
LibShortText: A Library for Short-text Classification and Analysis

LibShortText: A Library for Short-text Classification and
Analysis

Hsiang-Fu Yu rofuyu@cs.utexas.edu
Department of Computer Science, University of Texas at Austin, Austin, TX 78712 USA

Chia-Hua Ho b95082@csie.ntu.edu.tw

Yu-Chin Juan r01922136@csie.ntu.edu.tw

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science, National Taiwan University, Taipei 106, Taiwan

Editor: Editor name

Abstract

LibShortText is an open source library for short-text classification and analysis. Properties
of short texts are considered in its design and implementation. The package supports effec-
tive text pre-processing and fast training/prediction procedures. We provide an interactive
tool to perform error analysis. Because of the short length, details of each short text can
be investigated easily. In addition, the package is designed so that users can conveniently
make extensions. The ease of use, efficiency, and extensibility of LibShortText make it very
useful for practitioners working on short-text classification and analysis. The package is
available at http://www.csie.ntu.edu.tw/~cjlin/libshorttext

Keywords: short-text classification, interactive error analysis, open source, linear classi-
fication, machine learning

1. Introduction

Recently, there has been a growing interest in short-text classification and analysis. Ap-
plication domains include titles (e.g., Shen et al., 2012), questions (e.g., Zhang and Lee,
2003; Qu et al., 2012), sentences (e.g., Khoo et al., 2006), and short messages. Existing
text-classification packages may not be suitable for analyzing short texts because of not
considering their special properties. For example, it is difficult to analyze a text with many
words, but we can easily investigate details in training/predicting short texts. Unlike gen-
eral texts such as web pages and emails, short texts in a corpus may have similar lengths and
words in a short text are often distinct. In addition, practitioners wonder if the standard
procedures for text classification must be applied when experimenting with short texts.

We develop LibShortText as an open source tool (under the BSD license1) for short-text
classification and analysis. It has the following features.
1. For large-scale short-text classification, it is more efficient than general text-mining tools.
2. Based on our study (Yu et al., 2012), we carefully select the default options for LibShort-

Text. Users need not try many options to get the best performance for their applications.
3. We provide an interactive tool to perform error analysis. In particular, because of short

lengths, details of each text can be investigated.

1. The New BSD licences approved by the Open Source Initiative.

1

http://www.csie.ntu.edu.tw/~cjlin/libshorttext

Yu et al.

Workflow Libraries Command-line tools

short texts
↓

pre-processing
libshorttext.converter

text-train.py

feature generation text2svm.py

↓
training

libshorttext.classifier
text-train.py

testing text-predict.py

↓
analysis libshorttext.analyzer

Figure 1: Workflow of LibShortText and the corresponding libraries/command-line tools.

4. The package is mainly written in Python for simplicity and extensibility, while time-
consuming operations are implemented in C/C++ for efficiency.

5. We provide full documentation including class references and examples.

2. The Software Package

The workflow of LibShortText is shown in Figure 1. Each step corresponds to a library in
the core Python module libshorttext.
1. libshorttext.converter: For given short texts, LibShortText follows the bag-of-word

model to generate features. Users apply procedures in this library to pre-process short
texts by tokenization, stemming (optional), and stop-word removal (optional). The
library also allows users to choose between unigram and bigram features.

2. libshorttext.classifier: Following users’ choice on feature representation (binary,
word count, TF, or TF-IDF), this library generates sparse feature vectors, conducts
instance-wise normalization (optional), and calls the popular linear-classification pack-
age LIBLINEAR (Fan et al., 2008) for training/testing. All these operations can be easily
built upon LIBLINEAR’s Python interface, but for computational and memory efficiency,
part of the implementation is in C/C++. We carefully design this library so that no
modification of LIBLINEAR is required. For multi-class classification, we follow LIBLIN-
EAR to support the one-versus-rest approach (e.g., Bottou et al., 1994) and the method
by Crammer and Singer (2001). In addition, a parameter selection tool for selecting the
penalty parameter of SVM/logistic regression formulations of LIBLINEAR is provided.

3. libshorttext.analyser: The library provides a simple interactive tool to conduct error
analysis in both macro and micro levels. By macro level we mean the overall performance
(e.g., accuracy), while the micro level involves the analysis of each feature of a short text.

Based on the study (Yu et al., 2012) for product title classification, we set the following
default options.

Default options

pre-processing
no stemming, no stop word removal, bigram features

feature-generation

training
instance-wise normalization, binary feature representation,
Crammer & Singer multi-class SVM

2

LibShortText: A Library for Short-text Classification and Analysis

For general texts, one option suitable for some texts may not suitable for others. In contrast,
it is easier to select options based on properties of short texts. For example, because in a
short text words are generally distinct, Yu et al. (2012) show that the SVM models obtained
by binary and TF-IDF feature representations give similar performance.

2.1 Command-line and Interactive Use

We provide two main command-line tools: text-train.py pre-processes a text file and
trains a model, while text-predict.py predicts another text file to obtain classification
accuracy and generates an output file of predicted results.

$ python text-train.py train_file

[output skipped]

$ python text-predict.py test_file train_file.model predict_result

Accuracy = 90.7873% (9662757/10643283)

Because users may train with the same data several times after the pre-processing phase,
we provide text2svm.py to convert short texts to sparse feature vectors of term frequency.
Then text-train.py can directly train a model on these sparse vectors.

