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Abstract

One-class support vector machines (SVM) and support vec-

tor data description (SVDD) are two effective outlier de-

tection techniques. They have been successfully applied to

many applications under the kernel settings, but for some

high dimensional data, linear rather than kernel one-class

SVM and SVDD may be more suitable. Past developments

on kernel and linear classification have indicated that spe-

cially designed optimization algorithms can make the train-

ing for linear scenarios much faster. However, we point out

that because of some differences from standard linear SVM,

existing algorithms may not be efficient for one-class scenar-

ios. We then develop some novel coordinate descent methods

for linear one-class SVM and SVDD. Experiments demon-

strate their superiority on the convergence speed.

1 Introduction

Outlier detection is widely used in applications of data
mining and machine learning. An outlier detection
method we are interested in is one-class SVM [15] and
its variant SVDD [17]. They were proposed as unsuper-
vised extensions of kernel SVM for two-class classifica-
tion, and have been used in numerous applications.

To obtain the model of one-class SVM and SVDD,
we must solve a quadratic programming problem. The
solution procedure has been well studied. In particular,
if kernels are used, past works solved the dual prob-
lem, where a quadratic function is minimized over some
bounded constraints and one linear constraint. Cur-
rently, the coordinate descent method (also called the
decomposition methods in the SVM community) is the
major optimization method to train kernelized one-class
SVM or SVDD; see, for example, the implementation in
the software LIBSVM [1].

For data sets with a very high number of features,
past works on SVM for data classification have shown
that the original input space may be rich enough and
there is no need to apply the kernel trick (e.g., [9, 8, 11,
6]). In such a situation, although the same optimization
algorithm for kernel can be used for linear (i.e., through
the linear kernel), existing works demonstrate that
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specially designed algorithms can dramatically speed up
the training process. While linear SVM for classification
and regression have been well studied, so far no works
have investigated the effectiveness of linear one-class
SVM and SVDD, and their efficient training. We
illustrate the research status of various scenarios in the
following table.

Two-class SVM One-class SVM
kernel studied studied
linear studied not yet

The goal of this work is to partially fill the gap by
studying optimization algorithms for linear one-class
SVM and SVDD.1,2

From the close relationship between standard SVM
and one-class SVM, naturally we think that an algo-
rithm suitable for one should work for the other. How-
ever, a recent work [2] shows that this thinking may not
be correct. They noticed that the success of coordinate
descent methods for linear two-class SVM partially re-
lies on a fact that an SVM formulation without the bias
term was considered. Specifically, for classification, the
standard SVM decision function is

sgn(wTx+ b),

where (w, b) is the model with b called a bias term,
and x is any feature vector. For data in a high
dimensional space, it is known that b can be removed
without sacrificing the performance. An important
fact is that SVM without a bias term leads to a dual
problem not having a linear constraint. The study in [2]
pointed out that the coordinate descent (CD) algorithm
achieving the state-of-the-art training speed for linear
SVM without the bias term has slower convergence
for linear SVM with the bias term. The reason is
that the linear constraint causes the waste of many
CD steps (i.e., variables are not updated) and slows
down the overall convergence. Interestingly, for one-
class SVM or SVDD, the dual optimization problem

1Besides, some users of our LIBLINEAR software [4] have
requested a solver for linear one-class SVM and SVDD.

2Some works (e.g., [3]) have studied linear one-class SVM, but
they do not focus on the optimization algorithms for training as
we do here.
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inherently contains a linear constraint. Therefore, in [2],
they conclude that for linear one-class SVM or SVDD,
new algorithms must be developed for efficient training.

In this work, we aim to develop efficient CD al-
gorithms for linear one-class SVM and SVDD. To ad-
dress the slow-convergence issue caused by the linear
constraint, we propose new settings to enlarge the work-
ing set of variables selected for update. Thus variables
can be changed despite of the appearance of the lin-
ear constraint. However, the higher cost in solving the
sub-problem at each CD step becomes a concern. Our
approach combines effective working-set selections and
the approximate solve of the sub-problem to achieve fast
convergence.

