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Abstract

LibMultiLabel is an open source software for binary, multi-class and multi-label classification,
supporting various neural network architectures and linear classifiers. LibMultiLabel can be found
at https://www.csie.ntu.edu.tw/˜cjlin/libmultilabel/ This paper provides the
mathematical formulations and implementation details of LibMultiLabel.
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1 Metrics
Metrics are functions that represent the performance of models during evaluation. When predicting, we
use a model to calculate the scores for an instance associated with labels. For example, let w be the weight
of a linear model for label l. Then for a given instance x, the score of x for label l is calculated by wTx.
This score will be used to decide whether this instance is associated with label l. For this reason, we called
this score decision value. If a given instance x has the label l, we say that the label l is relevant to x.

For a given data instance, let L be the number of labels and

p =
[
p1 p2 · · · pL

]
∈ RL,

ŷ =
[
ŷ1 ŷ2 · · · ŷL

]
∈ {0, 1}L,

y =
[
y1 y2 · · · yL

]
∈ {0, 1}L

(1)

be the decision values, the predictions, and the ground truths associated with the instance respectively.
The value of 1 indicates a relevant label and 0 indicates an irrelevant label. Define Ip = {i1, i2, ..., iL} to
be the sorted index of p by decision values.

1.1 Precision and Recall at K
Precision@K aims to check that among the top-K predictions for a given instance, how many labels are
relevant to the instance. So, precision@K for the instance is defined as follows

P@K =
#relevant labels in the top-K predictions

K
=

∑K
s=1 yis
K

. (2)

On the other hand, recall@K shows that among labels associated with the given instance, how many are
in the top-K predictions. Recall@K for the instance can be defined as follows

R@K =
#relevant labels in the top-K predictions

#relevant labels
=

∑K
s=1 yis∑L
s=1 ys

. (3)

Note that, we set R@K = 0 if the number of relevant labels associated with the instance is zero.
The values of P@K and R@K over the entire dataset is the average of D instances, calculated as

follows:

P@K =
1

D

D∑
j=1

P@K for the jth instance,

R@K =
1

D

D∑
j=1

R@K for the jth instance.

1.2 R-Precision at K
For instances where the number of relevant labels is less than K, even with a perfect prediction, P@K will
be smaller than 1. This is because

P@K =
#relevant labels in the top-K predictions

K
<

K

K
= 1.
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On the other hand, when K is smaller than the number of relevant labels, then even with a perfect
prediction, R@K will be smaller than 1. The reason is

R@K =
#relevant labels in the top-K predictions

#relevant labels
<

#relevant labels
#relevant labels

= 1.

For example, if the instance associates with two labels, then the value of P@5 for a perfect prediction is
0.4 and the value of R@1 for a perfect prediction is 0.5. For this reason, we cannot ensure that the values
of P@K and R@K over different datasets for perfect predictions are always 1. To ensure the maximum
value of the metric is 1, R-Precision at K (RP@K) may be used.

RP@K is very similar to P@K and R@K as the only difference is in the denominator. The denomi-
nators of P@K and R@K are K and the number relevant labels respectively. Instead, the denominator of
RP@K is

min(K, #relevant labels of the instance).

With this change, the maximum value of RP@K is always 1. The definition of RP@K for the instance is
as follows

RP@K =
#relevant labels in the top-K predictions
min(K, #relevant labels of the instance)

=

∑K
s=1 yis

min(K, #relevant labels of the instance)
.

Similarly, the value of RP@K over the entire dataset is the average of D instances, calculated as
follows:

RP@K =
1

D

D∑
j=1

RP@K for the jth instance.

1.3 Normalized Discounted Cumulative Gains at K
When the number of relevant labels in the top-K predictions are the same for two predictions, then by (2)
and (3), these two predictions will have the same value of P@K and R@K. In this case, these metrics can-
not discriminate between the two predictions. For example, consider the ground truth and two predictions
for an instance as follows

ground truth = [0, 1, 1, 0, 0],

decision values of prediction 1 = [0.1, 0.3, 1.0,−0.3,−0.7],

decision values of prediction 2 = [0.8, 0.2, 0.7,−0.1,−0.5].

