
Supplementary Materials for
Dual Coordinate-Descent Methods for Linear One-Class SVM and SVDD

Hung-Yi Chou* Pin-Yen Lin* Chih-Jen Lin*

6 Some Implementation Issues for Algorithm 4

To solve the sub-problem (2.2) by an inner-level CD
with a greedy selection, we can consider two implemen-
tations.
� At each inner CD step, ∇Bf(α) is calculated and we
use it to find a maximal violating pair from B.

� The sub-problem (2.2) is constructed first. Then
similar to the situation of training kernel SVM,
the gradient ∇Bf(α) is maintained after each inner
update.

We discuss the cost of each implementation in detail.
For the first one, the main cost at each inner CD pro-
cedure is on calculating ∇Bf(α) by |B| inner products;
see (2.3). In addition, after a maximal violating pair
(i, j) has been identified, we need an inner product be-
tween xi and xj to find Qij in the two-variable sub-
sub-problem (2.11). See details of this implementation
in Algorithm 4. Therefore, the total cost of solving a
sub-problem is

(6.15) O((|B|+ 1)n)×#inner CD iterations.

For the second implementation, the major cost is on
calculating QBB and ∇Bf(α) in the beginning. By
taking the symmetry of QBB into account, the cost for
solving the sub-problem is

(6.16) O

((
|B|+ |B|(|B| − 1)

2

)
n

)
.

Note that for both implementations, once a two-variable
sub-problem is formed, the solution procedure at an in-
ner CD step takes only a constant number of operations.

At the first glance the second implementation seems
to be faster. If |B| = 4 and more than two inner
CD steps are taken, (6.15) becomes higher than (6.16).
However, in practice we find that the first implementa-
tion is competitive because for a small B, we may run
just one inner CD step.

*Computer Science and Information Engineering, National
Taiwan Univ.

7 Solution Procedure for a Two-variable
Sub-problem

In (2.11) we present the sub-problem in a general form
for binary SVM as well as one-class SVM/SVDD; see the
use of yi, yj in the linear constraint. In software such as
LIBSVM, the same code is used for all cases. However,
here for the implementation of LIBLINEAR, (2.11) is
used only for the one-class situation.1 Therefore, the
code becomes simpler. Here we derive some details.
Define

aij = ∥xi∥22 + ∥xj∥22 − 2xT
i xj

bij = −∇if(α) +∇jf(α)

From di = −dj , the objective function of (2.7) can be
written as

1

2
aijd

2
j + bijdj .

If constants are not considered, by minimizing the above
quadratic function we can update α as follows.

(7.17) αnew
i = αi +

bij
aij

, αnew
j = αj −

bij
aij

.

We then follow the derivation in [2] to handle the
situation if (αnew

i , αnew
j) in (7.17) does not satisfy the

bound constraints. Specifically, (αnew
i , αnew

j) must be in
one of the four regions outside the following box.

αi

αj

αi + αj = Cj

αi + αj = Ci

Ci

Cj

region Iregion IV

region II

region IIINA

NA

1For methods in LIBLINEAR to solve the dual of other
problems (classification and regression), SVM without bias is

considered. Thus the linear constraint does not appear and CD
with |B| = 1 is used.

Copyright © 2019 Copyright retained by principal author’s organization

Note that (αnew
i , αnew

j) does not appear in the “NA”
regions because the current (αi, αj) is in the box and

αnew
i + αnew

j = αi + αj .

Next, if (αnew
i , αnew

j) is outside the box, we identify the
region it resides and map it back to the feasible region.
If (αnew

i , αnew
j) is in region I, we have

αnew
i + αnew

j > Ci and αnew
i > Ci.