$ python text2svm.py train_file

[train_file.text_converter and train_file.svm are generated.]

$ python text-train.py -P train_file.text_converter train_file.svm

LibShortText supports interactive error analysis. First, we enter Python, import the module,
load the prediction results, and create an object of ‘Analyzer’ by reading a model.

$ python

>>> from libshorttext.analyzer import *

>>> predict_result = InstanceSet(’predict_result’)

>>> analyzer = Analyzer(’train_file.model’)

We randomly select 1000 instances with two labels ‘Books’ and ‘Music’ and generate a
confusion table.

>>> insts = predict_result.select(with_labels([’Books’, ’Music’]), subset(1000,

... ’random’))

>>> analyzer.gen_confusion_table(insts)

Books Music

Books 425 3

Music 9 563

Next, to see how a short text “MICKEY MOUSE POT STAKE” is predicted by our model,
the following operation gives the feature weights of the top three classes. For multi-class
SVM and logistic regression used in LibShortText, in the trained model, each class has a
corresponding weight vector. The decision value is the inner product between the weight
vector and the test instance. For this example, the class “Home & Garden” is correctly
predicted because of the highest decision value. From the weights, we identify “stake” as
an important word for the “Home & Garden” class.

3

Yu et al.

>>> analyzer.analyze_single(’MICKEY MOUSE POT STAKE’, 3)

Home & Garden Specialty Services Toys & Hobbies

pot 9.786e-01 4.070e-01 2.023e-01

mouse 2.683e-01 3.613e-01 1.649e-01

stake 1.392e+00 2.801e-01 3.924e-01

mickey mouse 3.564e-02 9.631e-02 6.446e-01

mouse pot 5.168e-01 -7.780e-02 -1.771e-01

pot stake 5.489e-01 -9.084e-03 -3.282e-01

mickey -8.684e-02 -4.901e-02 1.075e-01

decval 1.381e+00 3.813e-01 3.804e-01

We provide more operations for error analysis. Details are in the documents.

2.2 Making Extensions

Because of the modularized framework, extending LibShortText is easy. We show an example
to replace the tokenizer. The default tokenizer assumes that tokens are separated by space
characters. If other characters are used, users may write their own tokenizer.

1 from libshorttext . converter import ∗
2
3 def comma_tokenizer (text) :
4 return text . lower () . split (’,’)
5
6 text_converter = text2svm_converter ()
7 text_converter . text_prep . tokenizer = comma_tokenizer

We define comma tokenizer to separate tokens by commas. We then create an instance of
converter, text converter, and assign the new tokenizer to it in lines 6–7.

3. Experiments

To demonstrate the efficiency and effectiveness of LibShortText, we crawled 20 million eBay
product titles in 34 classes. The first 10 million titles are for training, while the next 10
million are for testing.2 On a machine with Intel Xeon 2.4GHz CPU (E5620), 12MB Cache,
and 64GB RAM, running text-train.py with default options takes about 37 minutes,
where 21 minutes are for generating features from texts and 16 minutes are for training.
For prediction, text-predict.py takes 28 minutes and achieves 90.7873% accuracy. In
contrast, a general text-mining tool such as RapidMiner (Mierswa et al., 2006) fails to
even pre-process the data because of the memory issue. On a subset of prod-title with
100K instances, LibShortText takes only 17 seconds and 240 MB memory, while RapidMiner
requires 10 minutes and 3 GB memory.

4. Conclusions

LibShortText is an easy-to-use, efficient, and extensible tool for short-text classification and
analysis. Its design and implementation incorporate properties of short texts. The package
is still being improved by new research results and users’ needs.

2. We cannot redistribute the data; see http://developer.ebay.com/join/licenses/individual.

4

http://developer.ebay.com/join/licenses/individual

LibShortText: A Library for Short-text Classification and Analysis

References

L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L.D. Jackel, Y. LeCun, U.A. Muller,
E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: a case study
in handwriting digit recognition. In International Conference on Pattern Recognition,
pages 77–87. IEEE Computer Society Press, 1994.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2:265–292, 2001.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLIN-
EAR: A library for large linear classification. Journal of Machine Learning Research, 9:
1871–1874, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf.

Anthony Khoo, Yuval Marom, and David Albrecht. Experiments with sentence classifica-
tion. In Australasian Language Technology Workshop, 2006.

Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler. YALE:
Rapid prototyping for complex data mining tasks. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD),
pages 935–940, 2006.

Bo Qu, Gao Cong, Cuiping Li, Aixin Sun, and Hong Chen. An evaluation of classification
models for question topic categorization. Journal of the American Society for Information
Science and Technology, 63:889–903, 2012.

Dan Shen, Jean-David Ruvini, and Badrul Sarwar. Large-scale item categorization for e-
commerce. In Proceedings of the 21st ACM international conference on Information and
knowledge management (CIKM), pages 595–604, 2012.

Hsiang-Fu Yu, Chia-Hua Ho, Prakash Arunachalam, Manas Somaiya, and Chih-Jen Lin.
Product title classification versus text classification. Technical report, 2012. URL http:

//www.csie.ntu.edu.tw/~cjlin/papers/title.pdf.

Dell Zhang and Wee Sun Lee. Question classification using support vector machines. In
Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pages 26–32. 2003.

5

http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/title.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/title.pdf

	Introduction
	The Software Package
	Command-line and Interactive Use
	Making Extensions

	Experiments
	Conclusions

