coordinate descent

methods for logistic regression and maximum entropy. We consider two types of NLP
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Table 2: Statistics of data (real-valued features). l: number of instances, n: number

of features, #nz: number of total non-zero feature values, and C: best regularization

parameter from five-fold cross validation.

Problem l n #nz C
a9a 32,561 123 451,592 4
real-sim 72,309 20,958 3,709,083 8
yahoo-japan 176,203 832,026 23,506,415 4
rcv1 677,399 47,236 49,556,258 8

applications. One is logistic regression for data with real-valued features and the other

is maximum entropy for 0/1-featured data. Programs used for experiments are available

at

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

We run all experiments on a 64-bit machine with Intel Xeon 2.0GHz CPU and 32GB

main memory.

6.1 Logistic Regression for Data Classification

We compare the following implementations. The first two solve the dual, while the

other three solve the primal.

1. CDdual: the dual coordinate descent method in Algorithm 5.

2. CDdual-ls: the same as CDdual except that the sub-problem (18) is approximately

solved by one Newton update with line search; see (21). The setting is similar to

that in Section 2.2 for primal LR. We use β = 0.5 and γ = 0.01.

3. CDprimal: a primal coordinate descent method for logistic regression; see Section

2.2.

4. EG: an online exponentiated gradient implementation for LR; see Section 5.1.

5. LBFGS: a limited memory quasi Newton method for general unconstrained opti-

mization problems (Liu and Nocedal, 1989).

6. TRON: a trust region Newton method for logistic regression (Lin et al., 2008).

Our implementations are extended from the framework used in Huang et al. (2010).

We consider four data sets. All of them except yahoo-japan are available at LIBSVM

data set.10 Data statistics and the regularization parameter C (obtained by cross val-

idation) are in Table 2. The initial w of the three primal-based methods is 0. For

CDdual, CDdual-ls and EG, the dual-based methods, the initial solution is via (36) with

ε1 = 10−3 and ε2 = 10−8. All three coordinate descent methods (CDdual, CDdual-ls,

CDprimal) apply the random permutations of indices; see the explanation in Section

2.1. For CDdual, we set ξ = 0.1 in Algorithm 4. For the stopping condition of Algorithm

4, we use |g′t(Zt)| ≤ ε′, where ε′ is set to 10−2 initially and is gradually reduced to

ε′ = 10−8. This strategy saves Newton iterations in the early stage.

We begin with checking training time versus the relative difference of the function

value to the optimum:

P LR(w)− P LR(w∗)

P LR(w∗)
, (55)

10 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Relative Function Value Difference Norm of Gradient Testing Accuracy
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Fig. 2: Results for logistic regression on real-valued document data. The first column

shows time versus the relative function difference (55). The second and third columns

show ‖∇P LR(w)‖ and testing performances along time, respectively. Time is in seconds.
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Table 3: CDdual for LR with different ξ. The table shows time in seconds to reduce the

relative difference to the optimal function value to be less than 0.01. We boldface the

best approach. Clearly, the running time is not sensitive to the choice of ξ.

Problem ξ = 0.1 ξ = 0.5 ξ = 0.9
a9a 0.30 0.29 0.31
real-sim 0.24 0.24 0.24
yahoo-japan 1.02 1.01 1.02
rcv1 3.56 3.59 3.65

where w∗ is the optimal solution of (1). As w∗ is not available, we obtain a reference

point satisfying ‖∇P LR(w)‖ ≤ 0.01. We use primal objective values even for dual

solvers because from a dual solution it is easy to estimate a primal solution by (22).

In contrast, finding a corresponding dual solution from a given primal vector w is

more difficult. Results of (55) are in the first column of Figure 2. Next, we check these

methods’ gradient values in the second column of Figure 2, as ‖∇P LR(w)‖ = 0 implies

that w is the global minimum. We are also interested in the time needed to achieve

a reasonable testing result. The third column of Figure 2 presents testing accuracy

versus training time. Note that (55) and ‖∇P LR(w)‖ in Figure 2 are both log scaled.