Then by setting

αi ← Ci and αj ← (αi + αj)− Ci,

the optimal solution of the sub-problem is obtained.
Other cases are similar. We have the following pseudo
code to identify which region (αnew

i , αnew
j) is in and

modify (αnew
i , αnew

j) to satisfy bound constraints.

double quad_coef = Q_i[i] + Q_j[j] - 2*Q_i[j];

if(quad_coef <= 0)

quad_coef = 1e-12;

double delta = (G[i]-G[j])/quad_coef;

double sum = alpha[i] + alpha[j];

alpha[i] = alpha[i] - delta;

alpha[j] = alpha[j] + delta;

if(sum > Ci)

{

if(alpha[i] > Ci) // in region I

{

alpha[i] = Ci;

alpha[j] = sum-Ci;

}

}

else

{

if(alpha[j] < 0) // in region III

{

alpha[j] = 0;

alpha[i] = sum;

}

}

if(sum > Cj)

{

if(alpha[j] > Cj) // in region II

{

alpha[j] = Cj;

alpha[i] = sum-Cj;

}

}

else

{

if(alpha[i] < 0) // in region IV

{

alpha[i] = 0;

alpha[j] = sum;

}

}

8 Convergence of Algorithm 5

We faced some difficulties while proving the convergence
of Algorithm 5. However, by a simple modification,
the asymptotic convergence can be established. In [10],
the authors studied the convergence of an optimization
framework, where each iteration involves the following
two components.
� A two-variable CD sub-problem is solved by using a
maximal violating pair.

� If certain conditions hold, then the iterate α may be
further changed to decrease the function value.

The details are in Algorithm 6. In Algorithm 5, we
use (3.18) to decide r pairs, where the first one is the
maximal violating pair. Therefore, in the beginning of
each outer iteration, Algorithm 5 solves the same two-
variable sub-problem as Algorithm 6. Besides using
the maximal violating pair, [10] intends to consider
a general algorithm regardless of what the rest of
an iteration does. However, they fail to prove the
convergence for such an algorithm. Instead, they
impose a criterion in (8.20) of Algorithm 6 so that
only under certain circumstances, additional operations
are allowed. These additional operations are arbitrary
as long as a simple decreasing condition in (8.21) is
satisfied. Now we modify Algorithm 5 to impose the
same criterion in (8.20). If we can further prove that
solving the rest r − 1 sub-problems leads to a new
α satisfying (8.21), then we have a special case of
Algorithm 6 and the convergence holds. To prove (8.21),
we define

αk = αk,1,αk,2, . . . ,αk,r

as the inner iterates and have the following lemma.

Lemma 8.1. There exists λ > 0 such that for all k =
1, . . . and t = 1, . . . , r,

(8.18) f(αk,t+1) ≤ f(αk,t)− λ||αk,t+1 −αk,t||2,

and

(8.19) f(αk,t+1) ≤ f(αk)− λ||αk,t+1 −αk||2.

Proof. From αk,t to αk,t+1, an inner working set
{ikt , jkt } is considered. If it forms a violating pair at
αk,t, [9] has proved (8.18). If it is not a violating pair,
from classic results such as Theorem 2 of [7] we have
αk,t+1 = αk,t. Thus, (8.18) holds for any λ > 0.

Copyright © 2019 Copyright retained by principal author’s organization

Algorithm 6 Algorithm analyzed in [10]

1: Let α be a feasible point, λ > 0, p ≥ 1.
2: while stopping condition is not satisfied do
3: Select a maximal violating pair (i, j)
4: Find the optimal solution dB for sub-

problem (2.2) by using B = {i, j}.
5: αB ← αB + dB

6: if

(8.20) 0 < αi < Ci and 0 < αj < Cj

then
7: find αnew such that

(8.21) f (αnew)− f (α) ≤ −λ ∥αnew −α∥p .

8: α← αnew

9: end if
10: end while

From (8.18), we have

f(αk,t+1)

≤f(αk,t)− λ||αk,t+1 −αk,t||2

≤f(αk,t−1)− λ||αk,t −αk,t−1||2 − λ||αk,t+1 −αk,t||2

≤ · · ·

≤f(αk)− λ
(
||αk,2 −αk||2 + · · ·+ ||αk,t+1 −αk,t||2

)
≤f(αk)− λ||αk,t+1 −αk||2.