In this case, P@5 for these two predictions are both 0.4, but have different orders of labels.
To understand why this matters, consider a search engine. If these are the search results, we hope that

positive labels appear first. That is, positive labels have higher ranks. From this perspective, prediction 1
is better than prediction 2 in the example above.

To solve this problem, we use another metric called normalized discounted cumulative gains at K
(NDCG@K). Before introducing how to compute NDCG@K, we need to understand what DCG@K and
IDCG@K are.

Discounted cumulative gains at K (DCG@K) measures the top-K predictions by taking discounts for
different ranks. With this metric, the above two predictions will have different values of DCG@K and we
can use these values to compare which is better. DCG@K for the instance is defined as follows

DCG@K =
K∑
s=1

yis
log2(s+ 1)

.
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A problem with DCG@K is that it is not comparable across instances with a different number of
relevant labels. For example, consider these two instances

grouth truth 1 = [0, 1, 0, 0, 0],

decision values of prediction 1 = [0.1, 1.2,−0.9,−0.7,−0.5],

grouth truth 2 = [1, 0, 1, 0, 1],

decision values of prediction 2 = [0.3, 1.0, 0.4,−0.9, 0.1].

Then DCG@5 for these two instances will be 1 and 1.52 respectively. Despite the first instance having
the best possible prediction, it has a lower DCG@5 than the second instance. To solve this problem, one
way is to consider the ratio of DCG@K for a prediction and DCG@K for the best prediction. DCG@K
for the best prediction is called ideal DCG@K (IDCG@K) and this ratio called normalized DCG@K
(NDCG@K).

IDCG@K is the maximum value of DCG@K. The maximum value of DCG@K occurs when all of
the relevant labels are ranked higher then irrelevant labels. In other words, let I = min(K, ∥y∥0). Note
that ∥y∥0 is the 0-norm of y, which is the number of non-zero elements of y. Then the maximum value
of DCG@K occurs when the top-I predictions for the given instance are all relevant. Thus, the expression
of IDCG@K for the instance is defined as

IDCG@K =

min(k,∥y∥0)∑
i=1

1

log2(i+ 1)
.

NDCG@K shows how close the prediction is to the best possible prediction, calculated as follows:

NDCG@K =
DCG@K for the instance
IDCG@K for the instance

.

The value of NDCG@K over the entire dataset is the average of each instance, calculated as follows:

NDCG@K =
1

D

D∑
j=1

NDCG@K for the jth instance.

1.4 F-measure
In the above, we introduced some ranking measures. They only check top-K predictions and K is usually
a small number. When we need to consider the whole predictions, a ranking metric may not be a good
choice. Instead, we may choose some classification measures like the F-measure. F-measure is one of the
most used performance measures for information retrieval systems. It is the harmonic means of precision
(P ) and recall (R).

Precision shows that among predictions for all instances, how many positive predictions are correct.
Recall shows that among positive instances, how many are predicted. Precision and recall for label l are
expressed as follows:

Pl =
#TP for label l

#(TP + FP) for label l
and Rl =

#TP for label l
#(TP + FN) for label l

,

where TP, FP, and FN are defined in Table 1.
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Table 1: Definition of TP, FP, FN, and TN.

prediction

ground
truth True False

True TP (true positive) FP (false positive)
False FN (false negative) TN (true negative)

Then the F-measure for label l is

Fl =
2 · Pl ·Rl

Pl +Rl

=
2#TP for label l

(2#TP +#FP +#FN) for label l

To extend the F-measure from single-label to multi-label, two approaches are developed in Tague
(1981). The first is the macro-average F-measure, which is the unweighted mean of label F-measures,

Macro-F1 =
1

L

L∑
l=1

Fl =
1

L

L∑
l=1

2#TP for label l
(2#TP +#FP +#FN) for label l

.

Some use a different way, denoted as Macro*-F1, by calculating the average percision and recall over all
labels first.