From Figure 2, CDdual and CDdual-ls are more efficient than other solvers on all

problems except a9a. Note that a9a has much fewer features than data points. For

such problems solving the primal problem may be more suitable because the number

of variables is the same as the number of features. We observe that CDdual is always

faster than CDdual-ls, a result consistent with the analysis in Section 3. CDprimal is

worse than CDdual because of its slower convergence and higher cost per iteration. From

the discussion in Section 2.2 and (25), for every round of going through all variables,

CDprimal (n variables) and CDdual (l variables) respectively need

O(nl) and O(l ×#Newton Steps)

exp/log operations, where #Newton steps is the average number of Newton updates in

Algorithm 4. We experimentally observe that for all problems except a9a, to go through

all variables once, CDprimal is at least six times more expensive than CDdual. Regarding

the three dual-based methods CDdual, CDdual-ls and EG, CDdual is generally faster.

For TRON and LBFGS, they are Newton and quasi-Newton methods respectively, so

fast final convergence is observed. However, since they take significant efforts at each

iteration, they fail to generate a reasonable model quickly. From the experiment results,

CDdual converges as fast as TRON and LBFGS, but also performs well in early iterations.

We find that different initial z’s in the Newton method for CDdual cause different

running time. Using z = 0 is the best because near the optimum, α is not changed

much and z is close to zero. Regarding the parameter ξ in CDdual, Table 3 shows that

the running time is not sensitive to the choice of ξ. This is because the operation in

(26) takes only a small portion of the total running time.11

6.2 ME for 0/1-featured Data in NLP

We apply ME models to part of speech (POS) tagging and chunking tasks following the

setting in Huang et al. (2010). It is based on the OpenNLP package (Baldridge et al.,

11 Note that (26) is used only if zk + d /∈ (−c1, c2).
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Table 4: Statistics of NLP data (0/1 features). l: number of contexts, |Y |: number of

class labels, n: number of features, and #nz: number of total non-zero feature values

Data set l |Y | n #nz
CoNLL2000-P 197,979 44 168,674 48,030,163
CoNLL2000-C 197,252 22 273,680 53,396,844
BROWN 935,137 185 626,726 601,216,661

Relative Function Value Difference Norm of Gradient Testing Accuracy

0 50 100 150 200 250 300

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Training Time (s)

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 d

if
fe

re
n

c
e

 

 

CDdual
EG
CDprimal
LBFGS
TRON

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

Training Time (s)

||
∇

 P
M

E
(w

)|
|

 

 

CDdual
EG
CDprimal
LBFGS
TRON

0 50 100 150 200 250 300
96.5

97

97.5

98

Training Time (s)
T

e
s
ti
n

g
 A

c
c
u

ra
c
y

 

 

CDdual
EG
CDprimal
LBFGS
TRON

(a) CoNLL2000-P

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

10
1

10
2

Training Time (s)

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 d

if
fe

re
n

c
e

 

 

CDdual
EG
CDprimal
LBFGS
TRON

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

Training Time (s)

||
∇

 P
M

E
(w

)|
|

 

 

CDdual
EG
CDprimal
LBFGS
TRON

0 100 200 300 400 500 600
92

92.2

92.4

92.6

92.8

93

93.2

93.4

93.6

Training Time (s)

F
1

 m
e

a
s
u

re

 

 

CDdual
EG
CDprimal
LBFGS
TRON

(b) CoNLL2000-C

0 1000 2000 3000 4000 5000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Training Time (s)

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 d

if
fe

re
n

c
e

 

 

CDdual
EG
CDprimal
LBFGS
TRON

0 1000 2000 3000 4000 5000

10
1

10
2

10
3

10
4

Training Time (s)

||
∇

 P
M

E
(w

)|
|

 

 

CDdual
EG
CDprimal
LBFGS
TRON

0 1000 2000 3000 4000 5000
95.5

96

96.5

97

Training Time (s)

T
e

s
ti
n

g
 A

c
c
u

ra
c
y

 

 

CDdual
EG
CDprimal
LBFGS
TRON

(c) BROWN

Fig. 3: Results for maximum entropy on 0/1-featured data. The first column shows

time versus the relative function difference (55). The second and third columns show

‖∇PME(w)‖ and testing performances along time, respectively. Time is in seconds.