Therefore, (8.19) is obtained.

In practice, we find that in early iterations, many α
components are easily bounded so that (8.20) does
not hold. Then in an iteration we update only the
two variables of the maximal violating pair. This
causes a huge waste on expensively calculating the
gradient. Therefore, for the practical use the procedure
in Algorithm 5 should be considered.

9 Additional Experimental Results on
One-class SVM and SVDD

We present results of one-class SVM with ν =
0.01, 0.005 in Figures 5 and 7, and SVDD with C =
1/(νl) in Figures 6 and 8. The results are similar to
Section 4.

To confirm that checking the number of O(n) oper-
ations is similar to checking the running time, in Fig-
ures 9 and 10 we present running time results of using
ν = 0.1. By a comparison with Figrue 2, it can be
found that the results are similar. However, a careful
check shows that the difference between greedy-0.1-cyclic

and the other methods are sometimes more dramatic in
Figures 9 and 10. For example, considering the set a9a
and linear one-class SVM with ν = 0.1, the number
of O(n) operations for cyclic-2cd to reach 10−2 relative
difference is about five times more than that of greedy-
0.1-cyclic (see Figure 2). However, in the same problem
setting, the time cyclic-2cd spent to reach 10−2 is more
than 20 times than that of greedy-0.1-cyclic (see Fig-
ure 9(a)). The reason may be that for the random or
cyclic working-set selection, easily the sub-problem is
optimal. For such sub-problems, some overhead not in-
volving O(n) operations is not considered in Figure 2.
Thus the setting of Figure 2 favors cyclic-2cd more than
greedy-0.1-cyclic.

10 Shrinking

Shrinking technique [8] has been well-developed for
SVM problems with the bounded constraints 0 ≤ αi ≤
Ci. The idea is to tentatively remove some bounded
variables in the optimization process to solve a smaller
problem and reduce the running time.

We extend the shrinking technique from LIBSVM.
For a bound-constrained convex problem like (3.14) or
(3.16), we mentioned in Section 2.5 that α is optimal
if and only if (2.7) holds. Let αk be the iterate at
the beginning of the kth outer iteration. We define the
following two values for each outer iteration to indicate
the violation of the optimality condition,

Mk ≡ max
t∈Iup(αk)

−yt∇tf(α
k), and

mk ≡ min
t∈Ilow(αk)

−yt∇tf(α
k).

Then the variable αk
i is removed if one of the following

two conditions holds:

(10.22)

{
−yi∇if(α

k) > Mk if αk
i ∈ Ilow(α

k),

−yi∇if(α
k) < mk if αk

i ∈ Iup(α
k).

We define the following active set to indicate the re-
mained variables for forming a smaller optimization
problem.

A ≡ {i | i does not satisfy (10.22)}.

We further define

Ā = {1, . . . , l}\A.

For one-class SVM, the new optimization problem is

min
αA

1

2
αT

AQAAαA +αT
ĀQĀAαA

subject to 0 ≤ αi ≤
1

νl
, i ∈ A,

eTAαA = 1− eTĀαĀ.

(10.23)

Copyright © 2019 Copyright retained by principal author’s organization

The gradient of the objective function is

QA,:

[
αA

αĀ

]
.

Because αĀ remained the same and we keep maintain-

ing the vector u =
∑l

i=1 αixi, even for the smaller prob-
lem (10.23), the gradient calculation by (2.3) is still cor-
rect. Algorithm 7 summarizes the shrinking implemen-
tation of the two-level CD with an outer greedy selection
and an inner random/cyclic selection (i.e., Algorithm 5).

The comparisons between with and without the
shrinking implementations are presented in Figures 11-
14. We can see that greedy-0.1-cyclic-shrink generally
outperforms greedy-0.1-cyclic. This result shows that
the shrinking technique can improve the convergence.

