
LibMultiLabel User Guide

LibMultiLabel Project Authors*

December 12, 2024

1 Introduction
LibMultiLabel is a library for multi-label text classification. It provides end-to-end services consisting of
data preprocessing, model training, and parameter selection.

Documents of LibMultiLabel including command line and API usage are available at

https://www.csie.ntu.edu.tw/˜cjlin/libmultilabel.

In this guide, through examples we give some practical tips in handling multi-label text classification.
Details of data sets used in this guide are in Table 1. They can be download from the LIBSVM data

sets 1.

2 Parameter Selection for Neural Networks
The performance of a model depends on the choice of hyper-parameters. The following example demon-
strates how the BiGRU model performs differently on the EUR-Lex data set with two parameter sets.

First, train a BiGRU model with the default configuration file example config/EUR-Lex/bigru lwan.yml
with a little modification on the learning rate. Some important parameters are listed as follows.

learning_rate: 0.001
network_config:

embed_dropout: 0.4
encoder_dropout: 0.4
rnn_dim: 512
rnn_layers: 1

*See contributors at https://github.com/ntumlgroup/LibMultiLabel/graphs/contributors
1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multilabel.html

Table 1: Data statistics
Data set # training # test # labels
RCV1 23,149 781,265 101
EUR-Lex 15,449 3,865 3,956

1

https://www.csie.ntu.edu.tw/~cjlin/libmultilabel
https://github.com/ntumlgroup/LibMultiLabel/tree/master/example_config/EUR-Lex/bigru_lwan.yml
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html


The training command is:

python3 main.py --config example_config/EUR-Lex/bigru_lwan.yml

After training for 50 epochs, the checkpoint with the best validation performance is stored for testing. The
average P@1 score on the test data set is 81.40%.

Next, the learning rate is changed to 0.003 while other parameters are kept the same.

learning_rate: 0.003
network_config:

embed_dropout: 0.4
encoder_dropout: 0.4
rnn_dim: 512
rnn_layers: 1

By the same training command, the P@1 score of the second parameter set is about 78.14%, which is
4% lower than the first one. This demonstrates the importance of parameter selection. For more striking
examples on the importance of parameter selection; see Liu et al. (2021).

However, a complete search of the parameter space is often time-consuming, especially on A complete
search of the parameter space is often time-consuming, especially on a large data set or a complex neural
network. For example, consider the command for parameter selection.

python3 search_params.py
--config example_config/EUR-Lex/bigru_lwan_tune.yml

In the configuration file, we specify a grid search on the following parameters to get the best BiGRU model
on the EUR-Lex data set. We set the embed cache dir to .vector cache to avoid downloading pre-trained
embeddings repeatedly for each configuration.

learning_rate: [’grid_search’, [0.003, 0.001, 0.0003]]
network_config:

embed_dropout: [’grid_search’, [0, 0.2, 0.4, 0.6, 0.8]]
encoder_dropout: [’grid_search’, [0, 0.2, 0.4]]
rnn_dim: [’grid_search’, [256, 512, 1024]]
rnn_layers: 1

embed_cache_dir: .vector_cache

The process takes about 1 day on four Nvidia Tesla V100 GPUs to find the best parameter set of learn-
ing rate=0.0003, embed dropout=0.4, encoder dropout=0.4, and rnn dim=512. Details of other parame-
ters are in the configuration file example config/EUR-Lex/bigru lwan.yml. Additionally, after the search
process, the program applies the best parameters to obtain the final model by adding the validation set for
training. The average P@1 score is 83.65% on the test set.

It is time consuming to search over the entire parameter space. To save time, LibMultiLabel has incor-
porated some early stopping techniques implemented in Ray (Liaw et al., 2018), which is a framework for
parameter selection. Here we demonstrate an example of applying an ASHA (Asynchronous Successive
Halving Algorithm) Scheduler (Li et al., 2020). First, uncomment the following lines in the configuration
file example config/EUR-Lex/bigru lwan tune.yml.

scheduler:
time_attr: training_iteration
max_t: 50

2

https://github.com/ntumlgroup/LibMultiLabel/tree/master/example_config/EUR-Lex/bigru_lwan.yml
https://github.com/ntumlgroup/LibMultiLabel/tree/master/example_config/EUR-Lex/bigru_lwan_tune.yml


grace_period: 10
reduction_factor: 3
brackets: 1

Under the same computing environment and the same command, the best parameter set of learning rate=0.001,
embed dropout=0.4, encoder dropout=0.2, and rnn dim=512 is found in 47% of the time compared to the
grid search, while the average test P@1 score = 82.90% is similar to the result without early stopping. For
more complete results of the above examples, please refer to Table 3.

3 Linear Classifiers are Competitive in Some Cases
While non-linear classifiers such as neural networks are now widely used for multi-label classification,
we show that linear classifiers give competitive performance in some cases. We demonstrate that they are
easy to use and require less training time.

3.1 Linear Classifiers in LibMultiLabel

Consider a set of training instances {(yi,xi)}li=1 where l is the number of instances, L is the number of
labels, n is the number of features, xi ∈ Rn is a feature vector, and yi ∈ {−1, 1}L is a label vector such
that

yij =

{
1, if xi is associated with the label j,
−1, otherwise.