P̄ =
1

L

L∑
l=1

Pl =
1

L

L∑
l=1

#TP for label l
#(TP + FP) for label l

,

R̄ =
1

L

L∑
l=1

Rj =
1

L

L∑
l=1

#TP for label l
#(TP + FN) for label l

,

Macro*-F1 =
2 · P̄ · R̄
P̄ + R̄

.

Opitz and Burst (2021) suggest that Macro*-F1 is less suitable to use.
The other multi-label measure is the micro-average F-measure, which calculates total TP, FP, and FN

first.

Micro-F1 =

∑L
l=1#TP for label l∑L

l=1(2#TP +#FP +#FN) for label l
.

.

1.5 Choosing the Suitable Metrics
The choice of metrics should be motivated by the use case of the model. No metric fits every scenario
equally well.

For example, if the model is used as a large-scale search engine, then the number of labels will be
enormous. In this case, only the first few dozens of search results are important because no user will read
every one of the results. For this reason, multi-label problems with a large amount of labels are often only
concerned about the top few predictions. In this case, we might use P@K or NDCG@K with a choice of
K that reflects the use case well.

In contrast, multi-label problems with a small amount of labels are often concerned with predicting all
the labels correctly. For example, illness prediction in medical data is usually concerned about every label.
In such a case, we may choose to use Macro-F1 and Micro-F1.
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2 Handling zero-shot labels
In some cases, there exist labels that only appear in the test data. These labels are called zero-shot labels.
We provide an option include test labels in LibMultiLabel to handle these labels in evaluation. This
option can be true or false to decide whether to include zero-shot labels for evaluation. In this section, we
illustrate some details on how to choose a correct value of include test labels.

2.1 The Default Behavior in LibMultiLabel

The default value of include test labels is false because of the following reasons. Consider the case that
models do not handle the zero-shot labels. If we include these labels for evaluation, the ranking measures
are not affected. However, the classification measures such as Macro-F1 or Micro-F1 become different.
In particular, because the F-measure of zero-shot labels is zero, the resulting Macro-F1, which is the
unweighted mean of label F-measures, can be significantly different. In this situation, the zero-shot labels
should not be included in the evaluation. Popular software such as scikit-learn does not include test labels
for evaluation, and we hope to be consistent with them.

2.2 When to Set the Option to be True?
Sometimes, we may need to include zero-shot labels for evaluation. For example, if a paper experiments
with approaches to handle zero-shot labels and report some classification measures, then to compare their
results, the option include test labels should be true. For example, Chalkidis et al. (2019) propose the
dataset EURLEX57K, which contains zero-shot labels. In their experimental results, they include zero-
shot labels for evaluation and report Micro-F1. To compare with their results, we must set include test
labels to be true.

2.3 Remarks on Labels in Training/Validation Sets
No matter which value of include test labels, we always consider the combined label set of training and
validation sets. The reason is that training and validation instances are considered as all available data,
so those labels that only appear in validation sets should not be regarded as zero-shot labels. Further,
it is possible that we conduct training/validation splits several times. For example, we adopt the cross-
validation strategy in our linear solvers. Therefore, it is better to consider the same label set across splits.

3 Linear Methods
Linear methods are the methods based on linear classifiers trained with bag-of-words (BOW) features.
Specifically, let D be the set of documents and T be the set of all terms appearing in D. Given a term
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t ∈ T and a document d ∈ D, the associated BOW feature is the l2-normalized TF-IDF generated by

normalized-tf-idf(d, t) =
tf-idf(d, t)√∑
s∈T tf-idf2(d, s)

,

tf-idf(d, t) = tf(d, t) · idf(t),
tf(d, t) = number of times t occurs in d,

idf(t) = log

(
1 + |D|
1 + df(t)

)
+ 1,

df(t) = number of documents conatining t.

Consider a set of training instances {(xj,yj)}Dj=1 where D is the number of instances, L is the number of
labels, n is the number of features, xj ∈ Rn is BOW features, and yj ∈ {−1, 1}L is a label vector such
that

yjl =

{
1, if xj is associated with the label l,
−1, otherwise.