11 An Extension of Algorithm 5

The discussion in Section 4 indicates that a disadvan-
tage of Alglrithm 5 is the expensive calculation of the
whole gradient ∇f(α). In particular, α cannot be up-
dated until the first gradient has been obtained. We
can relax the full-gradient requirement by considering
an extension of Algorithm 5 in Algorithm 8. The ba-
sic idea is that at each outer iteration, instead of using
∇f(α), we consider a large set B̄ and select r pairs from
this set. Thus only ∇B̄f(α) must be calculated.

Interestingly, Algorithm 8 is a special case of a
framework considered in [3], which is presented in
Algorithm 9 as a comparison. Their algorithm was
designed to run coordinate descent methods in a multi-
core environment. To parallelize operations, their ideas
are as follows
1. A large set B̄ is selected and ∇B̄f(α) can be calcu-

lated in parallel.
2. From B̄ a subset B is selected. Then CD steps are

sequentially conducted on elements in B.
Naturally, a reasonable selection of B should include
elements that can likely be updated. To this end,
they select some most violating “indices.” Note that
they consider SVM without the bias term for binary
classification, and use CD to solve the SVM dual.
Thus there is no linear constraint and they update
one element at each CD step. Their realization of the
framework in Algorithm 9 is Algorithm 5 in their paper.
By a line by line comparison in Figure 15 we can easily
see that theirs and ours are very related.

We conduct experiments to compare Algorithm 5
and Algorithm 8. In Algorithm 8, we consider a cyclic
working-set selection in the first-level CD iteration
(line 3 in Algorithm 8) and select B̄ with size R̄l.
We label this method as cyclic-R̄-greedy-R-cyclic, and
consider

R̄ = 0.1 and R = 0.1.

The settings of other methods are the same as in
Section 4.1. Figures 16-19 present the comparison.
Results show that the new setting cyclic-0.1-greedy-0.1-
cyclic is useful. Not only is it effectively address the issue
of calculating the first whole ∇f(α) in the begining, but
also the overall convergence is slightly faster. However,
the implementation is more complicated and one extra
parameter R̄ must be decided. Furthermore, how to
suitably incorporate the shrinking technique is an issue.
Therefore, for simplicity we think greedy-0.1-cyclic can
be used if the problem is not extremely large.

12 Speedup Finding the r Most Violating Pairs
in Algorithm 7

Motivated by an idea from Hung-Yi Chou, this section
is written by Guan-Ting Chen after the paper was
published.

We analyze the time complexity of each iteration in
Algorithm 7. In each iteration, we conduct the following
operations.
� Calculate ∇Af(α) in O(|A|n), where A is the active
set.

� Find the r most violating pairs to form the working
set B. We discuss more details in the rest of this
section.

� Solve the sub-problem (2.11) in O(|B|n).
To find the r most violating pairs, before version

2.46, the LIBLINEAR software follows [4] to use heap
sort. In this implemtation, through checking each i ∈ A
we maintain a max heap and a min heap in size r to
reserve the r most violating pairs. Therefore, the cost
of constructing a heap is O(|A| log |A|). The total cost
at each iteration is,

(12.24) O((|A|+ |B|)n+ |A| log |A|).

From (12.24), we can see that the time complexity of
finding the r most violating pairs is not negligible. The
time cost of this part can be more significant if the
number of features is small or the data set is sparse,
where n in (12.24) is changed to the number of non-
zero features per instance. This situation can be seen in
Table 1, where we show the percentage of running time
on finding the r most violating pairs.

To reduce the cost of finding the r most violating
pairs, we investigate the following procedure by apply-
ing the quickselect algorithm [6] first.
� A quickselect procedure is conducted to split
−yt∇tf(α), t ∈ Iup to two parts, where one part
contains the largest r elements.
A quickselect procedure is conducted to split
−yt∇tf(α), t ∈ Ilow to two parts, where one part
contains the smallest r elements.