This work is organized as follows. In Section 2 we
review CD algorithms for standard linear SVM and ex-
plain the slow-convergence issue when the dual prob-
lem has a linear constraint. In Section 3, we pro-
pose several CD methods suitable for linear one-class
SVM and SVDD. Experiments in Section 4 demon-
strate the effectiveness of the proposed methods. Fi-
nally, Section 5 concludes this work. One of the pro-
posed methods (Algorithm 5) has been included in the
software LIBLINEAR (after version 2.40) for public use.
Supplementary materials and programs used for experi-
ments are at https://www.csie.ntu.edu.tw/~cjlin/
papers/linear_oneclass_SVM.

2 Coordinate Descent Methods for the Dual
Problem of Linear SVM with/without the
Bias Term

In this section, by reviewing the recent work in [2], we
show the need to develop new CD method for linear
one-class SVM and linear SVDD.

To begin, we introduce the formulation of linear
SVM for classification. For a training set of label-
instance pairs (yi,xi), i = 1, . . . , l, where yi ∈ {−1,+1}
and xi ∈ Rn, a standard linear SVM solves the following
primal optimization problem:

min
w,b

1

2
wTw + C

∑l

i=1
ξi

subject to yi
(
wTxi + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l,

where n is the number of features, C > 0 is a penalty
parameter, and b is called the bias term.3 Currently a
state-of-the-art approach to train a linear SVM is by
the CD method to solve the dual SVM problem [6].
However, in [6] the bias term is omitted. To see if the

3If the squared hinge loss is considered, ξi in the objective

function is replaced by ξ2i . All the analysis in this section still
applies.

removal of the bias term contributes to the success of
CD methods, [2] studied the difference between CD for
linear SVM with and without the bias term. To explain
their results we need the following dual SVM problem.

min
α

f(α) =
1

2
αTQα− eTα

subject to 0 ≤ αi ≤ Ci, i = 1, . . . , l,

yTα = 0 (if bias is considered),

(2.1)

where e = [1, . . . , 1]
T
, Ci = C and Qij = yiyjx

T
i xj .

We notice that if the bias term is removed, then the
dual problem does not have a linear constraint.

2.1 Coordinate Descent Methods for Linear
SVM The basic idea of a CD method is to iteratively
minimize the objective function along only a few coordi-
nates at a time. For the current α, we change elements
in a selected working set B while fixing others in

N = {1, . . . , l} \B.

That is,
α← α+ d =

[
αB
αN

]
+

[
dB
0

]
,

where the sub-vector dB is used to update αB and αN

is fixed. The objective function can be rewritten as

f(
[
αB
αN

]
+

[
dB
0

]
) =

1

2
dT
BQBBdB +∇Bf(α)

T
dB + constant,

and dB is the solution of the following sub-problem

min
dB

1

2
dT
BQBBdB +∇Bf(α)

T
dB

subject to − αi ≤ di ≤ Ci − αi, for i ∈ B,

yT
BdB = 0 (if bias is considered).

(2.2)

In [6], B is chosen to have only one single element so the
sub-problem (2.2) has a simple analytical solution. Such
a setting is not possible if the bias term is considered.
More precisely, if |B| = 1 and the constraint yT

BdB = 0
appears in (2.2), then the only feasible point of the sub-
problem is dB = 0 and we simply cannot move α at all.
Therefore, we must have |B| ≥ 2 in order to update α.
It is known [13, 16, 2] that with |B| = 2, an analytic
solution of the sub-problem is available regardless of
whether the linear constraint appears or not. However,
if |B| > 2, an iterative optimization procedure is needed
for solving the sub-problem. We summarize the CD
procedure in Algorithm 1.

Past works have thoroughly investigated the follow-
ing important components of CD methods:
1. the calculation of the gradient ∇Bf(α), and
2. the selection of the working set B.
We discuss them in Sections 2.2 and 2.3, respectively.
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Algorithm 1 A framework of block CD methods

1: Let α be a feasible point
2: while α is not optimal do
3: Select a working set B
4: Solve the sub-problem (2.2)
5: Update α by α← α+ d
6: end while

2.2 The Calculation of the Gradient ∇Bf(α)
For linear SVM, a technique developed in [6] to effi-
ciently calculate ∇Bf(α) is by for i ∈ B,

∇if(α) =
∑l

j=1
yiyjxixjαj − 1 = yiu

Txi − 1,(2.3)

where

(2.4) u ≡
∑l

j=1
αjyjxj .