25

2001), which extracts binary features and predicts the tag sequences by the method

in Ratnaparkhi (1998). We use CoNLL2000 shared task data12 for chunking (denoted

as CoNLL2000-C) and POS tagging (CoNLL2000-P), and BROWN corpus13 for POS

tagging. Table 4 lists the statistics of data sets.

We compare the following methods: CDdual, CDprimal, LBFGS, TRON and EG.

CDdual-ls is not included because it is shown in Section 6.1 to be slower than CDdual.

CDdual and EG solve the dual problem, while the others solve the primal. We use the

regularization parameter σ2 = 10l. As Huang et al. (2010) report under this value, ME

achieve good testing performances. The initial w of primal-based methods is 0. For

CDdual and EG, the initial α is set by (51) with ε = 10−10. Figure 3 shows the results

of the relative function difference to the optimum, the gradient ‖∇PME(w)‖, and the

testing accuracy.

For the function value, results in Figure 3 are different from Figure 2, in which

CDdual is the fastest all the time. Now CDprimal is the fastest in the beginning, but

has the slowest final convergence. CDdual is only slightly slower than CDprimal in

the very early stage, but its final convergence is much better. Moreover, LBFGS may

surpass CDdual in the final stage. Regarding the two dual-based methods CDdual and

EG, CDdual is generally faster. Overall, the proposed CDdual method is competitive for

these data sets.

6.3 A Comparison between Algorithm 4 and a Strategy of Combining Bisection and

Newton Methods

In Section 3.2, we use Newton methods to solve the sub-problem (18). If zk is on the

“wrong” side of z∗ , we use the technique (30) and prove that in a finite steps a point

on the “correct” side will be obtained. Here we experiment with an alternative strategy

by using a bisection method to find a point on the “correct” side of z∗ before Newton

updates.

Since g′(z∗) = 0 and g′(z) is increasing, (33) and (34) imply that a point on the

“correct” side of z∗ satisfies

g′(z)

{
≤ 0 if t = 1,

≥ 0 if t = 2.
(56)

From the fact g′1(Z1) = g′(z) and g′2(Z2) = −g′(z), (56) becomes

g′t(Zt) ≤ 0. (57)

Simple calculations show that g′t(0) = −∞ and g′t(s/2) ≥ 0. Therefore, starting from

a point in (0, s/2], the bisection method sequentially cut the point to half until (57) is

safisfied. See Algorithm 9 for details. In our implementation, (35) is used as the initial

point of the bisection procedure.

We refer to the strategy of combining bisection and Newton methods as BN. In

Figure 4, we compare BN and CDdual. Note that BN is the same as CDdual except

that (18) is solved by Algorithm 9. We can see that CDdual has slightly better final

convergence. The reason seems to be that Algorithm 4 takes Newton updates regardless

of whether the current zk is on the “correct” side of z∗ or not. The only exception is

that the point after update is outside the interval (−c1, c2); see (30).

12 http://www.cnts.ua.ac.be/conll2000/chunking
13 http://www.nltk.org

http://www.cnts.ua.ac.be/conll2000/chunking
http://www.nltk.org
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Algorithm 9 A combination of bisection and Newton methods to solve (18)

– Given coefficients: a, b, c1, and c2.

– t←
{

1 if zm ≥ −ba ,
2 if zm < −b

a
.

– Z0
t ∈ (0, s/2).

– While 1
– If g′t(Z

0
t ) ≤ 0, break.

Else, Z0
t ← Z0

t /2.
– For k = 0, 1, . . .

– If g′t(Z
k
t ) = 0 , break.

– Zk+1
t ← Zkt − g′t(Zkt )/g′′t (Zkt ).

–

{
Zk2 = s− Zk1 if t = 1,

Zk1 = s− Zk2 if t = 2.