� For each of the two r-element sets obtained above,

Copyright © 2019 Copyright retained by principal author’s organization

datasets ijcnn1 a9a real-sim rcv1 news20

of features 22 123 20,958 47,236 1,355,191

average # of non-zero
features per instance

13.0 13.87 51.29 74.05 454.99

finding the r most
violating pairs

47.66% 35.42% 11.21% 7.67% 0.84%

Table 1: Percentage of running time at each iteration on finding the r most violating pairs in different data sets.

Figure 4: A timing comparsion between the two strate-
gies (heap and quickselect/quicksort) for finding the r
most violating pairs. We sum up the running time of
this operation in all iterations. The y-axis (in seconds)
is the average of five runs.

we sort the elements by quicksort. Then the r most
violating pairs defined in (3.18) are found.

The cost of a quickselect algorithm is known to be linear
to the input size. With r = |B|, the cost of each
iteration in Algorithm 7 is

(12.25) O((|A|+ |B|)n+ |A|+ |B| log |B|).

A comparsion between (12.24) and (12.25) shows
that this new setting can potentially reduce the running
time. For the same five data sets considered in Table 1,
we compare the two approaches in Figure 4 by showing
their total running time on finding the r most violating
pairs. The new approach by quickselect is more efficent.

While we have successfully reduced the running
time on finding the working set, the operation is gen-
erally not the dominant one in each iteration. Instead,
O(|A|n) is often the bottleneck in (12.24). Thus, it is
important to check the overall time reduction by ap-

plying the new strategy of finding the r most violateing
pairs. We present the comparison results in Table 2. For
problems where finding violating pairs takes a consider-
able portion of the total running time, the new strategy
significantly improves the overall training efficiency.

Next we discuss some implementation details. For
quickselect, we consider the following two ways.
� Quickselect with Lomuto partition scheme [1].
� Quickselect with Hoare’s partition scheme [5].
A comparison (details not shown) indicates similar
running time, so we decide to use the Lomuto partition
scheme for better readibility.

We note one implementation detail in our experi-
ments. To ensure a fair comparison, the selected r most
violating pairs must be the same. Then the whole opti-
mization algorithm uses the same number of iterations.
To fullfill this requirement, we impose a unique order
of all elements in applying quickselect or sorting algo-
rithms by defining that
(12.26)

i is ahead of j if ∇if(α) = ∇jf(α) and i < j.

The heap implementation in LIBLINEAR 2.45 does
not satisfy (12.26), so we make proper changes for the
experiments.

We mentioned that the dominant cost at each iter-
ation is usually the O(|A|n) operations on calculating

(12.27) ∇if(α) = yiu
Txi − 1, ∀i ∈ A.

The computation is independent under each i, so can
be easily parallelized. We check the effect of parallizing
(12.27) in Table 3. Because (12.27) dominates the
training process, if we redo the comparison in Table 2,
the time reduction of using quickselect instead of heap
becomes more significant, as shown in Table 3.

We conduct all experiments in this section on a
machine with 8 cores of Intel i7-6900K CPUs with
256KiB L1i-cache, 256KiB L1d-cache, 2MiB L2-cache
and 20MiB shared L3-cache. The new working-set se-
lection by using quickselect is incorporated in LIBLIN-
EAR (after version 2.46). The code for experiments is

Copyright © 2019 Copyright retained by principal author’s organization

datasets ijcnn1 a9a real-sim rcv1 news20

total runtime using heap 0.0139 0.0136 0.0841 0.0299 0.2117

total runtime using quickselect 0.0120 0.0125 0.0814 0.0295 0.2107

runtime reduction
with applying quickselect

13.60% 7.79% 3.12% 1.18% 0.46%

Table 2: The total running time (in seconds; average of five runs) of the one-class SVM solver. We apply two
strategies to find the r most violating pairs.

available at https://www.csie.ntu.edu.tw/~cjlin/

papers/linear_oneclass_SVM/quickselect.tar.gz

References

[1] J. Bentley, Programming pearls, Addison-Wesley
Professional, second ed., 2016.