If u is available, then obtaining ∇Bf(α) needs O(|B|n)
cost. To maintain u, after the sub-problem (2.2) is
solved, we can use

(2.5) u← u+
∑

i∈B
diyixi,

which also costs O(|B|n).
This technique is not applicable to kernel SVM,

where xi is mapped to a higher, maybe infinite, di-
mensional space by a function ϕ(·). Then the calcula-
tion in (2.3) involves uTϕ(x), a high-dimensional inner
product that cannot be directly calculated. Instead, the
kernel trick is applied so that by choosing certain ϕ(x),
the following kernel function can be easily calculated

K(xi,xj) = ϕ(xi)
T
ϕ(xj).

Then the gradient is calculated by

∇if(α) =
∑l

j=1
yiyjϕ(xi)

T
ϕ(xj)αj − 1

=
∑l

j=1
yiyjK(xi,xj)αj − 1.

(2.6)

If each kernel evaluation costs O(n), then the gradient
calculation costs O(l|B|n), which is significantly higher
than O(|B|n) by (2.3)-(2.5). We will show in Section 2.3
that this difference causes that suitable working-set
selections for linear and kernel SVM are very different.

2.3 Working-set Selection Two major schemes to
select the working set for CD methods are
� random or cyclic selection, and
� greedy selection by using the gradient information.

In [6], a greedy selection is not possible because they
calculate ∇Bf(α) rather than the full gradient ∇f(α).
Thus they consider a random or a cyclic selection of one
variable at a time.

In contrast, for kernel SVM, the calculation in (2.6)
obtains the kernel sub-matrix Q:,B , so we can easily
maintain the gradient by

∇f(α+ d) = ∇f(α) +Q:,BdB .

Because a greedy selection often leads to a better
working set, most past works on kernel SVM (e.g., [7,
10, 5]) apply such a setting.

2.4 The Use of the Bias Term We mentioned that
depending on whether the bias term is used, the dual
SVM problem has or does not have a linear constraint.
The behavior of CD methods for both settings has
been well studied in the literature. For kernel SVM,
traditionally the bias term is used. If without the bias
term, [16] studied greedy selections under |B| = 1 or 2.
Their main results are
� If without the bias term, the CD methods with |B| =
2 are faster than those with |B| = 1.

� Under |B| = 2, dual CD algorithms for SVM without
the bias term are slightly faster than those for SVM
with the bias term.
Interestingly, the difference between CD algorithms

for linear SVM with and without the bias term is more
dramatic [2]. We mentioned earlier that because the
gradient is not maintained in calculating (2.3)-(2.5),
a greedy selection is not applicable. Under random
or cyclic selections, [2] explained that CD algorithms
converge much faster if the dual problem does not
contain a linear constraint (i.e., the bias term is not
considered). The reason is that for a working set of
only two variables

B = {i, j},

a linear constraint may cause that the sub-problem is
easily already optimal. Then αi, αj cannot be moved.
A simple explanation is that the feasible region becomes
more restrictive [2]. From the Karush-Kuhn-Tucker
(KKT) condition of (2.1) with a linear constraint, a
feasible α is optimal for (2.1) if and only if

(2.7) max
t∈Iup(α)

−yt∇tf(α) ≤ min
t∈Ilow(α)

−yt∇tf(α),

where by following the notation in [5], Iup(α) and
Ilow(α) are two sets defined as

Iup(α) = {t | αt < Ct, yt = 1 or αt > 0, yt = −1},
Ilow(α) = {t | αt < Ct, yt = −1 or αt > 0, yt = 1}.

(2.8)
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Now for a two-variable sub-problem from a working set
B, the optimality condition is

(2.9) max
t∈Iup(αB)

−yt∇tf(α) ≤ min
t∈Ilow(αB)

−yt∇tf(α).

In contrast, if the linear constraint is removed
from (2.1), the sub-problem’s optimality condition is

(2.10)

{
∇tf(α) ≤ 0 if αt > 0,

∇tf(α) ≥ 0 if αt < Ct,
∀t ∈ B.

