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Abstract

Support vector regression (SVR) and support vector classification (SVC) are popular learn-
ing techniques, but their use with kernels is often time consuming. Recently, linear SVC
without kernels has been shown to give competitive accuracy for some applications, but
enjoys much faster training/testing. However, few studies have focused on linear SVR. In
this paper, we extend state-of-the-art training methods for linear SVC to linear SVR. We
show that the extension is straightforward for some methods, but is not trivial for some
others. Our experiments demonstrate that for some problems, the proposed linear-SVR
training methods can very efficiently produce models that are as good as kernel SVR.
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1. Introduction

Support vector regression (SVR) is a widely used regression technique (Vapnik, 1995). It is
extended from support vector classification (SVC) by Boser et al. (1992). Both SVR and
SVC are often used with the kernel trick (Cortes and Vapnik, 1995), which maps data to
a higher dimensional space and employs a kernel function. We refer to such settings as
nonlinear SVR and SVC. Although effective training methods have been proposed (e.g.,
Joachims, 1998; Platt, 1998; Chang and Lin, 2011), it is well known that training/testing
large-scale nonlinear SVC and SVR is time consuming.

Recently, for some applications such as document classification, linear SVC without
using kernels has been shown to give competitive performances, but training and testing
are much faster. A series of studies (e.g., Keerthi and DeCoste, 2005; Joachims, 2006;
Shalev-Shwartz et al., 2007; Hsieh et al., 2008) have made linear classifiers (SVC and logistic
regression) an effective and efficient tool. On the basis of this success, we are interested
in whether linear SVR can be useful for some large-scale applications. Some available
document data come with real-valued labels, so for them SVR rather than SVC must be
considered. In this paper, we develop efficient training methods to demonstrate that, similar
to SVC, linear SVR can sometimes achieve comparable performance to nonlinear SVR, but
enjoys much faster training/testing.

c©2012 Chia-Hua Ho and Chih-Jen Lin.



Ho and Lin

We focus on methods in the popular package LIBLINEAR (Fan et al., 2008), which
currently provides two types of methods for large-scale linear SVC.1 The first is a Newton-
type method to solve the primal-form of SVC (Lin et al., 2008), while the second is a
coordinate descent approach for the dual form (Hsieh et al., 2008). We show that it is
straightforward to extend the Newton method for linear SVR, but some careful redesign is
essential for applying coordinate descent methods.

LIBLINEAR offers two types of training methods for linear SVC because they complement
each other. A coordinate descent method quickly gives an approximate solution, but may
converge slowly in the end. In contrast, Newton methods have the opposite behavior. We
demonstrate that similar properties still hold when these training methods are applied to
linear SVR.

This paper is organized as follows. In Section 2, we introduce the formulation of linear
SVR. In Section 3, we investigate two types of optimization methods for training large-scale
linear SVR. In particular, we propose a condensed implementation of coordinate descent
methods. We conduct experiments in Section 4 on some large regression problems. A
comparison between linear and nonlinear SVR is given, followed by detailed experiments of
optimization methods for linear SVR. Section 5 concludes this work.

2. Linear Support Vector Regression

Given a set of training instance-target pairs {(xi, yi)}, xi ∈ Rn, yi ∈ R, i = 1, . . . , l, linear
SVR finds a model w such that wTxi is close to the target value yi. It solves the following
regularized optimization problem.

min
w

f(w), where f(w) ≡ 1

2
wTw + C

l∑
i=1

ξε(w;xi, yi). (1)

In Equation (1), C > 0 is the regularization parameter, and

ξε(w;xi, yi) =

{
max(|wTxi − yi| − ε, 0) or (2)

max(|wTxi − yi| − ε, 0)2 (3)

is the ε-insensitive loss function associated with (xi, yi). The parameter ε is given so that
the loss is zero if |wTxi − yi| ≤ ε. We refer to SVR using (2) and (3) as L1-loss and
L2-loss SVR, respectively. It is known that L1 loss is not differentiable, while L2 loss is
differentiable but not twice differentiable. An illustration of the two loss functions is in
Figure 1. Once problem (1) is minimized, the prediction function is wTx.

Standard SVC and SVR involve a bias term b so that the prediction function is wTx+b.
Recent works on large-scale linear classification often omit the bias term because it hardly
affects the performance on most data. We omit a bias term b in problem (1) as well,
although in Section 4.5 we briefly investigate the performance with/without it.

It is well known (Vapnik, 1995) that the dual problem of L1-/L2-loss SVR is

min
α+,α−

fA(α+,α−) subject to 0 ≤ α+
i , α

−
i ≤ U,∀i = 1, . . . , l, (4)

1. We mean standard SVC using L2 regularization. For L1-regularized problems, the solvers are different.
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Figure 1: L1-loss and L2-loss functions.

where

fA(α+,α−)

=
1

2
(α+−α−)TQ(α+−α−) +

l∑
i=1

(
ε(α+

i +α−i )−yi(α+
i −α

−
i )+

λ

2
((α+

i )2+ (α−i )2)
)
. (5)

In Equation (5), Q ∈ Rl×l is a matrix with Qij ≡ xTi xj , and

(λ,U) =

{
(0, C) if L1-loss SVR,

( 1
2C ,∞) if L2-loss SVR.

We can combine α+ and α− so that

α =

[
α+

α−

]
and fA(α) =

1

2
αT
[
Q̄ −Q
−Q Q̄

]
α+

[
εe− y
εe+ y

]T
α,

where Q̄ = Q+ λI, I is the identity matrix, and e is the vector of ones. In this paper, we
refer to (1) as the primal SVR problem, while (4) as the dual SVR problem. The primal-
dual relationship indicates that primal optimal solution w∗ and dual optimal solution (α+)∗

and (α−)∗ satisfy

w∗ =

l∑
i=1

((α+
i )∗ − (α−i )∗)xi.

An important property of the dual problem (4) is that at optimum,

(α+
i )∗(α−i )∗ = 0,∀i.2

The dual problem of SVR has 2l variables, while SVC has only l. If a dual-based solver
is applied without a careful design, the cost may be significantly higher than that for SVC.

2. This result can be easily proved. From (5), if α+
i α
−
i 6= 0, then for any 0 < η ≤ min(α+

i , α
−
i ), replacing α+

i

and α−i with α+
i − η and α−i − η gives a smaller function value: fA(α+,α−)− 2ηε−λ((α+

i +α−i )η− η2).
Therefore, (α+

i )∗(α−i )∗ must be zero.
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Algorithm 1 A trust region Newton method for L2-loss SVR

1. Given w0.
2. For k = 0, 1, 2, . . .

2.1. If (7) is satisfied,
return wk.

2.2. Solve subproblem (6).
2.3. Update wk and ∆k to wk+1 and ∆k+1.

3. Optimization Methods for Training Linear SVR

In this section, we extend two linear-SVC methods in LIBLINEAR for linear SVR. The first
is a Newton method for L2-loss SVR, while the second is a coordinate descent method for
L1-/L2-loss SVR.