Note that here we use +1/− 1 instead of +1/0 in (1) to indicate relevant/irrelevant labels.
In LibMultiLabel, currently all linear methods except a tree-based setting aim to learn a f : Rn → RL

which is composed of L decision functions.

f(x) = (f1(x), ..., fL(x)).

In this section, we begin with introducing linear methods in the software and then discuss implementation
details.

3.1 One-vs-rest (Binary Relevance)
The one-versus-rest setting, also known as binary relevance, trains a binary classification problem for each
label on data with/without that label. That is, for the lth label, we solve the corresponding lth binary
classification problem

wl = argmin
w

1

2
wTw + C

D∑
j=1

ξ(yjlw
Txj), (4)

where C is a penalty parameter. For the loss function ξ, we support logistic regression and linear SVM
through LIBLINEAR (Fan et al., 2008). After the training process ends, for any test instance x, the
decision function of label l is fl(x) = wT

l x. Various ways can be applied on decision values to make
predictions. The most used method is to use fl(x) as a binary classifier so that{

x is predicted to have the label l if fl(x) > 0,

otherwise if fl(x) ≤ 0.
(5)

Alternatively, in some applications, labels corresponding to the largest K values of fl(x), ∀l are predicted
to be associated with x, where K is a number specified by users.
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3.2 Thresholding
It is known that under the one-vs-rest setting, for some infrequent labels, the two-class problem (4) is
highly imbalanced. Sometimes an instance is predicted to have no labels at all. Thresholding is a technique
to address this issue and it is effective to optimize the Macro-F1 score (Lewis et al., 1996; Yang, 1999;
Fan and Lin, 2007). Lin and Lin (2023) proposed the method that automatically decides a threshold ∆l

for label l through a cross-validation procedure so that the decision function becomes

fl(x) = wT
l x+∆l.

Therefore, this method is more expensive than one-vs-rest. See Section 4.3 and supplementary D of Lin
and Lin (2023) for details of the thresholding method.

3.3 Cost-Sensitive
Another scheme to solve the class imbalance problem is cost-sensitive learning, which uses a higher loss
on positive training instances. Parambath et al. (2014) give some theoretical support showing that the
F1 score can be optimized through cost-sensitive learning. For the label l, they extend problem (4) of
one-vs-rest to

wl = argmin
www

1

2
wwwTwww + C

(
2− t

t

) ∑
j:yjl=1

ξ(yjlwww
Txxxj) + C

∑
j:yjl=−1

ξ(yjlwww
Txxxj), (6)

where (2−t)/t is the cost of false negatives, and t ∈ (0, 1]. In LibMultiLabel, for each label, a pre-defined
grid of (C, t) pairs are checked to find the one leading to the best validation F1 score. The best pair is then
applied to the whole training set to get the final decision function of the corresponding label. Therefore,
this method is more expensive than one-vs-rest.

3.4 Tree-Based Methods
Tree methods are divide-and-conquer techniques that recursively divide the label space in order to reduce
the time complexity of training and prediction. At each divide step, labels are partitioned into disjoint
sets. These sets form smaller multi-label problems, which are in turn recursively divided. This process is
naturally described as a tree, with each node (including the root) representing a multi-label problem.

3.4.1 Defintion of a Tree

Since we recursively partition labels into metalabels, we can also describe this process in terms of a tree
as follows:

• A node is either a set of labels or a set of label subsets.

• A node is a leaf node if it is a set of labels.

• For each node S, its child nodes form a partition of S.

• If any two nodes T and S are with the same depth, then T and S are disjoint.

• The union of all nodes at the same depth is equal to the label space.
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n0

n1

1 2

n2

3 4

n3

n4

5 6

n5

7

n6

8

Figure 1: A possible tree with eight labels.

At the root node, we have a corresponding representation of the tree. We consider two ways:

• A recursive set of sets.

• A set of label subsets.

For example, the root node n0 of the tree in Figure 1 can be represented as

n0 = {{1, 2}, {3, 4}, {{5, 6}, {7}, {8}}}
= {{1, 2}, {3, 4}, {5, 6, 7, 8}}.