Clearly, indices in B are entangled together in (2.9),
but are not in (2.10). With this and other reasons, a
randomly selected (αi, αj) can easily be already optimal
by satisfying (2.9) and cannot be moved; see more
details in [2].

To illustrate a two-variable CD method for linear
SVM with a linear constraint, we provide details in
Algorithm 2. Because the sub-problem may be easily
already optimal, to avoid wasting operations, in Algo-
rithm 2 we have several pre-checks. For example, in
line 4 by easily checking the boundness of components
in αB , we may know that αB is already optimal for the
sub-problem. Then we do not even need to calculate
∇Bf(α) and can move to the next CD step.

The study in [2] concludes that if a two-variable
working set is considered, to have an efficient CD
procedure, one should use the dual SVM problem
without the linear constraint. Unfortunately, for linear
one-class SVM or SVDD that we aim to solve, its dual
problem inherently has a linear constraint. Therefore,
new strategies must be developed in order to avoid the
slow convergence of the CD procedure.

2.5 Review of Greedy Working-set Selection
for Kernel SVM The discussion in Section 2.4 indi-
cates that if |B| = 2 and the dual has a linear con-
straint, a random or a cyclic working-set selection is not
effective. However, a greedy selection is out of question
because we have mentioned that maintaining the gradi-
ent is extremely expensive. Therefore, we suspect that
a setting between greedy and random/cyclic selections
might be suitable for our need. To facilitate the devel-
opment, we review past greedy working-set selections.

First we introduce the working-set selection by the
maximal violating pair [10]. The basic idea is to find
a pair of variables that most violate the optimality
condition (2.7). An index pair (i, j) with i ∈ Iup(α)
and j ∈ Ilow(α) is called a violating pair if

(2.12) −yi∇if(α) > −yj∇jf(α),

Algorithm 2 A two-variable CD algorithm for solv-
ing the dual problem of linear SVM. The bias term is
considered, so the dual problem contains a linear con-
straint.

1: Let α be a feasible point and calculate Qii,∀i
2: while α is not optimal do
3: Randomly/cyclicly get a working set B = {i, j}
4: if Iup(αB) = ∅ or Ilow(αB) = ∅ then
5: continue
6: end if
7: Calculate ∇if(α) and ∇jf(α) by (2.3)
8: if the optimality condition in (2.9) holds then
9: continue

10: end if
11: Calculate Qij to form the following sub-problem

min
1

2

[
di dj

] [Qii Qij

Qij Qjj

] [
di
dj

]
+

[
∇if(α) ∇jf(α)

] [di
dj

](2.11)

subject to − αi ≤ di ≤ Ci − αi,

− αj ≤ dj ≤ Cj − αj ,

yidi + yjdj = 0.

12: Solve the sub-problem.
13: Update (αi, αj) and the vector u by (2.5).
14: end while

and is further called a maximal violating pair if

i← argmax
t
{−yt∇tf(α) | t ∈ Iup(α)},

j ← argmin
t
{−yt∇tf(α) | t ∈ Ilow(α)}.

(2.13)

A maximal violating pair was used as the working set of
a two-variable CD in the popular software LIBSVM [1]
for kernel SVM, though they now consider an improved
strategy developed in [5].

3 New CD Methods for Linear One-class SVM
and Linear SVDD

For linear one-class SVM and SVDD we propose new
CD settings that can avoid the waste of many steps
when the linear constraint is in the dual problem.

3.1 Dual Forms of Linear One-class SVM and
Linear SVDD For a set of points xi, i = 1, . . . , l
without any label information, one-class SVM [15] and
SVDD [17] described below were developed to detect
the outliers.

Given 0 < ν < 1, one-class SVM solves the following
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primal problem:

min
w,ξ,ρ

1

2
wTw − ρ+

1

νl

∑l

i=1
ξi

subject to wTxi ≥ ρ− ξi,

ξi ≥ 0, i = 1, . . . , l.

The dual form is

min
α

1

2
αTQα

subject to 0 ≤ αi ≤
1

νl
, i = 1, . . . , l,

eTα = 1,

(3.14)

where

(3.15) Qij = xT
i xj .

For SVDD under some C > 0 the primal problem is

min
R,a,ξ

R2 + C
∑l

i=1
ξi

subject to ||xi − a||2 ≤ R2 + ξi,

ξi ≥ 0, i = 1, . . . , l.