3.1 A Trust Region Newton Method (TRON) for L2-loss SVR

TRON (Lin and Moré, 1999) is a general optimization method for differentiable uncon-
strained and bound-constrained problems, where the primal problem of L2-loss SVR is a
case. Lin et al. (2008) investigate the use of TRON for L2-loss SVC and logistic regression.
In this section, we discuss how TRON can be applied to solve large linear L2-loss SVR.

The optimization procedure of TRON involves two layers of iterations. At the k-th
outer-layer iteration, given the current position wk, TRON sets a trust-region size ∆k and
constructs a quadratic model

qk(s) ≡ ∇f(wk)Ts+
1

2
sT∇2f(wk)s

as the approximation to f(wk + s) − f(wk). Then, in the inner layer, TRON solves the
following problem to find a Newton direction under a step-size constraint.

min
s

qk(s) subject to ‖s‖ ≤ ∆k. (6)

TRON adjusts the trust region ∆k according to the approximate function reduction qk(s)
and the real function decrease; see details in Lin et al. (2008).

To compute a truncated Newton direction by solving (6), TRON needs the gradient
∇f(w) and Hessian ∇2f(w). The gradient of L2-loss SVR is

∇f(w) = w + 2C(XI1,:)
T (XI1,:w − yI1 − εeI1)− 2C(XI2,:)

T (−XI2,:w + yI2 − εeI2),

where

X ≡ [x1, . . . ,xl]
T , I1 ≡ {i | wTxi − yi > ε}, and I2 ≡ {i | wTxi − yi < −ε}.

However, ∇2f(w) does not exist because L2-loss SVR is not twice differentiable. Following
Mangasarian (2002) and Lin et al. (2008), we use the generalized Hessian matrix. Let

I ≡ I1 ∪ I2.
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The generalized Hessian can be defined as

∇2f(w) = I + 2C(XI,:)
TDI,IXI,:,

where I is the identity matrix, and D is an l-by-l diagonal matrix with

Dii ≡

{
1 if i ∈ I,
0 if i /∈ I.

From Theorem 2.1 of Lin and Moré (1999), the sequence {wk} globally converges to the
unique minimum of (1).3 However, because generalized Hessian is used, it is unclear if {wk}
has local quadratic convergence enjoyed by TRON for twice differentiable functions.

For large-scale problems, we cannot store an n-by-n Hessian matrix in the memory. The
same problem has occurred in classification, so Lin et al. (2008) applied an iterative method
to solve (6). In each inner iteration, only some Hessian-vector products are required and
they can be performed without storing Hessian. We consider the same setting so that for
any vector v ∈ Rn,

∇2f(w)v = v + 2C(XI,:)
T (DI,I(XI,:v)).

For the stopping condition, we follow the setting of TRON in LIBLINEAR for classifica-
tion. It checks if the gradient is small enough compared with the initial gradient.

‖∇f(wk)‖2 ≤ εs‖∇f(w0)‖2, (7)

where w0 is the initial iterate and εs is stopping tolerance given by users. Algorithm 1 gives
the basic framework of TRON.

Similar to the situation in classification, the most expensive operation is the Hessian-
vector product. It costs O(|I|n) to evaluate ∇2f(w)v.

3.2 Dual Coordinate Descent Methods (DCD)

In this section, we introduce DCD, a coordinate descent method for the dual form of
SVC/SVR. It is used in LIBLINEAR for both L1- and L2-loss SVC. We first extend the
setting of Hsieh et al. (2008) to SVR and then propose a better algorithm using properties
of SVR. We also explain why the preferred setting for linear SVR may be different from
that for nonlinear SVR.

3.2.1 A Direct Extension from Classification to Regression

A coordinate descent method sequentially updates one variable by solving the following
subproblem.

min
z

fA(α+ zei)− fA(α)

subject to 0 ≤ αi + z ≤ U.

where

fA(α+ zei)− fA(α) = ∇ifA(α)z +
1

2
∇2
iifA(α)z2

3. Note that the objective function of (1) is strictly convex, so (1) has a unique global minimum.
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and ei ∈ R2l×1 is a vector with i-th element one and others zero. The optimal value z can
be solved in a closed form, so αi is updated by

αi ← min

(
max

(
αi −

∇ifA(α)

∇2
iifA(α)

, 0

)
, U

)
, (8)

where

∇ifA(α) =

{
(Q(α+ −α−))i + ε− yi + λα+

i , if 1 ≤ i ≤ l,
−(Q(α+ −α−))i−l + ε+ yi−l + λα−i−l, if l + 1 ≤ i ≤ 2l,

(9)

and

∇2
iifA(α) =

{
Q̄ii if 1 ≤ i ≤ l,
Q̄i−l,i−l if l + 1 ≤ i ≤ 2l.

To efficiently implement (8), techniques that have been employed for SVC can be applied.
First, we precalculate Q̄ii = xTi xi + λ,∀i in the beginning. Second, (Q(α+ − α−))i is
obtained using a vector u.

(Q(α+ −α−))i = uTxi, where u ≡
l∑

i=1

(α+
i − α

−
i )xi.

If the current iterate αi is updated to ᾱi by (8), then vector u can be maintained by

u←

{
u+ (ᾱi − αi)xi, if 1 ≤ i ≤ l,
u− (ᾱi−l − αi−l)xi−l, if l + 1 ≤ i ≤ 2l.

(10)

Both (8) and (10) cost O(n), which is the same as the cost in classification.
Hsieh et al. (2008) check the projected gradient ∇P fA(α) for the stopping condition

because α is optimal if and only if ∇P fA(α) is zero. The projected gradient is defined as

∇Pi fA(α) ≡


min(∇ifA(α), 0) if αi = 0,

max(∇ifA(α), 0) if αi = U,

∇ifA(α) if 0 < αi < U.

(11)

If ∇Pi fA(α) = 0, then (8) and (11) imply that αi needs not be updated. We show the
overall procedure in Algorithm 2.

Hsieh et al. (2008) apply two techniques to make a coordinate descent method faster.
The first one is to permute all variables at each iteration to decide the order for update.
We find that this setting is also useful for SVR. The second implementation technique is
shrinking. By gradually removing some variables, smaller optimization problems are solved
to save the training time. In Hsieh et al. (2008), they remove those which are likely to be
bounded (i.e., 0 or U) at optimum. Their shrinking strategy can be directly applied here,
so we omit details.

While we have directly applied a coordinate descent method to solve (4), the procedure
does not take SVR’s special structure into account. Note that α+ and α− in (5) are very
related. We can see that in the following situations some operations in Algorithm 2 are
redundant.
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Algorithm 2 A DCD method for linear L1-/L2-loss SVR

1. Given α+ and α−. Let α=

[
α+

α−

]
and the corresponding u=

∑l
i=1(αi − αi+l)xi.

2. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.
3. For k = 0, 1, 2, . . .

• For i ∈ {1, . . . , 2l} // select an index to update
3.1. If |∇Pi fA(α)| 6= 0

3.1.1. Update αi by (8), where (Q(α+ −α−))i or (Q(α+ −α−))i−l is eval-
uated by uTxi or uTxi−l. See Equation (9).

3.1.2. Update u by (10).

1. We pointed out in Section 2 that an optimal α of (4) satisfies

α+
i α
−
i = 0, ∀i. (12)

If one of α+ or α− is positive at optimum, it is very possible that the other is zero
throughout all final iterations. Because we sequentially select variables for update,
these zero variables, even if not updated in steps 3.1.1–3.1.2 of Algorithm 2, still need
to be checked in the beginning of step 3.1. Therefore, some operations are wasted.
Shrinking can partially solve this problem, but alternatively we may explicitly use the
property (12) in designing the coordinate descent algorithm.

2. We show that some operations in calculating the projected gradient in (11) are wasted
if all we need is the largest component of the projected gradient. Assume α+

i > 0 and
α−i = 0. If the optimality condition at α−i is not satisfied yet, then

∇Pi+lfA(α) = ∇i+lfA(α) = −(Q(α+ −α−))i + ε+ yi + λα−i < 0.

We then have

0 < −∇i+lfA(α) = (Q(α+ −α−))i − ε− yi − λα−i
< (Q(α+ −α−))i + ε− yi + λα+

i = ∇ifA(α), (13)

so a larger violation of the optimality condition occurs at α+
i . Thus, when α+

i > 0
and α−i = 0, checking ∇i+lfA(α) is not necessary if we aim to find the largest element
of the projected gradient.

In Section 3.2.2, we propose a method to address these issues. However, the straightforward
coordinate descent implementation discussed in this section still possesses some advantages.
See the discussion in Section 3.2.3.

3.2.2 A New Coordinate Descent Method by Solving α+ and α− Together

Using the property (12), the following problem replaces (α+
i )2+(α−i )2 in (5) with (α+

i −α
−
i )2

and gives the same optimal solutions as the dual problem (4).

min
α+,α−

1

2
(α+−α−)TQ(α+−α−) +

l∑
i=1

(
ε(α+

i +α−i )− yi(α+
i −α

−
i ) +

1

2
(α+

i − α
−
i )2
)
. (14)
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Further, Equation (12) and α+
i ≥ 0, α−i ≥ 0 imply that at optimum,

α+
i + α−i = |α+

i − α
−
i |.

With Q̄ = Q+ λI and defining
β = α+ −α−,

problem (14) can be transformed as

min
β

fB(β) subject to − U ≤ βi ≤ U,∀i, (15)

where

fB(β) ≡ 1

2
βT Q̄β − yTβ + ε‖β‖1.

If β∗ is an optimum of (15), then

(α+
i )∗ ≡ max(β∗i , 0) and (α−i )∗ ≡ max(−β∗i , 0)

are optimal for (4).
We design a coordinate descent method to solve (15). Interestingly, (15) is in a form

similar to the primal optimization problem of L1-regularized regression and classification.
In LIBLINEAR, a coordinate descent solver is provided for L1-regularized L2-loss SVC (Yuan
et al., 2010). We will adapt some of its implementation techniques here. A difference be-
tween L1-regularized classification and the problem (15) is that (15) has additional bounded
constraints.

Assume β is the current iterate and its i-th component, denoted as a scalar variable s,
is being updated. Then the following one-variable subproblem is solved.

min
s

g(s) subject to − U ≤ s ≤ U, (16)

where β is considered as a constant vector and

g(s) = fB(β + (s− βi)ei)− fB(β)

= ε|s|+ (Q̄β − y)i(s− βi) +
1

2
Q̄ii(s− βi)2 + constant. (17)

It is well known that (17) can be reduced to “soft-thresholding” in signal processing and
has a closed-form minimum. However, here we decide to give detailed derivations of solving
(16) because of several reasons. First, s is now bounded in [−U,U ]. Second, the discussion
will help to explain our stopping condition and shrinking procedure.

To solve (16), we start with checking the derivative of g(s). Although g(s) is not
differentiable at s = 0, its derivatives at s ≥ 0 and s ≤ 0 are respectively

g′p(s) = ε+ (Q̄β − y)i + Q̄ii(s− βi) if s ≥ 0, and

g′n(s) = −ε+ (Q̄β − y)i + Q̄ii(s− βi) if s ≤ 0.

Both g′p(s) and g′n(s) are linear functions of s. Further,

g′n(s) ≤ g′p(s), ∀s ∈ R.
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s

0−U U

g′p(s)

g′n(s)

s∗

(a) 0 < g′n(0) < g′p(0).

s
s∗ = 0

g′p(s)

g′n(s)

−U U

(b) g′n(0) ≤ 0 ≤ g′p(0).

s
0

g′p(s)

g′n(s)

s∗

−U U

(c) g′n(0) < g′p(0) < 0.

Figure 2: We discuss the minimization of (16) using three cases. The y-axis indicates the
value of g′p(s) and g′n(s). The point s∗ denotes the optimal solution.

For any strictly convex quadratic function, the unique minimum occurs when the first
derivative is zero. Because g(s) is only piece-wise quadratic, we consider three cases in
Figure 2 according to the values of g′p(s) and g′n(s). In Figure 2(a), 0 < g′n(0) < g′p(0), so
g(0) is the smallest on the positive side:

g(0) ≤ g(s),∀s ≥ 0. (18)

For s ≤ 0, g′n(s) = 0 has a root because the line of g′n(s) intersects the x-axis. With (18),
this root is the minimum for both s ≤ 0 and s ≥ 0. By solving g′n(s) = 0 and taking the
condition 0 < g′n(0), the solution of (16) is

βi −
−ε+ (Q̄β − y)i

Q̄ii
if − ε+ (Q̄β − y)i > Q̄iiβi. (19)

We also need to take the constraint s ∈ [−U,U ] in Equation (16) into account. If the value
obtained in (19) is smaller than −U , then g′n(s) > 0,∀s ≥ −U . That is, g(s) is an increasing
function and the minimum is at s = −U .

The situation is similar in Figure 2(c), where the minimum occurs at g′p(s) = 0. For the
remaining case in Figure 2(b),

g′n(0) ≤ 0 ≤ g′p(0). (20)
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Algorithm 3 A new DCD method which solves (15) for linear L1-/L2-loss SVR

1. Given β and the corresponding u=
∑l

i=1 βixi.
2. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.
3. For k = 0, 1, 2, . . .