In LibMultiLabel, currently all techniques based on linear classification aim to learn a f : Rn → RL which
is composed of L decision functions.

f(x) = (f1(x), . . . , fL(x)).

3.1.1 One-vs-rest (Binary Relevance)

The one-versus-rest setting, also known as binary relevance, trains a binary classification problem for each
label on data with/without that label. That is, for the jth label, we solve the corresponding jth binary
classification problem

wj = argmin
w

1

2
wTw + C

l∑
i=1

ξ(yijw
Txi), (1)

where C is a regularization parameter. For the loss function ξ, we support logistic regression and linear
SVM through LIBLINEAR (Fan et al., 2008). After the training process ends, for any test instance x, the
decision function of label j is fj(x) = wT

j x. Various ways can be applied on decision values to make
predictions. The most used method is to use fj(x) as a binary classifier so that{

x is predicted to have the label j if fj(x) > 0,

otherwise if fj(x) ≤ 0.
(2)

Alternatively, in some applications, labels corresponding to the largest K values of fj(x), ∀j are predicted
to be associated with x, where K is a number specified by users.

3



3.1.2 Thresholding

It is known that under the one-vs-rest setting, for some infrequent labels, the two-class problem (1) is
highly imbalanced. Sometimes an instance is predicted to have no labels at all. Thresholding is a technique
to address this issue and it is effective to optimize the Macro-F1 score (Lewis et al., 1996; Yang, 1999;
Fan and Lin, 2007). The method automatically decides a threshold ∆j through some cross-validation
procedure so that the decision function becomes

fj(x) = wT
j x+∆j.

Therefore, this method is more expensive than one-vs-rest.

3.1.3 Cost-Sensitive

Another scheme to solve the class imbalance problem is cost-sensitive learning, which uses a higher loss
on positive training instances. Parambath et al. (2014) give some theoretical support showing that the
F1 score can be optimized through cost-sensitive learning. For the label j, they extend problem (1) of
one-vs-rest to

wj = argmin
www

1

2
wwwTwww + C

(
2− t

t

)∑
i:yij=1

ξ(yijwww
Txxxi) + C

∑
i:yij=−1

ξ(yijwww
Txxxi),

where (2−t)/t is the cost of false negatives, and t ∈ (0, 1]. In LibMultiLabel, for each label, a pre-defined
grid of (C, t) pairs are checked to find the one leading to the best validation F1 score. The best pair is then
applied to the whole training set to get the final decision function of the corresponding label. Therefore,
this method is more expensive than one-vs-rest.

3.2 Experiments on the RCV1 Data Set
In multi-label classification, if the number of labels is not large (e.g., 103 classes of the RCV1 set), the
setting in (2) instead of the top-K fj(x) values are commonly used for predicting the associated labels of
an instance. Results on the test set are then evaluated by a measure such as Micro/Macro-F1.

We begin with checking methods discussed in Section 3.1.

• One-vs-rest
For example, if l2-loss SVM is considered, we can run

python3 main.py --config example_config/rcv1/l2svm.yml

• Thresholding
To run this method, we can specify the option linear_technique in the configuration file:

linear_technique: thresholding

Alternatively, we can specify this option in the command line:

python3 main.py --config example_config/rcv1/l2svm.yml
--linear_technique thresholding

4



• Cost-sensitive
Similarly, we can specify the linear_technique in the configuration file or run the following
command.

python3 main.py --config example_config/rcv1/l2svm.yml
--linear_technique cost_sensitive

We check the performance of neural networks for a comparison with linear classifiers. From Section 2,
parameter selection is crucial to neural network models, so we show the results of KimCNN model (Kim,
2014) without/with the tuning procedure.

• KimCNN without parameter selection
In LibMultiLabel, the following parameter values are considered in the configuration file kim_cnn.yml.

learning_rate: 0.0005
network_config:
filter_sizes: [2, 4, 8]
num_filter_per_size: 128 # filter channels
activation: relu
dropout: 0.2

The training command is:

python main.py --config example_config/rcv1/kim_cnn.yml

• KimCNN with parameter selection
In LibMultiLabel, a configuration file rcv1/cnn_tune.yml is provided for tuning hyper-parameters.
It specifies the search range as follows.

learning_rate: [’grid_search’, [0.001, 0.0005, 0.0001]]
network_config:

filter_sizes: [’grid_search’, [[2,4,8], [4,6]]]
num_filter_per_size: 128 # filter channels
activation: relu
dropout: [’grid_search’, [0.2, 0.4, 0.6, 0.8]]

In addition, because we aim to optimize Macro-F1, the following evaluation metric is specified.

val_metric: Macro-F1

The running command is

python3 search_params.py --config example_config/rcv1/cnn_tune.yml

The tuning procedures returns the best parameter set of learning rate=0.0005, filter sizes=[4, 6], and
dropout=0.4. The model associated with these parameters are applied to predict the test set.

All experiments were conducted on a computer with an AMD R5950X CPU (for linear classifiers) and a
NVIDIA RTX 3090 GPU (for neural networks). Table 2 shows the test performance and the training time.