The first form depicts the structure of the tree, used when we want to emphasize a property of the entire
tree. The second form shows the immediate children, used when we want to emphasize a property of a
single depth. The second form also shows how we have a multi-label problem at each node.

Note that since a node covers a subset of labels, we say an instance x is associated with node T if x is
associated with any label in T .

3.4.2 Tree Construction

One way to recursively divide the label space is by the K-means algorithm with label information. How-
ever, the label information is unavailable or meaningless in some datasets. To handle this problem, several
methods are proposed in Khandagale et al. (2020) and Yu et al. (2022) to construct the label representa-
tions without knowing any information about labels. We chose a method that generates the representation
of label l by aggregating the feature of instances associated with label l. For label l, its label representation
is constructed as follows

zl =

∑
j:yjl=1 xj

||
∑

j:yjl=1 xj||

3.4.3 Training

As mentioned at the beginning, each node corresponds to a multi-label problem. The goal of training is
to associate a model mT to each node T . The model mT is trained by a one-vs-rest strategy. For node T
with KT children, the training dataset is constructed as follows:

{(ỹj,xj) | xj is associated with node T , j = 1, ..., D}.
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Table 2: Example of the one-vs-rest setting at the node n3 in Figure 1. Note that only instances associated
with any of labels 5, 6, 7, 8 are considered at n3.

positive negative
classifier 1 instances associated with 5 or 6 instances not associated with 5 and 6
classifier 2 instances associated with 7 instances not associated with 7
classifier 3 instances associated with 8 instances not associated with 8

where D is the number of instances and ỹj ∈ {−1, 1}KT is a metalabel or label vector defined by

ỹjl =

{
1, if xj is associated with the lth child node of T
−1, otherwise

For example, the classifier of node n3 in Figure 1 considers three binary problems shown in Table 2.

3.4.4 Prediction

For node V and its child S, the model mV can estimate the probability

P(x is associated with S | x, V ) (7)

via the transformation σ (Yu et al., 2022)

σ(wT
V x) = exp

(
−max(1−wT

V x, 0)
2
)
,

where wV is the weight of the model mV . Note that σ(wT
V x) is a vector consisting of the probabilities (7)

of all V ’s child nodes. Let {np0 = n0, np1 , ..., npd = l} be a path from root node n0 to label l. Then by the
concept of conditional probability, we estimate the probability

P(x is associated with label l | x, np0 , ..., npd) =
d∏

i=1

P(x is associated with ni | x, ni−1). (8)

To calculate (8) for all labels, we should not handle labels separately. The reason is that duplicated
calculation occurs since the paths for two labels share some nodes in the beginning. To this end, we
calculate σ(wTx) layer by layer according to the depth and multiply the results based on (8).

For a multi-label problem with a large label space, we usually only concern with the top few predic-
tions. That means calculating the probability of these labels when predicting is enough. We use a beam
search algorithm to retain nodes with higher probabilities. Specifically, for nodes selected at the current
layer of the tree, we calculate σ(wTx) of their childern and select the top-B child nodes for the next layer.
This setting effectively reduces the prediction time.

Take Figure 1 as an example. For simplicity, we denote wi as the weight of the model mni
and set

B = 1. First, we calculate σ(wT
0 x). Assuming the third entry of σ(wT

0 x) is the largest, we use node
n3 for further calculation. Next, we calculate σ(wT

3 x) and multiply with the third entry of σ(wT
0 x). If

the first entry is the largest, we use node n4 for further calculation. Since n4 is a leaf node, the result of
predicting is the probability of label 5 and label 6.
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one-versus-rest
ECtHR (A) ECtHR (B) UNFAIR-ToS EUR-LEX LEDGAR SCOTUS
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Default dual solver 54.5 69.6 68.9 75.5 51.7 59.3 56.7 72.5 79.4 86.1 68.8 78.0
Default primal solver 54.4 69.5 68.7 75.2 51.7 59.3 56.7 72.6 79.4 86.1 68.8 78.0

Table 3: Micro-F1 (µ-F1) and Macro-F1 (m-F1) scores for the default dual solver and the default primal
solver.