• For i ∈ {1, . . . , l} // select an index to update
3.1. Find s by (21), where (Qβ)i is evaluated by uTxi.
3.2. u← u+ (s− βi)xi.
3.3. βi ← s.

Inequalities in (20) imply that g(s) is a decreasing function at s ≤ 0, but is an increasing
function at s ≥ 0. Thus, an optimal solution occurs at s = 0. A summary of the three cases
shows that the subproblem (16) has the following closed form solution.

s← max(−U,min(U, βi + d)), (21)

where

d ≡


−g′p(βi)

Q̄ii
if g′p(βi) < Q̄iiβi,

−g′n(βi)
Q̄ii

if g′n(βi) > Q̄iiβi,

−βi otherwise.

(22)

In (22), we simplify the solution form in (19) by using the property

g′p(βi) = ε+ (Q̄β − y)i, and g′n(βi) = −ε+ (Q̄β − y)i. (23)

Following the same technique in Section 3.2.1, we maintain a vector u and calculate (Q̄β)
by

(Q̄β)i = uTxi + λβi, where u =
l∑

i=1

βixi.

The new DCD method to solve (15) is sketched in Algorithm 3.
For the convergence, we show in Appendix A that Algorithm 3 is a special case of the

general framework in Tseng and Yun (2009) for non-smooth separable minimization. Their
Theorem 2(b) implies that Algorithm 3 converges in an at least linear rate.

Theorem 1 For L1-loss and L2-loss SVR, if βk is the k-th iterate generated by Algorithm
3, then {βk} globally converges to an optimal solution β∗. The convergence rate is at least
linear: there are 0 < µ < 1 and an iteration k0 such that

fB(βk+1)− fB(β∗) ≤ µ(fB(βk)− fB(β∗)), ∀k ≥ k0.

Besides Algorithm 3, other types of coordinate descent methods may be applicable here.
For example, at step 3 of Algorithm 3, we may randomly select a variable for update. Studies
of such random coordinate descent methods with run time analysis include, for example,
Shalev-Shwartz and Tewari (2011), Nesterov (2010), and Richtárik and Takáč (2011).

For the stopping condition and the shrinking procedure, we will mainly follow the setting
in LIBLINEAR for L1-regularized classification. To begin, we study how to measure the
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violation of the optimality condition of (16) during the optimization procedure. From
Figure 2(c), we see that

if 0 < β∗i < U is optimal for (16), then g′p(β
∗
i ) = 0.

Thus, if 0 < βi < U , |g′p(βi)| can be considered as the violation of the optimality. From
Figure 2(b), we have that

if β∗i = 0 is optimal for (16), then g′n(β∗i ) ≤ 0 ≤ g′p(β∗i ).

Thus, {
g′n(βi) if βi = 0 and g′n(βi) > 0,

−g′p(βi) if βi = 0 and g′p(βi) < 0

gives the violation of the optimality. After considering all situations, we know that

βi is optimal for (16) if and only if vi = 0,

where

vi ≡



|g′n(βi)| if βi ∈ (−U, 0), or βi = −U and g′n(βi) ≤ 0,

|g′p(βi)| if βi ∈ (0, U), or βi = U and g′p(βi) ≥ 0,

g′n(βi) if βi = 0 and g′n(βi) ≥ 0,

−g′p(βi) if βi = 0 and g′p(βi) ≤ 0,

0 otherwise.

(24)

If β is unconstrained (i.e., U =∞), then (24) reduces to the minimum-norm subgradient
used in L1-regularized problems. Based on it, Yuan et al. (2010) derive their stopping
condition and shrinking scheme. We follow them to use a similar stopping condition.

‖vk‖1 < εs‖v0‖1, (25)

where v0 and vk are the initial violation and the violation in the k-th iteration, respectively.
Note that vk’s components are sequentially obtained via (24) in l coordinate descent steps
of the k-th iteration.

For shrinking, we remove bounded variables (i.e., βi = 0, U , or −U) if they may not be
changed at the final iterations. Following Yuan et al. (2010), we use a “tighter” form of the
optimality condition to conjecture that a variable may have stuck at a bound. We shrink
βi if it satisfies one of the following conditions.

βi = 0 and g′n(βi) < −M < 0 < M < g′p(βi), (26)

βi = U and g′p(βi) < −M, or (27)

βi = −U and g′n(βi) > M, (28)

where
M ≡ max

i
vk−1
i (29)

is the maximal violation of the previous iteration. The condition (26) is equivalent to

βi = 0 and − ε+M < (Q̄β)i − yi < ε−M. (30)
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Algorithm 4 Details of Algorithm 3 with a stopping condition and a shrinking implemen-
tation.

1. Given β and corresponding u =
∑l

i=1 βixi.
2. Set λ = 0 and U = C if L1-loss SVR; λ = 1/(2C) and U =∞ if L2-loss SVR.
3. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.
4. M ←∞, and compute ‖v0‖1 by (24).
5. T ← {1, . . . , l}.
6. For k = 0, 1, 2, . . .

6.1. Randomly permute T .
6.2. For i ∈ T // select an index to update

6.2.1. g′p ← −yi + uTxi + λβi + ε, g′n ← −yi + uTxi + λβi − ε.
6.2.2. Find vki by (24).
6.2.3. If any condition in (26), (27), and (28) is satisfied

T ← T\{i}.
continue

6.2.4. Find s by (21).
6.2.5. u← u+ (s− βi)xi.
6.2.6. βi ← s.

6.3. If ‖vk‖1/‖v0‖1 < εs
If T = {1, . . . , l}

break
else
T ← {1, . . . , l}, and M ←∞.

else
M ← ‖vk‖∞.

This is almost the same as the one used in Yuan et al. (2010); see Equation (32) in that
paper. However, there are some differences. First, because they solve L1-regularized SVC,
ε in (30) becomes the constant one. Second, they scale M to a smaller value. Note that M
used in conditions (26), (27), and (28) controls how aggressive our shrinking scheme is. In
Section 4.6, we will investigate the effect of using different M values.

For L2-loss SVR, αi is not upper-bounded in the dual problem, so (26) becomes the
only condition to shrink variables. This makes L2-loss SVR have less opportunity to shrink
variables than L1-loss SVR. The same situation has been known for L2-loss SVC.

In Section 3.2.1, we pointed out some redundant operations in calculating the projected
gradient of fA(α+,α−). If 0 < βi < U , we have α+

i = βi and α−i = 0. In this situation,
Equation (13) indicates that for finding the maximal violation of the optimality condition,
we only need to check ∇Pi fA(α) rather than ∇Pi+lfA(α). From (11) and (23),

∇Pi fA(α) = (Q̄β − y)i + ε = g′p(β).