[2] C.-C. Chang and C.-J. Lin, LIBSVM: a library
for support vector machines, ACM Transactions
on Intelligent Systems and Technology, 2 (2011),
pp. 27:1–27:27. Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm.

[3] W.-L. Chiang, M.-C. Lee, and C.-J. Lin,
Parallel dual coordinate descent method for
large-scale linear classification in multi-core en-
vironments, in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), 2016,
http://www.csie.ntu.edu.tw/~cjlin/papers/

multicore_cddual.pdf.

[4] H.-Y. Chou, P.-Y. Lin, and C.-J. Lin, Dual
coordinate-descent methods for linear one-class
SVM and SVDD, in Proceedings of SIAM Interna-
tional Conference on Data Mining (SDM), 2020,
http://www.csie.ntu.edu.tw/~cjlin/papers/

linear_oneclass_SVM/siam.pdf.

[5] C. A. R. Hoare, Algorithm 63: partition, Com-
munications of the ACM, 4 (1961), p. 321.

[6] C. A. R. Hoare, Algorithm 65: find, Communi-
cations of the ACM, 4 (1961), pp. 321–322.

[7] D. Hush and C. Scovel, Polynomial-time de-
composition algorithms for support vector ma-
chines, Machine Learning, 51 (2003), pp. 51–
71, http://www.c3.lanl.gov/~dhush/machine_

learning/svm_decomp.ps.

[8] T. Joachims, Making large-scale SVM learning
practical, in Advances in Kernel Methods – Support

Vector Learning, B. Schölkopf, C. J. C. Burges,
and A. J. Smola, eds., Cambridge, MA, 1998, MIT
Press, pp. 169–184.

[9] C.-J. Lin, Asymptotic convergence of an SMO
algorithm without any assumptions, IEEE Transac-
tions on Neural Networks, 13 (2002), pp. 248–250,
http://www.csie.ntu.edu.tw/~cjlin/papers/

q2conv.pdf.

[10] S. Lucidi, L. Palagi, A. Risi, and M. Scian-
drone, A convergent hybrid decomposition algo-
rithm model for SVM training, IEEE Transactions
on Neural Networks, 20 (2009), pp. 1055–1060.

Copyright © 2019 Copyright retained by principal author’s organization

datasets ijcnn1 a9a real-sim rcv1 news20

Using quickselect in the working set selection

running (12.27) without parallelization 0.0120 0.0125 0.0814 0.0295 0.2107

running (12.27) by 4 threads 0.0117 0.0116 0.0587 0.0240 0.1573

running (12.27) by 8 threads 0.0119 0.0109 0.0521 0.0213 0.1330

running (12.27) by 12 threads 0.0128 0.0126 0.0543 0.0230 0.1368

runtime reduction by 4 threads 2.88% 7.60% 27.93% 18.58% 25.34%

runtime reduction by 8 threads 10.48% 13.10% 35.98% 27.86% 36.88%

runtime reduction by 12 threads -7.01% -0.56% 33.29% 22.18% 35.06%

Using heap in the working set selection

running (12.27) without parallelization 0.0139 0.0136 0.0841 0.0299 0.2117

running (12.27) by 8 threads 0.0127 0.0120 0.0541 0.0216 0.1352

Total runtime reduction after switching from heap to quickselect

runtime reduction without parllelization 13.60% 7.79% 3.12% 1.18% 0.46%

runtime reduction by 8 threads 15.41% 9.58% 3.68% 1.26% 1.61%

Table 3: The total running time (in seconds) with/without parallelizing the operation in (12.27). Time for data
loading is excluded.