– return (Zk1 , Z
k
2 ).
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Fig. 4: A comparison between BN and CDdual on logistic regression for real-valued

document data. The figures show time versus the relative function value difference

defined in (55). Time is in seconds.

7 Discussion and Conclusions

We have illustrated in various places that this work is related to some our earlier

developments. Table 5 summarizes their relationship.

In summary, motivated from the success of coordinate descent methods for solving

SVM dual, in this work we study if similar methods can be used for LR and ME duals.

An important lesson learned is that some algorithmic and implementation details are

different from SVM. This is mainly because log operations are involved in LR and ME
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Table 5: The relationship between this work and our earlier developments.

2-class multi-class
SVM LR SVM ME

Primal Chang et al. (2008) Huang et al. (2010) Huang et al. (2010)
Dual Hsieh et al. (2008) This paper Keerthi et al. (2008) This paper

dual problems. We carefully address theoretical and numerical issues of the coordinate

descent procedure. Experiments indicate that the proposed method is faster than state

of the art methods for logistic regression and maximum entropy.
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A Appendix

A.1 Lemma 1

We need the following lemma to prove subsequent theorems.

Lemma 1 Let f(x) be a continuous function over [a, b]. If

1. f is differentiable in (a, b),
2. lim

x→a+
f ′(x) = −∞,

3. lim
x→b−

f ′(x) =∞,

then there are xa, xb ∈ (a, b) such that f(xa) < f(a) and f(xb) < f(b). That is, any minimizer
of f must be an interior point.

Proof. From the second condition, there exists xa ∈ (a, b) such that f ′(x) < 0 ∀x ∈ (a, xa).
By the Mean-Value Theorem, there exists ε ∈ (a, xa) such that

f(xa) = f(a) + f ′(ε)(xa − a).

Then f(xa) < f(a) due to f ′(ε) < 0 and (xa−a) > 0. By similar arguments, there is xb ∈ (a, b)
such that f(xb) < f(b).

A.2 Proof of Theorem 1

By defining 0 log 0 = 0, DLR(α) is a continuous function on a closed set [0, C]l. Hence a
minimum in [0, C]l exists. We prove that any minimizer α∗ ∈ (0, C)l. Suppose that α∗i = 0
for some i. Consider the following one-variable problem

min
z

g(z) = DLR(α∗1, . . . , α
∗
i + z, . . . , α∗l )

= z log z + (C − z) log(C − z) + (xTi xi)z
2 + (Qα∗)iz + constant

subject to 0 ≤ z ≤ C.

By Lemma 1, there is z∗ ∈ (0, C) such that g(z∗) < g(0) = DLR(α∗), which contradicts that
α∗ is a minimizer. By the same arguments, we can get that α∗i < C ∀i.

Next we show the uniqueness by claiming that DLR(α) is strictly convex in (0, C)l. The
Hessian ∇2DLR(α) of (3) is the sum of a positive semi-definite matrix Q and a diagonal matrix
with positive entries C/(αi(C − αi)) ∀i. Thus ∇2DLR(α) is positive definite and DLR(α) is
strictly convex. Then the uniqueness of the optimum is obtained.

http://research.microsoft.com/~minka/papers/logreg/
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A.3 Proof of Theorem 2

Since g(z) satisfies all three conditions in Lemma 1, immediately we have z∗ ∈ (−c1, c2). The
optimality condition and the property z∗ ∈ (−c1, c2) then imply g′(z∗) = 0.

A.4 Proof of Theorem 4

To begin, we list four important properties for the function g(z):

g′(z1) < g′(z2), if z1 < z2, (58)

g′′(z1) < g′′(z2), if zm ≤ z1 < z2, (59)

g′′(z1) > g′′(z2), if z1 < z2 ≤ zm, (60)

g′′(z) > 0, ∀z. (61)

We prove the results for the situation z∗ ≥ zm as the proof for the other situation is similar.
If the result does not hold, then starting from zk, we have

zk+s < z∗, ∀s = 0, 1, 2, . . . . (62)