The dual form is

min
α

αTQα−
∑l

i=1
αiQii

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,

eTα = 1,

(3.16)

where Q is the same as in (3.15).
To cover (3.14), (3.16), and standard SVM with a

linear constraint, from now on we consider the following
more general form

min
α

1

2
αTQα+ pTα

subject to 0 ≤ αi ≤ Ci, i = 1, . . . , l,

yTα = ∆,

(3.17)

where yi = ±1 and ∆ is a constant.

3.2 Larger Working Sets and a Two-level CD
Framework When |B| = 2 is considered, we explained
in Section 2.4 that the linear constraint causes that
(αi, αj) is easily optimal for the sub-problem (2.2) and
cannot be updated. A natural idea to address this issue
is by considering a larger B. With more variables, αB

is less likely confined by the linear constraint and can
be updated.

However, a larger B leads to the more expen-
sive calculation of ∇Bf(α), where the cost is pro-
portional to |B|. Further, with |B| > 2, the sub-
problem no longer has a closed-form solution and the

Algorithm 3 A two-level CD algorithm to solve prob-
lem (3.17), where at each inner CD step a two-variable
sub-problem is solved

1: Let α be a feasible point and calculate Qii,∀i
2: while α is not optimal do
3: Select a working set B
4: for s = 1, . . . , r do
5: Select a two-variable set Bs ⊂ B
6: (i, j)← Bs

7: Calculate Qij to form the sub-problem (2.11)
8: Solve the sub-problem.
9: Update (αi, αj) and the vector u by (2.5).

10: end for
11: end while

solution procedure can be expensive. If a standard
constrained-optimization package is applied, the cost
is easily quadratic or even cubic to the size |B|. In-
stead, we can loosely solve the sub-problem. Here we
consider applying several two-variable CD steps because
each two-variable sub-problem has a closed-form solu-
tion. To this end we have a two-level CD procedure in
Algorithm 3. In the inner procedure (the for loop in Al-
gorithm 3), we run r CD steps, where r is a pre-specified
constant.4

Algorithm 3 is a general framework, and any its
realization relies on the specification of
� the outer working set B in line 3, and
� the inner working set Bs with |Bs| = 2 in line 5.
For example, if B is a pair of indices from a random or
a cyclic selection and we specify r = 1 to have B1 = B,
then Algorithm 3 is reduced to Algorithm 2, a standard
two-variable CD.

In Sections 3.3 and 3.4, we propose two realizations
of Algorithm 3 so every inner two-variable CD step has
a better chance to update the corresponding variables.

3.3 A Realization of Two-level CD: Outer Ran-
dom/Cyclic Selection and Inner Greedy Selec-
tion Our first proposed setting is a minor extension of
the standard CD in Algorithm 2. We still consider a
random/cyclic selection of the (outer) working set B,
but slightly enlarge the size to be more than two. For
example, in later experiments, we consider |B| = 4. The
remaining issue is to decide two-variable working sets for
inner CD steps. That is, from the set B each time we
must select two elements. If a random/cyclic selection
is considered, from the discussion in Section 2.4 easily
variables cannot be updated because of the linear con-

4Two-level CD has been used in, for example, [14, 12], though
they consider kernel rather than linear SVM.
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straint. Then the same issue of many wasted working
sets may occur. Therefore, a greedy selection should be
considered. Here we consider the maximal violating pair
of the sub-problem of αB and the detailed procedure is
in Algorithm 4. Note that αB is changed along inner
iterations, so at each inner CD step, ∇Bf(α) must be
re-calculated by (2.3); see line 8 in Algorithm 4.

The following example illustrates our idea. Con-
sider two randomly selected (outer) working sets with
|B| = 2 and 4, and set r = 1 (i.e., we run only one inner
CD step). Assume the following situation occurs.

Outer Inner greedily
working set selected pair

B = {i, j} {i, j}
B = {i, j, s, t} {j, s}

The first row corresponds to the standard two-variable
CD, for which because of the linear constraint, easily
(αi, αj) cannot be moved. In contrast, in the second
row for the new setting, because B is enlarged to have
four elements, a maximal violating pair (αj , αs) more
likely can be updated. Of course the cost per outer
CD step is increased for calculating ∇Bf(α). However,
if the selected pair can lead to the update of α, the
overall convergence may be faster.