3.4.5 Multiplication Overhead

In prediction, we should calculate σ(wTx) only when we need it. But in Python, calling several multipli-
cations will involve a large overhead. To prevent this, we concatenate all nodes’ weights into one matrix
and perform a single multiplication with x at the beginning. We call this matrix the flattened model. Al-
though this will lead to some unnecessary calculations, by our observation, the time cost of unnecessary
calculations is less than the above overhead.

3.5 Choice of Solvers in LIBLINEAR
The classification problems (4) and (6) are solved with LIBLINEAR (Fan et al., 2008). All two-class
classification methods in LIBLINEAR are supported. We choose the coordinate descent method to solve
the dual problem of L2-loss SVM as the default. The reason is that for large sparse data (e.g., documents),
the results of solving the dual problem and solving the primal problem are similar, but solving the dual
problem is faster than solving the primal problem. Additionally, the model size of the dual solver is smaller
than that of the primal solver. Depending on the requirements, the solver can be changed by specifying
the option liblinear_options. See Fan et al. (2008) for details of each solver.

Note that in LIBLINEAR, the default solver is the primal solver. However, in LibMultiLabel, we set
it to the dual solver. See Table 3 to check the comparison of these two types of solvers.

3.6 Run Time Analysis
In general, the run time of the optimization problems (4) and (6) depends on the dimensions (number of
instances and features), data values and parameters. While we may not be able to calculate the run time
without knowing the data set, a rough comparison of the run time of different linear methods can be by
counting the optimization problems solved. The reason is that all optimization problems solved (including
those in the cross-validation procedures) have comparable dimensions.

• One-vs-rest: Because one problem (4) is solved for each label, the total number of optimization
problmes solved is L.

• Thresholding: We conduct three-folds cross-validation, so the number of optimization problems
solved is 3L.

• Cost-sensitive: This method finds the optimal C(2 − t)/t value by a grid search on checking the
cross-validation performance at each C(2− t)/t value. For each label, there has 7 pre-defined (C, t)
pairs and 3 folds for each pair. The number of optimization problems solved is 21L. For one-vs-
rest and thresholding, by default the regularization parameter C = 1 is used across all optimization
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problems, but in (6), C(2− t)/t is the regularization parameter on the training loss of positive data.
It is known that the training time increases with a larger regularization parameter. With t ∈ (0, 1], we
have C(2− t)/t > C, so the run time of cost-sensitive may be longer than the count of optimization
problems suggests.

• Linear Tree: This method trains a linear classifier on each node. Let N be the number of nodes in
the tree. The number of optimization problems is N .

3.7 Space Anaylsis
All linear methods except linear tree method require the weights (w1, . . . ,wL) to be stored. We store
weights as dense vectors so the space consumption is O(nL). More specifically, each entry of weights is
a float number, which needs 8 bytes to store. So the space consumption of weights is 8nL bytes.

For the linear tree method, due to the partial usage of training data at each node, the sparsity of the
node’s weights will increase with the depth of the node. It will cause a large space consumption if we
use the dense matrix to store the weights. Taking the dataset Amazon670K as an example, the space
consumption of the linear tree method is about 848GB in dense matrix format and about 34GB in sparse
matrix. Therefore, the sparse matrix is a more efficient storage format for the linear tree method.

We choose the Compressed Sparse Column (CSC) matrix to store the nodes’ weights and the Com-
pressed Sparse Row (CSR) matrix to store the flattened model. The reason will be shown in Section
3.8.

We will first introduce the structure of these two sparse matrices to analyze the space consumption
of these two storage formats. The CSC / CSR matrix requires two arrays to store the non-zero elements
and their row / column indices. And also needs one array to store the index pointers, which indicate the
start index for the beginning of each column/row. Specifically, we consider a sparse weights matrix with
dimension n × L and α non-zero elements, where n is the number of features and L is the number of
labels. Then the space consumption of the CSC matrix is

αbdata + αbindex + (L+ 1)bindptr,

and the space consumption of the CSR matrix is

αbdata + αbindex + (n+ 1)bindptr,

where bdata, bindex, and bindptr are the number of bytes to represent a single non-zero value, index, and
index pointer, respectively. Since the float number needs 8 bytes to store in Python, the bdata value is 8.
The values of bindex and bindptr could be 4 or 8, depending on the training data.