From zk+s to zk+s+1, two update rules may be applied:

zk+s+1 = zk+s − g′(zk+s)/g′′(zk+s), (63)

zk+s+1 = ξzk+s + (1− ξ)c2. (64)

Using (58) and (62), g′(zk+s) < g′(z∗) = 0. With (61) and ξ > 0, both update rules lead to

zk+s+1 > zk+s, ∀s. (65)

We claim that the number of updates via (64) must be finite. Otherwise, since

c2 − zk+s+1 = ξ(c2 − zk+s)

if (64) is taken, an infinite number of updates via (64) and the property in (65) will cause that
{zk+s} converges to c2. As z∗ < c2 by Theorem 2, {zk+s} will eventually be larger than z∗

and the assumption (62) is violated. Therefore, we can let k0 be the starting index so that all
zk0+s, ∀s are generated by (63).

We then claim that there exists k1 ≥ k0 such that zk1 ≥ zm. If such k1 does not exist,
then

zk0+s ≤ zm, ∀s. (66)

Consider the difference between two consecutive iterations:

{z̄k0+s | z̄k0+s ≡ zk0+s+1 − zk0+s = −g′(zk0+s)/g′′(zk0+s)}.

From (60), (61), and (66) we have 0 < g′′(zk0+s) < g′′(zk0 ). With (58) and (66),

z̄k0+s =
−g′(zk0+s)
g′′(zk0+s)

>
−g′(zm)

g′′(zk0 )
> 0, ∀s.

However, {z̄k0+s} should approach 0 as {zk0+s} is a convergent sequence following from the
increasing property (65) and the boundedness (62). Therefore (66) is wrong and k1 exists such
that zk1 ≥ zm.

By the Mean-Value Theorem, (63) and (65), there is z̃ ∈ (zk1 , zk1+1) such that

g′(zk1+1) = g′(zk1 ) + g′′(z̃)
−g′(zk1 )

g′′(zk1 )

= g′(zk1 )

(
1−

g′′(z̃)

g′′(zk1 )

)
> 0.

The inequality comes from g′(zk1 ) < 0 by (58) and (62), and g′′(z̃) > g′′(zk1 ) by zk1 ≥ zm
and (59). As g′(zk1+1) > 0 implies zk1+1 > z∗, we obtain a contradiction to (62). Thus there

is k′ such that zk
′ ≥ z∗ and the proof is complete.
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A.5 Proof of (34)

The first relationship follows from the fact that zm is the middle points of (−c1, c2). The
second relationship comes from g′(z) is an increasing function. For the third relationship, from
(20), g′(zm) = azm + b. With the property that g′(z) is increasing, we have

g′(zm)

{
≥ 0 if zm ≥ −b/a,
≤ 0 if zm ≤ −b/a.

A.6 Proof of Theorem 6

We consider the analysis in Luo and Tseng (1992), which studies coordinate descent methods
for problems in the following form:

min
α

g(Eα) + bTα

subject to Li ≤ αi ≤ Ui, (67)

where g is a proper closed convex function, E is a constant matrix and Li ∈ [−∞,∞), Ui ∈
(−∞,∞] are lower/upper bounds. They establish the linear convergence of the coordinate
descent method if (67) satisfies the following conditions:

1. E has no zero column.
2. The set of optimal solutions for (67), denoted by A∗, is nonempty.
3. The domain of g is open, and g is strictly convex and twice continuously differentiable on

its domain.
4. ∇2g(Eα∗) is positive definite for all α∗ ∈ A∗.
We explain that dual LR satisfies all the above conditions. Define E as an (n+ l)× l matrix

E ≡
[
y1x1, . . . , ylxl

Il

]
, (68)

where Il is the identity matrix. Let g be the following function:

g(

[
w
β

]
) ≡

1

2
wTw +

l∑
i=1

βi log βi + (C − βi) log(C − βi), (69)

where (w,β) ∈ an open domain Rn × (0, C)l, and b = 0, Li = 0, Ui = C,∀i. Then DLR(α) =
g(Eα) +bTα and (3) is the same as (67). Obviously E contains no zero column. For the set of
optimal solutions, the unique minimum α∗ exists by Theorem 1 and satisfies 0 < α∗i < C, ∀i.
The function g is closed because it is twice continuously differentiable on its open domain. The

matrix ∇2g(

[
w
β

]
) is diagonal and has positive entries:

∇2
iig(

[
w
β

]
) =

{
1 if i = 1, . . . , n,

C
βj(C−βj)

if i = n+ j, j = 1, . . . , l.