Copyright © 2019 Copyright retained by principal author’s organization

Algorithm 7 A shrinking implementation of Algo-
rithm 5

1: Given ϵ.
2: Let α be a feasible point.
3: Calculate Qii and u =

∑l
i=1 αixi,∀i.

4: Let A← {1, . . . , l}.
5: while True do
6: Let M ← −∞,m←∞.
7: for all i ∈ A do
8: Calculate the gradient ∇if(α) by (2.3)
9: if i ∈ Iup(α) and ∇if(α) > M then

10: M ← ∇if(α)
11: else if i ∈ Ilow(α) and ∇if(α) < m then
12: m← ∇if(α)
13: end if
14: end for
15: if M −m < ϵ then
16: if A = {1, . . . , l} then
17: break
18: else
19: A← {1, . . . , l}
20: continue
21: end if
22: end if
23: for all i ∈ A do
24: if i /∈ Iup(α) and ∇if(α) > M then
25: A← A\{i}.
26: else if i /∈ Ilow(α) and ∇if(α) < m then
27: A← A\{i}.
28: end if
29: end for
30: Find the r most violating pairs by (3.18)

B = {i1, j1}︸ ︷︷ ︸
B1

∪ · · · ∪ {ir, jr}︸ ︷︷ ︸
Br

⊆ A

31: for s = 1, . . . , r do
32: (i, j)← Bs

33: if Iup(αBs) = ∅ or Ilow(αBs) = ∅ then
34: continue
35: end if
36: Calculate ∇if(α) and ∇jf(α)
37: if (i, j) is not a violating pair then
38: continue
39: end if
40: Calculate Qij to form the sub-problem (2.11)
41: Solve the sub-problem.
42: Update (αi, αj) and the vector u by (2.5).
43: end for
44: end while

Algorithm 8 An extension of Algorithm 5 without
calculating the whole gradient

1: Let α be a feasible point and calculate Qii,∀i
2: while α is not optimal do
3: Randomly/cyclicly select a large working set B̄
4: Calculate ∇B̄f(α)
5: Select the r most violating pairs from B̄ to have

B = {i1, j1} ∪ {i2, j2} ∪ · · · ∪ {ir, jr}.

6: Run the for loop in lines 5-16 of Algorithm 5
7: end while

Algorithm 9 A framework considered in Algorithm 5
of [3]

1: Let α be a feasible point and calculate Qii,∀i
2: while true do
3: Select a set B̄
4: Calculate ∇B̄f(α) in parallel
5: Select B ⊂ B̄ with |B| ≪ |B̄|
6: Update αB

7: end while

Copyright © 2019 Copyright retained by principal author’s organization

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 5: A comparison on the convergence speed of
different methods. Linear one-class SVM with ν = 0.01
is considered. The x-axis is the cumulative number of
O(n) operations, while the y-axis is the relative differ-
ence to the optimal function value defined in (4.19).

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 6: A comparison on the convergence speed of
different methods. Linear SVDD with C = 1/(νl),
where ν = 0.01 from Figure 5, is used. The x-axis is
the cumulative number of O(n) operations, while the
y-axis is the relative difference to the optimal function
value defined in (4.19).

Copyright © 2019 Copyright retained by principal author’s organization

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 7: A comparison on the convergence speed of
different methods. Linear one-class SVM with ν =
0.005 is considered. The x-axis is the cumulative
number of O(n) operations, while the y-axis is the
relative difference to the optimal function value defined
in (4.19).

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 8: A comparison on the convergence speed of
different methods. Linear SVDD with C = 1/(νl),
where ν = 0.005 from Figure 7, is used. The x-axis
is the cumulative number of O(n) operations, while the
y-axis is the relative difference to the optimal function
value defined in (4.19).

Copyright © 2019 Copyright retained by principal author’s organization

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 9: A comparison on the convergence speed of
different methods. Linear one-class SVM with ν = 0.1
is considered. The x-axis is the running time in seconds,
while the y-axis is the relative difference to the optimal
function value defined in (4.19).