Because |B| is small and the greedy selection is con-
sidered for the inner CD procedure, an implementation
option is to construct the sub-problem (2.2) first and
then solve it by a CD procedure for training kernel
SVM. Then ∇Bf(α) is cheaply maintained instead of
being calculated at each inner CD step. However, in
Algorithm 4 we do not consider such a setting because
first, we run only a small number of inner CD steps, and
second, the implementation of Algorithm 4 is simpler.
A detailed discussion about the two implementations is
in Section 6 of supplementary materials.

3.4 A Realization of Two-level CD: Outer
Greedy Selection and Inner Random/Cyclic Se-
lection In Section 3.3, we consider a working set B
with |B| slightly larger than two so αB has a better
chance to be updated even with the presence of the lin-
ear constraint. We mentioned that |B| = 3 or 4 can
be considered. The set B cannot be further enlarged
because of the higher cost on calculating ∇Bf(α) in
line 8 of Algorithm 4 for the greedy inner working-set
selection.

In this section we propose a viable way of using a
large working set B. The procedure is as follows. In
the past development of CD methods for kernel SVM,
one method to greedily find a relatively larger working
set is by selecting the r most violating pairs [7]. We

Algorithm 4 A two-level CD algorithm with an outer
random/cyclic selection and an inner greedy selection

1: Let α be a feasible point and calculate Qii,∀i
2: while α is not optimal do
3: Randomly/cyclicly select a working set B with
|B| slightly larger than 2

4: for s = 1, . . . , r do
5: if Iup(αB) = ∅ or Ilow(αB) = ∅ then
6: break
7: end if
8: Calculate ∇Bf(α)
9: Obtain (i, j) by

i← argmax
t
{−yt∇tf(α) | t ∈ Iup(αB)},

j ← argmin
t
{−yt∇tf(α) | t ∈ Ilow(αB)}.

10: if (i, j) is not a violating pair then
11: break
12: end if
13: Calculate Qij to form the sub-problem (2.11)
14: Solve the sub-problem.
15: Update (αi, αj) and the vector u by (2.5).
16: end for
17: end while

sequentially find pairs to form the following working set.

B = {i1, j1} ∪ {i2, j2} ∪ · · · ∪ {ir, jr},

where each (i, j) is the maximal violating pair from all
the remaining indices. From (2.12), in the end these r
pairs satisfy the following relation.

−yj1∇j1f(α) ≤ · · · ≤ −yjr∇jrf(α)︸ ︷︷ ︸
j1,...,jr∈Ilow(α)

<−yir∇irf(α) ≤ · · · ≤ −yi1∇i1f(α)︸ ︷︷ ︸
i1,...,ir∈Iup(α)

.
(3.18)

For the inner CD procedure to solve a sub-problem
with a large |B|, we have mentioned that neither a
greedy nor a random/cyclic selection is suitable. Our
main idea is that because the outer-level working set B
now contains the r most violating pairs, these pairs can
be sequentially considered as inner-level working sets. If
the vector α is not significantly changed in the inner CD
procedure, very likely each pair is still a violating one
when it is considered. Thus in most of the r inner CD
steps, α can be updated. Details of our procedure are in
Algorithm 5. We discuss the convergence of Algorithm 5
in supplementary materials.

The above interpretation of Algorithm 5 is from the
viewpoint of a two-level CD procedure. Instead, we can
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Algorithm 5 A two-level CD algorithm with an outer
greedy selection and an inner random/cyclic selection

1: Let α be a feasible point and calculate Qii,∀i
2: while α is not optimal do
3: Calculate the full gradient ∇f(α)
4: Determine the working set by (3.18)

B = {i1, j1}︸ ︷︷ ︸
B1

∪ · · · ∪ {ir, jr}︸ ︷︷ ︸
Br

5: for s = 1, . . . , r do
6: (i, j)← Bs

7: if Iup(αBs
) = ∅ or Ilow(αBs

) = ∅ then
8: continue
9: end if

10: Calculate ∇if(α) and ∇jf(α)
11: if (i, j) is not a violating pair then
12: continue
13: end if
14: Calculate Qij to form the sub-problem (2.11)
15: Solve the sub-problem.
16: Update (αi, αj) and the vector u by (2.5).
17: end for
18: end while

iter 1

iter 2
...

iter r

∇f(α1)

∇f(α2)
...