This is what we checked in (24) when 0 < β < U . Therefore, no operations are wasted.
Algorithm 4 is the overall procedure to solve (15). In the beginning, we set M =∞, so

no variables are shrunk at the first iteration. The set T in Algorithm 4 includes variables
which have not been shrunk. During the iterations, the stopping condition of a smaller
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problem of T is checked. If it is satisfied but T is not the full set of variables, we reset T
to be {1, . . . , l}; see the if-else statement in step 6.3 of Algorithm 4. This setting ensures
that the algorithm stops only after the stopping condition for problem (15) is satisfied.
Similar approaches have been used in LIBSVM (Chang and Lin, 2011) and some solvers in
LIBLINEAR.

3.2.3 Difference between Dual Coordinate Descent Methods for Linear
and Nonlinear SVR

The discussion in Sections 3.2.1–3.2.2 concludes that α+
i and α−i should be solved together

rather than separately. Interestingly, for nonlinear (kernel) SVR, Liao et al. (2002) argue
that the opposite is better. They consider SVR with a bias term, so the dual problem
contains an additional linear constraint.

l∑
i=1

(α+
i − α

−
i ) = 0.

Because of this constraint, their coordinate descent implementation (called decomposition
methods in the SVM community) must select at least two variables at a time. They discuss
the following two settings.

1. Considering fA(α) and selecting i, j ∈ {1, . . . , 2l} at a time.

2. Selecting i, j ∈ {1, . . . , l} and then updating α+
i , α−i , α+

j , and α−j together. That is,
a four-variable subproblem is solved.

The first setting corresponds to ours in Section 3.2.1, while the second is related to that in
Section 3.2.2. We think Liao et al. (2002) prefer the first because of the following reasons,
from which we can see some interesting differences between linear and nonlinear SVM.

1. For nonlinear SVM, we can afford to use gradient information for selecting the working
variables; see reasons explained in Section 4.1 of Hsieh et al. (2008). This is in con-
trast to the sequential selection for linear SVM. Following the gradient-based variable
selection, Liao et al. (2002, Theorem 3.4) show that if an optimal (α+

i )∗ > 0, then α−i
remains zero in the final iterations without being selected for update. The situation
for (α−i )∗ > 0 is similar. Therefore, their coordinate descent algorithm implicitly has a
shrinking implementation, so the first concern discussed in Section 3.2.1 is alleviated.

2. Solving a four-variable subproblem is complicated. In contrast, for the two-variable
subproblem of α+

i and α−i , we demonstrate in Section 3.2.2 that a simple closed-form
solution is available.

3. The implementation of coordinate descent methods for nonlinear SVM is more com-
plicated than that for linear because of steps such as gradient-based variable selection
and kernel-cache maintenance, etc. Thus, the first setting of minimizing fA(α) pos-
sesses the advantage of being able to reuse the code of SVC. This is the approach
taken by the nonlinear SVM package LIBSVM (Chang and Lin, 2011), in which SVC
and SVR share the same optimization solver. In contrast, for linear SVC/SVR, the
implementation is simple, so we can have a dedicated code for SVR. In this situation,
minimizing fB(β) is more preferable than fA(α).
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4. Experiments

In this section, we compare nonlinear/linear SVR and evaluate the methods described in
Sections 3. Two evaluation criteria are used. The first one is mean squared error (MSE).

mean squared error =
1

l

l∑
i=1

(yi −wTxi)
2.

The other is squared correlation coefficient (R2). Given the target values y and the predicted
values y′, R2 is defined as(∑

i(y
′
i − E[y′i])(yi − E[yi])

)2
σ2
yσ

2
y′

=

(
l
∑

i y
′
iyi − (

∑
i y
′
i)(
∑

i yi)
)2(

l
∑

i y
2
i − (

∑
i yi)

2
)(
l
∑

i y
′2
i − (

∑
i y
′
i)

2
) .

4.1 Experimental Settings

We consider the following data sets in our experiments. All except CTR are publicly available
at LIBSVM data set.4

• MSD: We consider this data because it is the largest regression set in the UCI Machine
Learning Repository (Frank and Asuncion, 2010). It is originally from Bertin-Mahieux
et al. (2011). Each instance contains the audio features of a song, and the target value
is the year the song was released. The original target value is between 1922 and 2011,
but we follow Bertin-Mahieux et al. (2011) to linearly scale it to [0, 1].
• TFIDF-2006, LOG1P-2006: This data set comes from some context-based analysis and

discussion of the financial condition of a corporation (Kogan et al., 2009).5 The target
values are the log transformed volatilities of the corporation. We use records in the
last year (2006) as the testing data, while the previous five years (2001–2005) for
training.
There are two different feature representations. TFIDF-2006 contains TF-IDF (term
frequency and inverse document frequency) of unigrams, but LOG1P-2006 contains

log(1 + TF),

where TF is the term frequency of unigrams and bigrams. Both representations also
include the volatility in the past 12 months as an additional feature.
• CTR: The data set is from an Internet company. Each feature vector is a binary

representation of a web page and an advertisement block. The target value is the
click-through-rate (CTR) defined as (#clicks)/(#page views).
• KDD2010b: This is a classification problem from KDD Cup 2010. The class label

indicates whether a student answered a problem correctly or not on a online tutoring
system. We consider this classification problem because of several reasons. First, we
have not found other large and sparse regression problems. Second, we are interested
in the performance of SVR algorithms when a classification problem is treated as a
regression one.

4. Data sets can be found at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
5. The raw data are available at http://www.ark.cs.cmu.edu/10K/.
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Data
#instances

#features
#non-zeros

range of y
training testing in training

MSD 463,715 51,630 90 41,734,346 [0, 1]
TFIDF-2006 16,087 3,308 150,360 19,971,015 [−7.90,−0.52]
LOG1P-2006 16,087 3,308 4,272,227 96,731,839 [−7.90,−0.52]
CTR 11,382,195 208,988 22,510,600 257,526,282 [0, 1]
KDD2010b 19,264,097 748,401 29,890,095 566,345,888 {0, 1}

Table 1: Data set statistics: #non-zeros means the number of non-zero elements in all
training instances. Note that data sets are sorted according to the number of
features.

The numbers of instances, features, nonzero elements in training data, and the range of
target values are listed in Table 1. Except MSD, all others are large sparse data.

We use the zero vector as the initial solution of all algorithms. All implementations are
in C++ and experiments are conducted on a 64-bit machine with Intel Xeon 2.0GHz CPU
(E5504), 4MB cache, and 32GB main memory. Programs used for our experiment can be
found at http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

4.2 A Comparison Between Two DCD Algorithms

Our first experiment is to compare two DCD implementations (Algorithms 2 and 4) so that
only the better one is used for subsequence analysis. For this comparison, we normalize
each instance to a unit vector and consider L1-loss SVR with C = 1 and ε = 0.1.