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 10: A comparison on the convergence speed of
different methods. Linear SVDD with C = 1/(νl),
where ν = 0.1 from Figure 9, is used. The x-axis is
the running time in seconds, while the y-axis is the
relative difference to the optimal function value defined
in (4.19).

Copyright © 2019 Copyright retained by principal author’s organization

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 11: A comparison on the convergence speed of
Algorithm 5 with/without shrinking technique. Linear
one-class SVM with ν = 0.1 is considered. The x-axis
is the cumulative number of O(n) operations, while the
y-axis is the relative difference to the optimal function
value defined in (4.19).

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 12: A comparison on the convergence speed of
Algorithm 5 with/without shrinking technique. Linear
SVDD with C = 1/(νl), where ν = 0.1 from Figure 11,
is used. The x-axis is the cumulative number of O(n)
operations, while the y-axis is the relative difference to
the optimal function value defined in (4.19).

Copyright © 2019 Copyright retained by principal author’s organization

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 13: A comparison on the convergence speed of
Algorithm 5 with/without shrinking technique. Linear
one-class SVM with ν = 0.01 is considered. The x-axis
is the cumulative number of O(n) operations, while the
y-axis is the relative difference to the optimal function
value defined in (4.19).

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 14: A comparison on the convergence speed of
Algorithm 5 with/without shrinking technique. Linear
SVDD with C = 1/(νl), where ν = 0.01 from Figure 13,
is used. The x-axis is the cumulative number of O(n)
operations, while the y-axis is the relative difference to
the optimal function value defined in (4.19).

Copyright © 2019 Copyright retained by principal author’s organization

1: Let α be a feasible point and calculate
Qii,∀i

2: while α is not optimal do
3: Select B̄
4: Calculate ∇B̄f(α)
5: Select the r most violating indices as B
6: B = {i1, . . . , ir}
7: for s = 1, . . . , r do
8: Update αis

9: end for
10: end while

(a) Algorithm 5 in [3].

1: Let α be a feasible point and calculate
Qii,∀i

2: while α is not optimal do
3: Select B̄
4: Calculate ∇B̄f(α)
5: Select the r most violating pairs as B
6: B = {i1, j1} ∪ · · · ∪ {ir, jr}
7: for s = 1, . . . , r do
8: Update αis , αjs

9: end for
10: end while

(b) A simplified description of Algorithm 8.

Figure 15: A line-by-line comparison between an algorithm in [3] and our Algorithm 8

Copyright © 2019 Copyright retained by principal author’s organization

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 16: A comparison on the convergence speed
of Algorithm 8 and other methods. Linear one-class
SVM with ν = 0.1 is considered. The x-axis is the
cumulative number of O(n) operations, while the y-axis
is the relative difference to the optimal function value
defined in (4.19).

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 17: A comparison on the convergence speed of
Algorithm 8 and other methods. Linear SVDD with
C = 1/(νl), where ν = 0.1 from Figure 16, is used.
The x-axis is the cumulative number of O(n) operations,
while the y-axis is the relative difference to the optimal
function value defined in (4.19).

Copyright © 2019 Copyright retained by principal author’s organization

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 18: A comparison on the convergence speed
of Algorithm 8 and other methods. Linear one-class
SVM with ν = 0.01 is considered. The x-axis is the
cumulative number of O(n) operations, while the y-axis
is the relative difference to the optimal function value
defined in (4.19).

(a) a9a (b) ijcnn1

(c) rcv1 train (d) news20

(e) real-sim (f) covtype scale

(g) yahoo-japan (h) yahoo-korea

Figure 19: A comparison on the convergence speed of
Algorithm 8 and other methods. Linear SVDD with
C = 1/(νl), where ν = 0.01 from Figure 18, is used.
The x-axis is the cumulative number of O(n) operations,
while the y-axis is the relative difference to the optimal
function value defined in (4.19).

Copyright © 2019 Copyright retained by principal author’s organization