∇f(αr)

(i1, j1)

(i2, j2)
...

(ir, jr)

(a) Two-variable CD
by greedy working-set
selections

∇f(α1) (i1, j1)

(i2, j2)
...

(ir, jr)

(b) Algorithm 5

Figure 1: An illustration showing how Algorithm 5 saves
the cost by selecting several working sets per gradient
calculation.

consider Algorithm 5 as a particular implementation of
two-variable CD. In Figure 1(a), we illustrate a greedy
setting of expensively calculating ∇f(α) at each step
to select just two elements as the working set. To
reduce the cost, in Figure 1(b), which corresponds to
Algorithm 5, after having the gradient we select several
pairs and use them in the next several CD steps. Thus
the gradient is calculated less frequently.

For the cost of getting the r most violating pairs,
we use a max heap to maintain the r smallest gradients.
The cost is O(l log r) and the procedure of finding the r
largest gradients is similar. If r is chosen to be a larger
number (e.g., l/10 in our experiment) and if n is not
small, then the O(l log r) cost in finding the working set
is usually smaller than the O(rn) cost in constructing
and solving the r two-variable sub-problems.

4 Experiments

In this section we compare the proposed methods with
Algorithm 2, a standard two-variable CD via a ran-
dom/cyclic working-set selection.

4.1 Data and Settings for Experiments We con-
sider some binary classification sets though label infor-
mation is not used for training. These sets are the same
as those used in [2]. Detailed data statistics can be
found in their supplementary materials. For one-class
SVM, we consider ν = 0.1. For SVDD, C = 1/(νl) is
used. Experiments of using other ν and C values are
given in supplement materials though results are simi-
lar. For the initial α, we follow the setting in LIBSVM
[1] for kernel one-class SVM and have

α =


[
1

νl
, . . . ,

1

νl︸ ︷︷ ︸
⌊νl⌋

, 1− ⌊νl⌋
νl , 0, . . . , 0]T one-class SVM,

[C, . . . , C︸ ︷︷ ︸
⌊1/C⌋

, 1− ⌊ 1C ⌋C, 0, . . . , 0]T SVDD.

To check the convergence speed, we draw figures to
show the relationship between
� the cumulative number of O(n) operations, and
� the relative difference to the objective function value
at an optimal solution α∗.5

(4.19)
|f(α)− f(α∗)|
|f(α∗)| .

For one-class SVM, |f(α∗)| is often close to zero so we
follow LIBSVM [1] to solve a scaled problem of (3.14).

min
ᾱ

1

2
ᾱTQᾱ

subject to 0 ≤ ᾱi ≤ 1, i = 1, . . . , l,

eT ᾱ = νl.

We consider the number of O(n) operations because
it is proportional to the cost of our algorithms. In
supplementary materials we show figures to confirm that
checking the number of O(n) operations is almost the
same as checking the running time.

4.2 Results and Analysis We compare the follow-
ing approaches.
� cyclic-2cd: This is a standard two-variable CD in Al-
gorithm 2 via a random/cyclic working-set selection.
Following the suggestion in [2], at each cycle we per-
mute all instance indices 1, . . . , l to π(1), . . . , π(l), and
sequentially consider the following working sets:

(4.20) (π(1), π(2)), (π(3), π(4)), . . . , (π(l − 1), π(l)).

5In practice α∗ is not available, so an approximation is
obtained by running enough iterations of the algorithm.
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Linear one-class SVM with ν = 0.1
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Linear SVDD with C = 1/(νl), where ν = 0.1
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Figure 2: A comparison on the convergence speed of different methods (upper: linear one-class SVM, lower: linear
SVDD). The x-axis is the cumulative number of O(n) operations, while the y-axis is the relative difference to the
optimal function value defined in (4.19).

� greedy-2cd: This is similar to cyclic-2cd, though
for the working-set selection we choose a maximal
violating pair via (2.13). This setting corresponds to
the way of training kernel one-class SVM or SVDD.