Hence g is strictly convex and ∇2g(Eα∗) is positive definite. All conditions are satisfied and
the linear convergence is obtained.

A.7 The Derivation of Dual ME

For convenience, we define some notation:

– l = the number of unique xi,
– P̃i = P̃(xi), f iy = f(xi, y), and
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– f̃ =
∑
i,y P̃(xi, y)f(xi, y).

The primal ME problem in (5) can be written as the following equality-constrained form:

min
w,ξ

1

2σ2
wTw +

∑
i

P̃i log
∑
y

exp(ξiy)−wT f̃

subject to ξiy = wT f(xi, y) ∀y ∈ Y, i = 1, . . . , l.

(70)

The Lagrangian for (70) is:

L(w, ξ,α) =
1

2σ2
wTw +

∑
i

P̃i log
∑
y

exp(ξiy)−wT f̃ −
∑
i

∑
y

αiy(ξiy −wT f iy)

= L∗(w,α) +
∑
i

Li(ξi, ᾱi),

where

L∗(w,α) ≡
1

2σ2
wTw +

∑
i

∑
y

αiyw
T f iy −wT f̃ , and

Li(ξi, ᾱi) ≡ P̃i log
∑
y

exp(ξiy)−
∑
y

αiyξiy , i = 1, . . . , l.

The dual problem is

max
α

inf
w,ξ

L(w, ξ,α) = max
α

(
inf
w
L∗(w,α) +

∑
i

inf
ξi
Li(ξi, ᾱi)

)
. (71)

For infw L∗(w,α), the minimum is obtained by

∇wL∗(w,α) =
1

σ2
w +

∑
i

∑
y

αiyf iy − f̃ = 0

By representing the minimum as a function of α, we have

inf
w
L∗(w,α) = −

1

2σ2
w(α)Tw(α), where w(α) = σ2

f̃ −∑
i

∑
y

αiyf iy

 . (72)

To minimize Li(ξi, ᾱi), we check several cases depending on the value of ᾱi. The first case
considers ᾱi satisfying

ᾱi ≥ 0 and
∑
y

αiy = P̃i. (73)

Let Fi ≡ {y | αiy > 0}.

inf
ξi
Li(ξi, ᾱi) = inf

ξiy :y∈Fi

 inf
ξiy :y/∈Fi

P̃i log
∑
y

exp(ξiy)

− ∑
y∈Fi

αiyξiy


= inf
ξiy :y∈Fi

P̃i log

∑
y∈Fi

exp(ξiy) +
∑
y/∈Fi

inf
ξiy

exp(ξiy)

− ∑
y∈Fi

αiyξiy


= inf
ξiy :y∈Fi

P̃i log
∑
y∈Fi

exp(ξiy)−
∑
y∈Fi

αiyξiy

 . (74)

The optimality condition implies any minimizer ξ∗i satisfies that for all y ∈ Fi:

∇ξiyLi(ξ
∗
i ) = −αiy +

P̃i exp(ξ∗iy)∑
y′∈Fi

exp(ξ∗
iy′ )

= 0. (75)
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Thus
ξ∗iy = logαiy + log

∑
y′∈Fi

exp(ξ∗iy′ )− log P̃i.

By embedding ξ∗i into Li(ξi, ᾱi) and using (73), (74) becomes

inf
ξi
Li(ξi, ᾱi)

=P̃i log
∑
y∈Fi

exp(ξ∗iy)−
∑
y∈Fi

(
αiy logαiy + αiy log

∑
y′∈Fi

exp(ξ∗iy′ )− αiy log P̃i
)

=−
∑
y∈Fi

αiy logαiy + P̃i log P̃i.