From Table 2 we see that thresholding and cost-sensitive techniques outperform all other models on
Macro-F1. For other metrics, methods based on linear classifiers give competitive results, but take less
training time. Therefore, for this data set, there may be no need to use a non-linear method such as neural
netowrks.

5



Table 2: Experiments on the RCV1 data set: linear classifiers versus neural networks
Methods Macro-F1 Micro-F1 P@1 P@5 Training Time
Linear classifiers CPU
One-vs-rest 51.89 80.30 95.87 55.77 1 minute
Thresholding 61.48 81.06 95.46 54.32 2.2 minutes
Cost-sensitive 58.08 80.67 95.31 55.51 3.3 minutes
Neural networks (KimCNN) GPU
w/o parameter selection 47.38 77.21 94.88 54.17 3.2 minutes
w/ parameter selection 50.69 77.43 94.66 54.00 12.7 hours

Table 3: Experiments on the EUR-Lex data set
Methods Macro-F1 Micro-F1 P@1 P@5 Training Time
Linear classifiers CPU
One-vs-rest 17.42 52.62 83.47 59.06 12.8 minutes
Thresholding 27.70 56.54 81.94 55.21 2.27 hours
Cost-sensitive 22.04 57.70 80.47 57.69 3.57 hours
Neural networks (BiGRU) GPU
wo/ parameter selection 20.48 51.56 78.13 52.16 27.8 minutes
w/ parameter selection (grid search) 23.65 59.41 83.65 58.72 24.6 hours
w/ parameter selection (ASHA) 22.70 57.42 82.90 56.38 11.6 hours

3.3 Experiments on the EUR-Lex Data Set
We conduct experiments on the EUR-Lex data set, which has thousands of labels. For such data sets,
Macro-F1 is often too low to be used because the F1 scores of many labels are close to zero. Therefore,
different from the situation in Section 3.2, the focus now is to check P@K. Currently in LibMultiLabel,
we do not provide a configuration file for running linear methods on EUR-Lex. However, one can easily
copy rcv1/l2svm.yml to the EUR-Lex directory and modify the data path/name therein:

train_path: data/EUR-Lex/train.svm
test_path: data/EUR-Lex/test.svm
data_name: EUR-Lex

By a procedure similar to that in Section 3.2, we report the test performance and the training time in
Table 3. Clearly, all three linear-based methods give competitive P@1 but shorter training time than the
BiGRU model considered in Section 2 (83.65% and 1 days).

Among the methods of using linear classifiers, it is expected that thresholding and cost-sensitive tech-
niques give better Macro-F1. However, one-vs-rest is the best on the ranking-based metric P@K. The
worse ranking of decision values by the other two methods may be because that to optimize Macro-F1,
they either adjust the decision function of each label (thresholding) or use different hyper-parameters for
obtaining decision functions (cost-sensitive).

3.4 Summary
Our experiments indicate that methods of using linear classifiers are highly competitive for some problems
but are cheaper to train. Thus in multi-label text classification, it is recommended that such methods are

6



applied first to obtain baseline results.

References
R.-E. Fan and C.-J. Lin. A study on threshold selection for multi-label classification. Technical report,

Department of Computer Science, National Taiwan University, 2007.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: a library for large linear
classification. Journal of Machine Learning Research, 9:1871–1874, 2008. URL http://www.
csie.ntu.edu.tw/˜cjlin/papers/liblinear.pdf.

Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, 2014. doi: 10.3115/
v1/D14-1181.

D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka. Training algorithms for linear text classifiers.
Proceedings of the 19th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 298–306, 1996.

L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-tzur, M. Hardt, B. Recht, and A. Talwalkar. A
system for massively parallel hyperparameter tuning. In Proceedings of Machine Learning and Systems,
volume 2, pages 230–246, 2020.

R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune: A research platform for
distributed model selection and training. arXiv preprint arXiv:1807.05118, 2018.

J.-J. Liu, T.-H. Yang, S.-A. Chen, and C.-J. Lin. Parameter selection: Why we should pay more atten-
tion to it. In Proceedings of the 59th Annual Meeting of the Association of Computational Linguis-
tics (ACL), 2021. URL https://www.csie.ntu.edu.tw/˜cjlin/papers/parameter_
selection/acl2021_parameter_selection.pdf. Short paper.

S. A. P. Parambath, N. Usunier, and Y. Grandvalet. Optimizing F-measures by cost-sensitive classification.
In Advances in Neural Information Processing Systems, volume 27, 2014.

Y. Yang. An evaluation of statistical approaches to text categorization. Information Retrieval, 1(1/2):
69–90, 1999.

7

http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/parameter_selection/acl2021_parameter_selection.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/parameter_selection/acl2021_parameter_selection.pdf

	Introduction
	Parameter Selection for Neural Networks
	Linear Classifiers are Competitive in Some Cases
	Linear Classifiers in LibMultiLabel
	One-vs-rest (Binary Relevance)
	Thresholding
	Cost-Sensitive

	Experiments on the RCV1 Data Set
	Experiments on the EUR-Lex Data Set
	Summary