� cyclic-|B|cd-greedy: This is Algorithm 4 and |B| indi-
cates the working-set size. As discussed in Section 3.3,
|B| should be only slightly larger than two. Here we
consider |B| = 4. The word “cyclic” in the name of
this approach indicates that our working-set selection
is extended from (4.20) to have

(π(1), . . . , π(|B|)) , (π(|B|+ 1), . . . , π(2|B|)) , . . . .

The word “greedy” indicates that in the inner CD
procedure, each time we greedily select a maximum

violating pair from B for update. Regarding the
number of inner CD steps, we choose to run only one
step (i.e., r = 1).

� greedy-R-cyclic: This is Algorithm 5. The value
R ∈ (0, 1] indicates that r = Rl violating pairs are
selected as the working set B. We consider R = 0.1
for our experiments. The word “cyclic” indicates that
the inner working sets are sequentially selected via the
way described in (4.20).

Results for linear one-class SVM and linear SVDD are
respectively presented in Figure 2. We can make the
following observations.
� For both one-class SVM and SVDD, greedy-2cd is
much worse than the other three methods. While
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a greedy selection guarantees that each step can suc-
cessfully updateα, this property does not compensate
the much higher cost of each CD step.

� For both one-class SVM and SVDD, cyclic-4cd-greedy
performs better than cyclic-2cd. Even though the cost
per CD step is higher, because of the larger working
set B, more successful updates of α lead to faster
convergence.

� For problems such as covtype scale, greedy-0.1-cyclic
converges slower at the very begining of the opti-
mization process. The reason is that at the first
outer CD step, ∇f(α) is calculated in O(ln) cost;
see (2.3). Only after that the first (αi, αj) can pos-
sibly be updated. The same result can be found for
greedy-2cd though it performs poorly not only at the
begining. In contrast, cyclic-2cd and cyclic-4cd-greedy
have attempted to update many pairs within the same
amount of operations.

� Despite the slower start at the very begining, greedy-
0.1-cyclic has the fastest overall convergence. The
reason should be that when α is close to an optimal
solution, Figure 1 indicates that Algorithm 5 is
approaching a true greedy setting. Thus a faster final
convergence is achieved.

In summary, greedy-0.1-cyclic is our recommended set-
ting to train linear one-class SVM and SVDD.

5 Discussion and Conclusions

In this work, we have successfully developed efficient
and effective coordinate descent algorithms for linear
one-class SVM and SVDD. The proposed algorithms
maintain the simplicity of existing coordinate descent
algorithms for linear SVM for classification, but are
much more efficient for one-class scenarios.
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[14] S. Rüping, mySVM - another one of those sup-
port vector machines, 2000. Software available at
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

[15] B. Schölkopf, J. C. Platt, J. Shawe-Taylor,
A. J. Smola, and R. C. Williamson, Estimat-
ing the support of a high-dimensional distribution,
Neural Comput., 13 (2001), pp. 1443–1471.

[16] I. Steinwart, D. Hush, and C. Scovel,
Training SVMs without offset, JMLR, 12 (2011),
pp. 141–202.

[17] D. M. J. Tax and R. P. W. Duin, Support vector
data description, MLJ, 54 (2004), pp. 45–66.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited


	1 Introduction
	2 Coordinate Descent Methods for the Dual Problem of Linear SVM with/without the Bias Term
	2.1 Coordinate Descent Methods for Linear SVM
	2.2 The Calculation of the Gradient B f(α)
	2.3 Working-set Selection
	2.4 The Use of the Bias Term
	2.5 Review of Greedy Working-set Selection for Kernel SVM

	3 New CD Methods for Linear One-class SVM and Linear SVDD
	3.1 Dual Forms of Linear One-class SVM and Linear SVDD
	3.2 Larger Working Sets and a Two-level CD Framework
	3.3 A Realization of Two-level CD: Outer Random/Cyclic Selection and Inner Greedy Selection
	3.4 A Realization of Two-level CD: Outer Greedy Selection and Inner Random/Cyclic Selection

	4 Experiments
	4.1 Data and Settings for Experiments
	4.2 Results and Analysis

	5 Discussion and Conclusions