(76)

If ᾱi does not satisfy (73), then either

there is αiy′ < 0 or
∑
y

αiy 6= P̃i.

If there is αiy′ < 0, we consider a point ξi with ξiy = ε if y = y′ and 0 otherwise. Then,

inf
ξi
Li(ξi, ᾱi) ≤ lim

ε→−∞

(
P̃i log(|Y | − 1 + exp(ε))− αiy′ε

)
= −∞. (77)

If
∑
i αiy 6= P̃i, we consider ξiy = ε, ∀y to obtain

inf
ξi
Li(ξi, ᾱi) ≤ inf

ε

P̃i log(|Y | exp(ε))− ε
∑
y

αiy


= P̃i log |Y |+ inf

ε
ε

P̃i −∑
y

αiy

 = −∞.

(78)

Combining (72), (76), (77) and (78),

inf
w,ξ

L(w, ξ,α) (79)

=


− 1

2σ2w(α)Tw(α)−
∑
i

 ∑
y:αiy>0

αiy logαiy + P̃i log P̃i

 if
∑
y αiy = P̃i ∀i,α ≥ 0,

−∞ otherwise.

As the dual problem defined in (71) maximizes the value (79) by adjusting α, we will not
consider the situation with the value −∞. Then the dual problem can be written as (38).

A.8 Proof of Theorem 7

By defining 0 log 0 = 0, DME(α) is a continuous function on a closed set. Hence a minimum

exists. We first show the interior property. If P̃(xi) = 0, then α∗iy = 0 follows from constraints

of (38). If P̃(xi) > 0, we prove the result by contradiction. If there exists α∗iy1 = 0, then we

can find another α∗iy2 > 0 due to the constraint
∑
y α
∗
iy = P̃i. We consider a problem by fixing

all variables except αiy1 and αiy2 .

min
z

g(z) = DME(ᾱ1, . . . , ᾱi + (ey1 − ey2 )z, . . . , ᾱl)

= z log z + (α∗iy2 − z) log(α∗iy2 − z) +
a

2
z2 + bz + constant

subject to 0 ≤ z ≤ α∗iy2 ,
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where ey1 and ey2 are indicator vectors,

a ≡ σ2
(
Ki
y1y1

+Ki
y2y2

− 2Ki
y1y2

)
and b ≡ −wT (α∗) (f(xi, y1)− f(xi, y2)) .

By Lemma 1, there is z∗ ∈ (0, α∗iy2 ) such that g(z∗) < g(0) = DME(α∗), which contradicts

the fact that α∗ is the minimum. Therefore, α∗iy > 0 ∀y. The constraints in (38) then imply

α∗iy < P̃(xi) ∀y, so α∗iy ∈ (0, P̃(xi)) ∀i, y.

We then show the uniqueness by the strict convexity of DME(α) over (0,∞)l|Y |. DME(α)
can be decomposed into two parts. The first part is

1

2σ2
w(α)Tw(α) =

1

2σ2
‖f̃ −Fα‖2, (80)

where F is a n × l|Y | matrix and each column is f(xi, y). The Hessian of (80) is a positive
semi-definite matrix FTF . The Hessian of the second part is a diagonal matrix with positive
elements 1/αiy ∀i, y. Therefore, DME(α) is strictly convex for all interior α, so the uniqueness
is obtained.

A.9 Proof of Theorem 9

We apply Proposition 2.7.1 by Bertsekas (1999), which gives the convergence of coordinate
descent methods for the following problem:

min D(α)

subject to α ∈ A1 × · · · ×Al,
(81)

where Ai is a closed convex set. Sequentially a block of variables over Ai is updated and it is
required that the minimum of each sub-problem is uniquely attained.

Problem (38) is in the form of (81) as we can define the following closed and convex set:

Ai ≡ {ᾱi ∈ [0, P̃(xi)]
|Y | | eT ᾱi = P̃(xi)},

Moreover, a proof similar to Theorem 7 shows that for each sub-problem (42), the minimum
is uniquely attained. Therefore, Algorithm 7 converges.
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