Because the results for all data sets are similar, we only present the results of MSD and
CTR in Figure 3. The x-axis is the training time, and the y-axis is the relative difference
to the dual optimal function value.

fA(α)− fA(α∗)

|fA(α∗)|
, (31)

where α∗ is the optimum solution. We run optimization algorithms long enough to get
an approximate fA(α∗). In Figure 3, DCD-1 and DCD-1-sh are Algorithm 2 without/with
shrinking, respectively. DCD-2, and DCD-2-sh are the proposed Algorithm 4. If shrinking
is not applied, we simply plot the value (31) once every eight iterations. With shrinking,
the setting is more complicated because the stopping tolerance εs affects the shrinking
implementation; see step 6.3 in Algorithm 4. Therefore, we run Algorithms 2 and 4 several
times under various εs values to obtain pairs of (training time, function value).

Results show that DCD-2 is significantly faster than DCD-1; note that the training time
in Figure 3 is log-scaled. This observation is consistent with our discussion in Section 3.2.1
that Algorithm 2 suffers from some redundant operations. We mentioned that shrinking
can reduce the overhead and this is supported by the result that DCD-1-sh becomes closer
to DCD-2-sh. Based on this experiment, we only use Algorithm 4 in subsequent analysis.

This experiment also reveals how useful the shrinking technique is. For both Algorithms
2 and 4, shrinking very effectively reduces the training time.
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(a) MSD (b) CTR

Figure 3: A comparison between two DCD algorithms. We present training time and relative
difference to the dual optimal function values. L1-loss SVR with C = 1 and
ε = 0.1 is used. Data instances are normalized to unit vectors. DCD-1-sh and
DCD-2-sh are DCD-1 and DCD-2 with shrinking, respectively. Both x-axis and
y-axis are in log scale.

4.3 A Comparison Between Linear and Nonlinear SVR

We wrote in Section 1 that the motivation of this research work is to check if for some
applications linear SVR can give competitive MSE/R2 with nonlinear SVR, but enjoy faster
training. In this section, we compare DCD for linear SVR with the package LIBSVM (Chang
and Lin, 2011) for nonlinear SVR. We consider L1-loss SVR because LIBSVM does not
support L2 loss.

For LIBSVM, we consider RBF kernel, so Qij in Equation (5) becomes

Qij ≡ e−γ‖xi−xj‖2 ,

where γ is a user-specified parameter. Because LIBSVM’s training time is very long, we
only use 1% training data for MSD, and 0.1% training data for CTR and KDD2010b.
We conduct five-fold cross validation (CV) to find the best C ∈ {2−4, 2−3, . . . , 26}, ε ∈
{2−10, 2−8, . . . , 2−2}, and γ ∈ {2−8, 2−7, . . . , 20}. For LIBSVM, we assign 16GB memory
space for storing recently used kernel elements (called kernel cache). We use stopping tol-
erance 0.1 for both methods although their stopping conditions are slightly different. Each
instance is normalized to a unit vector.

In Table 2, we observe that for all data sets except MSD, nonlinear SVR gives only
marginally better MSE than linear SVR, but the training time is prohibitively long. There-
fore, for these data sets, linear SVR is more appealing than nonlinear SVR.
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Data Linear (DCD) RBF (LIBSVM)
(percentage

ε C
test training

ε C γ
test training

for training) MSE time (s) MSE time (s)

MSD (1%) 2−4 25 0.0155 2.25 2−4 25 2−3 0.0129 4.66
TFIDF-2006 2−10 26 0.2031 32.06 2−6 26 20 0.1965 3921.61
LOG1P-2006 2−4 21 0.1422 16.95 2−10 21 20 0.1381 16385.7
CTR (0.1%) 2−6 2−3 0.0296 0.05 2−8 2−2 20 0.0294 15.36
KDD2010b (0.1%) 2−4 2−1 0.0979 0.07 2−6 20 20 0.0941 97.23

Table 2: Testing MSE and training time using DCD for linear SVR and LIBSVM for nonlin-
ear SVR with RBF kernel. L1-loss SVR is used. Parameter selection is conducted
by five-fold CV. Because LIBSVM’s running time is long, for some data, we use
only subsets for training.

4.4 A Comparison Between TRON and DCD on Data with/without
Normalization

In this section, we compare the two methods TRON and DCD discussed in Section 3 for
training linear SVR. We also check if their behavior is similar to when they are applied to
linear SVC. Because TRON is not applicable to L1-loss SVR, L2-loss SVR is considered.

A common practice in document classification is to normalize each feature vector to
have unit length. Because the resulting optimization problem may have a better numerical
condition, this normalization procedure often helps to shorten the training time. We will
investigate its effectiveness for regression data.

We begin with comparing TRON and DCD on the original data without normalization.
Figure 4 shows the following three values along the training time.

1. the relative difference to the optimal primal function value

f(w)− f(w∗)

|f(w∗)|
, (32)

2. MSE,
3. R2.

Although DCD solves the dual problem, for calculating (32), we can obtain a corresponding
primal value using w = XTβ. Primal values obtained in this way may not be decreasing, so
DCD’s curves in the first column of Figure 4 may fluctuate.6 Because practically users apply
TRON or DCD under a fixed stopping tolerance, we draw two horizontal lines in Figure 4
to indicate the result using a typical tolerance value. We use εs = 0.001 in (7) and εs = 0.1
in (25).

We observe that DCD is worse than TRON for data with few features, but becomes
better for data with more features. For MSD, which has only 90 features, DCD’s primal
function value is so unstable that it does not reach the stopping condition for drawing the

6. This phenomenon has been known in earlier studies on primal- and dual-based methods. See, for example,
the discussion in Chapelle (2007) and the comparison in Hsieh et al. (2008).
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Relative function value MSE R2

(a) MSD (DCD has only one point because the running time is too long for smaller εs in (25).)

(b) TFIDF-2006

(c) LOG1P-2006

(d) CTR

(e) KDD2010b

Figure 4: A comparison between TRON and DCD-sh (DCD with shrinking) on function val-
ues, MSE, and R2. L2-loss SVR with C = 1 and ε = 0.1 is applied to the original
data without normalization. The dotted and solid horizontal lines respectively
indicate the function values of TRON using stopping tolerance εs = 0.001 in (7)
and DCD using εs = 0.1 in (25).
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Relative function value MSE R2

(a) MSD

(b) TFIDF-2006

(c) LOG1P-2006

(d) CTR

(e) KDD2010b

Figure 5: A comparison between TRON and DCD-sh (DCD with shrinking) on function
values, MSE, and R2. All settings are the same as Figure 4 except that data
instances are normalized to unit vectors.
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Original Normalized Normalized +
Data C = 1, ε = 0.1 C = 1, ε = 0.1 parameter selection

MSE MSE C ε MSE

MSD N/A 0.0151 21 2−4 0.0153
TFIDF-2006 0.1473 0.3828 26 2−10 0.2030
LOG1P-2006 0.1605 0.1418 21 2−4 0.1421
CTR 0.0299 0.0294 2−1 2−6 0.0287
KDD2010b 0.0904 0.0809 21 2−4 0.0826

Table 3: Test MSE without and with data normalization. L1-loss SVR is used. Parameter
selection is only applied to the normalized data because the running time is too
long for the original data. Notice that for some problems, test MSE obtained after
parameter selection is slightly worse than that of using C = 1 and ε = 0.1. This
situation does not happen if MAE is used. Therefore, the reason might be that
L1 loss is more related to MAE than MSE. See the discussion in Section 4.7.

horizontal line. A primal method like TRON is more suitable for this data set because of
the smaller number of variables. In contrast, KDD2010b has 29 million features, and DCD is
much more efficient than TRON. This result is consistent with the situation in classification
(Hsieh et al., 2008).