Now we will show the space consumption of tree nodes’ weights and the flattened model. Since we
store the tree nodes’ weight by the CSC matrix, the space consumption of all tree nodes’ weights is∑

ν∈nodes

αν(8 + bindex) + (Lν + 1)bindptr bytes,

where αν is the number of non-zero elements in the weights of node ν and Lν is the number of children
of node ν. By the tree structure, the above formula can be simplified to be the following

nnz(w)(8 + bindex) + ((N + L− 1) +N)bindptr bytes, (9)
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where nnz(w) is the number of non-zero elements in the tree model weights and N is the number of
nodes. The flattened model is a single weights matrix that concatenates from all tree nodes’ weights, so
the space consumption is

γ(8 + bindex) + (n+ 1)bindptr bytes,

where n is the number of features.

3.8 Why Using Different Storage Formats for Weights in Tree?
In most cases, it causes larger space consumption when using the CSR matrix to store nodes’ weights. We
can see that by comparing the space consumption of the CSC matrix and CSR matrix. For the CSR marix,
the space consumption is ∑

ν∈nodes

αν(8 + bindex) + (n+ 1)bindptr bytes.

The formula can be simplified to be the following

nnz(w)(8 + bindex) +N(n+ 1)bindptr bytes, (10)

where N is the number of nodes. The comparison of (9) and (10) shows that using the CSR matrix has
smaller space consumption when

nN ≤ N + L− 1. (11)

For a given dataset has L labels. Since the linear tree method applies the K-means algorithm to build
a tree, we can derive the following inequality

N ≥ 1 +K

⌈
1

K − 1

(⌈
L

K
− 1

⌉)⌉
.

Combining with the inequality of the ceiling function, we can further simplify the inequality to be the
following

N ≥ 1 +
L− k

K − 1
=

L− 1

K − 1
.

With this inequality, we can transform the condition (11) into n ≤ K. Thus, if the number of features of
a dataset is greater than K, then using the CSC matrix is better. The number of features of most of the
dataset is greater than 100, which is the default value of K in LibMultiLabel. For this reason, we use the
CSC matrix to store the nodes’ weights.

For the flattened model, we use the CSR matrix to store. The reason is that the space consumption of
the CSC matrix and the CSR matrix is similar, but the CSR matrix is faster when applying sparse matrix
multiplication.

3.9 The -B Option in LIBLINEAR
LIBLINEAR (Fan et al., 2008) has the option -B for adding a regularized bias term. Given a parameter
value B and a bias term b, the weights w and features x are augmented with an additional dimension:

w′ =

[
w
b

]
x′ =

[
x
B

]
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Problem (4) is then modified as

w′
l = argmin

w′

1

2
w′Tw′ + C

D∑
j=1

ξ(yjlw
′Tx′

j)

= argmin
w,b

1

2
wTw +

1

2
b2 + C

D∑
j=1

ξ(yjl

[
w
b

]T [
xj

B

]
),

We note the following implementation details. Since the prediction of LibMultiLabel is not performed
through LIBLINEAR, it is convenient to acquire b in both training and prediction processes. To that end,
if users specify the -B option, we augment the value B as an additional feature of the data in LibMultiLabel
and strip -B from the options before passing training data to LIBLINEAR.

By default, we use -B 1 because empirically this seems to be useful.

3.10 Cross-validation Data Splits
In cost-sensitive, a cross-validation procedure is performed for each value of C(2− t)/t. The data splits,
i.e. the subsets of data chosen for training or validation, in each cross-validation procedure may be the
same or different for each C(2 − t)/t value. The supplementary of Lin et al. (2022) showed that the
difference of having the same or different data splits is insignificant. We chose to have the same data splits
for each C(2− t)/t value.
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