Next, we compare TRON and DCD on data normalized to have unit length. Results of
function values, testing MSE, and testing R2 are shown in Figures 5. By comparing Figures
4 and 5, we observe that both methods have shorter training time for normalized data. For
example, for CTR, DCD is 10 times faster, while TRON is 1.6 times faster. DCD becomes
very fast for all problems including MSD. Therefore, like the classification case, if data have
been properly normalized, DCD is generally faster than TRON.

To compare the testing performance without/with data normalization, we show MSE
in Table 3. We use DCD so we can not get MSD’s result. An issue of the comparison
between Figures 4 and 5 is that we use C = 1 and ε = 0.1 without parameter selection.
We tried to conduct parameter selection but can only report results of the normalized data.
The running time is too long for the original data. From Table 3, except TFIDF-2006,
normalization does not cause inferior MSE values. Therefore, for the practical use of linear
SVR, data normalization is a useful preprocessing procedure.

4.5 With and Without the Bias Term in the SVR Prediction Function

We omit the bias term in the discussion so far because we suspect that it has little effect on
the performance. LIBLINEAR supports a common way to include a bias term by appending
one more feature to each data instance.

xTi ← [xTi , 1] wT ← [wT , b].

We apply L1-loss SVR on normalized data sets to compare MSE values with and without
the bias term. With the stopping tolerance εs = 0.001, the results in Table 4 show that MSE
values obtained with/without the bias term are similar for almost all data sets. Results in
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Data without bias with bias

MSD 0.0151 0.0126
TFIDF-2006 0.3828 0.3264
LOG1P-2006 0.1418 0.1419
CTR 0.0294 0.0295
KDD2010b 0.0809 0.0807

Table 4: MSE of L1-loss SVR with and without the bias term.

Table 2 also support this finding because LIBSVM solves SVR with a bias term. Therefore,
in general the bias term may not be needed for linear SVR if data are large and sparse.

4.6 Aggressiveness of DCD’s Shrinking Scheme

In Section 3.2.2, we introduced DCD’s shrinking scheme with a parameter M defined as
the maximal violation of the optimality condition. We pointed out that the smaller M is,
the more aggressive the shrinking method is. To check if choosing M by the way in (29) is
appropriate, we compare the following settings.

1. DCD-sh: The method in Section 3.2.2 using M defined in (29).
2. DCD-nnz: M is replaced by M/n̄, where n̄ is the average number of non-zero feature

values per instance.
3. DCD-n: M is replaced by M/n, where n is the number of features.

Because
M

n
<
M

n̄
< M,

DCD-n is the most aggressive setting, while DCD-sh is the most conservative.
Using L1-loss SVR, Figure 6(a) shows the relationship between the relative difference

to the optimal dual function value and the training time of MSD and TFIDF-2006. Results
indicate that these data sets need a more aggressive shrinking strategy. However, if L2-loss
SVR is applied instead, Figure 6(b) shows different results. Aggressive shrinking strategies
make the results worse. A possible reason is that less variables are shrunk for L2-loss SVR
(see explanation in Sections 3.2.2), so an aggressive strategy may wrongly shrink some
variables.

4.7 L1-/L2-loss SVR, Least-square Regression, and the Need of the Parameter
ε

If ε = 0, L1- and L2-loss SVR are respectively reduced to

min
w

1

2
wTw + C‖y −Xw‖1 (33)

and

min
w

1

2
wTw + C‖y −Xw‖22. (34)

Problem (34) is the regularized least-square regression (also called ridge regression by Hoerl
and Kennard, 1970). We are interested in the need of using ε-insensitive loss function. Both
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MSD TFIDF-2006

(a) L1-loss SVR

(b) L2-loss SVR

Figure 6: A comparison of three shrinking settings. Linear SVR with C = 1 and ε = 0.1 is
applied on normalized data. We show the relative difference to the dual optimal
function values and training time (in seconds).

our TRON and DCD implementations can be applied to the situation of ε = 0, so we conduct
a comparison in Table 5 using DCD.

We also would like to compare L1 and L2 losses, so in Table 5, we present both MSE
and MAE. MAE (mean absolute error) is defined as

mean absolute error =
1

l

l∑
i=1

|yi −wTxi|.

The reason of considering both is that L1 loss is directly related to MAE of training data,
while L2 loss is related to MSE.

Results in Table 5 show that for both L1- and L2-loss SVR, MAE/MSE is similar with
and without using ε. The only exception is TFIDF-2006. Under the same C, L1-loss SVR
gives 0.307 MAE with ε = 2−6, while 0.441 MAE with ε = 0. An investigation shows that
the stopping condition of DCD used to generate Table 5 is too loose for this problem. If a
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Data
L1-loss SVR L2-loss SVR

with ε ε = 0 with ε ε = 0
ε C MSE time C MSE time ε C MSE time C MSE time

MSD 2−4 21 0.015 24 26 0.015 560 2−10 26 0.014 157 21 0.014 7
TFIDF-2006 2−10 26 0.203 32 26 0.334 37 2−10 26 0.225 36 26 0.225 41
LOG1P-2006 2−4 21 0.142 17 20 0.143 12 2−10 22 0.138 16 21 0.138 10
CTR 2−6 2−1 0.028 347 2−1 0.029 342 2−8 24 0.028 960 20 0.028 121
KDD2010b 2−4 21 0.082 291 23 0.086 795 2−10 2−1 0.077 122 2−1 0.077 122

ε C MAE time C MAE time ε C MAE time C MAE time

MSD 2−6 2−4 0.087 3 2−3 0.087 3 2−10 20 0.09 4 26 0.088 159
TFIDF-2006 2−10 26 0.307 36 26 0.441 32 2−10 26 0.33 36 26 0.33 36
LOG1P-2006 2−4 20 0.238 11 20 0.24 12 2−10 21 0.244 11 21 0.244 10
CTR 2−8 2−4 0.062 93 2−4 0.063 73 2−10 20 0.074 107 20 0.074 90
KDD2010b 2−10 2−2 0.117 94 2−2 0.117 106 2−10 2−1 0.171 124 2−1 0.17 129

Table 5: A comparison between L1-/L2-loss SVR with/without using ε. Note that L2-loss
SVR with ε = 0 is the same as regularized least-square regression. We present both
test MSE and MAE, and boldface the best setting. Training time is in second.

strict stopping condition is used, the two MAE values become close to each other. Therefore,
for these data sets, we may not need to use ε-insensitive loss functions. Without ε, time for
parameter selection can be reduced. We suspect that ε-insensitive losses are still useful in
some occasions, though more future experiments are needed for drawing conclusions.

For the comparison between L1 and L2 losses, Table 5 indicates that regardless of ε = 0
or not, L1-loss SVR gives better MAE while L2-loss SVR is better for MSE. This result is
reasonable because we have mentioned that L1 and L2 losses directly model training MAE
and MSE, respectively. Therefore, it is important to apply a suitable loss function according
to the performance measure used for the application.

Next, we briefly discuss approaches for training L1- and L2-loss SVR with ε = 0. For
regularized least-square regression, the solution of problem (34) can be obtained by solving
a linear system:

w∗ =

(
XTX +

I
C

)−1

XTy. (35)

Then approaches such as conjugate gradient methods can be applied instead of TRON or
DCD. For the situation of using L1 loss and ε = 0, problem (33) is not differentiable. Nor
does it have a simple solution like that in (35). However, the dual problem becomes simpler
because the non-differentiable ε‖β‖1 in (15) is removed. Then a simplified DCD can be used
to minimize (15).

4.8 Summary of the Experiments

We summarize conclusions made by experiments in this section.
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1. DCD is faster by solving (14) than solving (4). Further, the shrinking strategies make
both DCD methods faster.

2. Linear SVR can have as good MSE values as nonlinear SVR if the data set has many
features.

3. TRON is less sensitive than DCD to data with/without normalization.
4. With data normalization, DCD is generally much faster than TRON.
5. The bias term does not affect the MSE of large and sparse data sets.
6. To achieve good MSE, L2 loss should be used. In contrast, for MAE, we should

consider L1 loss.

5. Discussions and Conclusions

In this paper, we extend LIBLINEAR’s SVC solvers TRON and DCD to solve large-scale
linear SVR problems. The extension for TRON is straightforward, but is not trivial for
DCD. We propose an efficient DCD method to solve a reformulation of the dual problem.
Experiments show that many properties of TRON and DCD for SVC still hold for SVR.

An interesting future research direction is to apply coordinate descent methods for L1-
regularized least-square regression, which has been shown to be related to problem (15).
However, we expect some differences because the former is a primal problem, while the
latter is a dual problem.

For this research work, we had difficulties to obtain large and sparse regression data.
We hope this work can motivate more studies and more public data in the near future.

In summary, we have successfully demonstrated that for some document data, the pro-
posed methods can efficiently train linear SVR, while achieve comparable testing errors
to nonlinear SVR. Based on this study, we have expanded the package LIBLINEAR (after
version 1.9) to support large-scale linear SVR.
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Appendix A. Linear Convergence of Algorithm 3

To apply results in Tseng and Yun (2009), we first check if problem (15) is covered in their
study. Tseng and Yun (2009) consider

min
β
F (β) + εP (β), (36)
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where F (β) is a smooth function and P (β) is proper, convex, and lower semicontinuous.
We can write (15) in the form of (36) by defining

F (β) ≡ 1

2
βT Q̄β − yTβ, and P (β) ≡

{
‖β‖1 if − U ≤ βi ≤ U,∀i,
∞ otherwise.

Both F (β) and P (β) satisfy the required conditions. Tseng and Yun (2009) propose a
general coordinate descent method. At each step certain rules are applied to select a subset
of variables for update. Our rule of going through all l indices in one iteration is a special
case of “Gauss-Seidel” rules discussed in their paper. If each time only one variable is
updated, the subproblem of their coordinate descent method is

min
s

{
∇iF (β)(s− βi) + 1

2H(s− βi)2 + ε|s| if − U ≤ s ≤ U,
∞ otherwise,

(37)

where H is any positive value. Because we use H = Q̄ii, if Q̄ii > 0, then (16) is a special
case of (37). We will explain later that Q̄ii = 0 is not a concern.

Next, we check conditions and assumptions required by Theorem 2(b) of Tseng and Yun
(2009). The first one is

‖∇F (β1)−∇F (β2)‖ ≤ L‖β1 − β2‖, ∀β1,β2 ∈ {β | F (β) <∞}.

Because F (β) is a quadratic function, this condition easily holds by setting the largest
eigenvalue of Q̄ as L. We then check Assumption 1 of Tseng and Yun (2009), which
requires that

λ ≤ Q̄ii ≤ λ̄,∀i, (38)

where λ > 0. The only situation that (38) fails is when xi = 0 and L1-loss SVR is applied.
In this situation, βT Q̄β is not related to βi and the minimization of −yiβi + ε|βi| shows
that the optimal β∗i is

β∗i =


U if − yi + ε < 0,

−U if − yi − ε > 0,

0 otherwise.

(39)

We can remove these variables before applying DCD, so (38) is satisfied.7

For Assumption 2 in Tseng and Yun (2009), we need to show that the solution set of
(36) is not empty. For L1-loss SVR, following Weierstrass’ Theorem, the compact feasible
domain (β ∈ [−U,U ]l) implies the existence of optimal solutions. For L2-loss SVR, the
strictly quadratic convex F (β) implies that {β | F (β) + εP (β) ≤ F (β0) + εP (β0)} is
compact, where β0 is any vector. Therefore, the solution set is also nonempty. Then
Lemma 7 in Tseng and Yun (2009) implies that a quadratic L(β) and a polyhedral P (β)
make their Assumption 2 hold.

Finally, by Theorem 2(b) of Tseng and Yun (2009), {βk} generated by Algorithm 3
globally converges and {fB(βk)} converges at least linearly.

7. Actually, we do not remove these variables. Under the IEEE floating-point arithmetic, at the first
iteration, the first two cases in (22) are ∞ and −∞, respectively. Then, (21) projects the value back to
U and −U , which are the optimal value shown in (39). Therefore, variables corresponding to xi = 0
have reached their optimal solution at the first iteration. Because they will never be updated, it is like
that they have been removed.
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Chih-Jen Lin and Jorge J. Moré. Newton’s method for large-scale bound constrained prob-
lems. SIAM Journal on Optimization, 9:1100–1127, 1999.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for
large-scale logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.

Olvi L. Mangasarian. A finite Newton method for classification. Optimization Methods and
Software, 17(5):913–929, 2002.

Yurii E. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. Technical report, CORE Discussion Paper, Université Catholique de Louvain,
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