
Naive Parallelization of Coordinate Descent Methods and an
Application on Multi-core L1-regularized Classification

Yong Zhuang∗
Carnegie Mellon University
yong.zhuang22@gmail.com

Yuchin Juan†
Criteo Research

yc.juan@criteo.com

Guo-Xun Yuan
Facebook, Inc.

gxyzuan@gmail.com

Chih-Jen Lin
National Taiwan University

cjlin@csie.ntu.edu.tw

ABSTRACT
It is well known that a direct parallelization of sequential opti-
mization methods (e.g., coordinate descent and stochastic gradient
methods) is often not effective. The reason is that at each iteration,
the number of operations may be too small. We point out that this
common understanding may not be true if the algorithm sequen-
tially accesses the data in a feature-wise manner. For almost all
real-world sparse sets we have examined, some features are much
denser than others. Thus a direct parallelization of loops in a se-
quential method may result in excellent speedup. This approach
possesses an advantage of retaining all convergence results because
the algorithm is not changed at all. We apply this idea on coordinate
descent (CD) methods, which are effective single-thread technique
for L1-regularized classification. Further, an investigation on the
shrinking technique commonly used to remove some features in the
training process shows that this technique helps the parallelization
of CD methods. Experiments indicate that a naive parallelization
achieves better speedup than existing methods that laboriously
modify the algorithm to achieve parallelism. Though a bit ironic,
we conclude that the naive parallelization of the CD method is
a highly competitive and robust multi-core implementation for
L1-regularized classification.

CCS CONCEPTS
• Computing methodologies→ Shared memory algorithms;

KEYWORDS
Parallelization; Coordinate DescentMethods;Multi-core; L1-regularized
Classification

∗Most of the work was done during the internship in Criteo Research.
†This author contributes equally with Yong Zhuang.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3271687

ACM Reference Format:
Yong Zhuang, Yuchin Juan, Guo-Xun Yuan, and Chih-Jen Lin. 2018. Naive
Parallelization of Coordinate Descent Methods and an Application on Multi-
core L1-regularized Classification. In The 27th ACM International Conference
on Information and Knowledge Management (CIKM ’18), October 22–26, 2018,
Torino, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3269206.3271687

1 INTRODUCTION
Among convex optimization methods for large-scale linear classi-
fication we can roughly categorize them to two types according
to the amount of information accessed each time for updating the
model. The first is “sequential methods,” which at each step use
either only one data point or one feature vector. The second type
is “batch methods,” which use more information (sometimes the
whole set) at a time. We are interested in their parallelization in
multi-core environments.

Examples of batch methods for linear classification include gra-
dient descent, Newton methods [11], and quasi Newton methods
[12]. It is often easy to parallelize such methods because each time
a significant number of operations are assigned to a thread. Note
that because of the overhead, parallelizing few operations is not
useful. For example, at each iteration of batch methods we often
need to calculate

wT x i ,∀i,
where x i ,∀i are training instances and w is the model. Not only
can these independent inner products be conducted in parallel, but
also each task (i.e., an inner product between two vectors) assigned
to a thread involves a substantial number of operations. The direct
parallelization of batch methods has been successfully reported in,
for example, [10].

For sequential methods such as coordinate descent (CD) [3, 8, 9]
or stochastic gradient (SG), the amount of information used at each
step is much less than that in batch methods. Typically one instance
or one feature is considered. Because a relatively smaller number
of operations are conducted, the common understanding is that it
is not effective to parallelize sequential methods like CD or SG. For
example, assume themain task at a step is to calculate a singlewT x i .
We can usemultiple threads for the inner product, but the speedup is
often poor because very few operations are assigned to each thread.
Therefore, instead of directly parallelizing the sequential methods,
existing works often modify the algorithm so that a significant
amount of operations can be conducted at a thread. For example, a

mini-batch algorithm considers some instances or features at a time
so parallel computation can be applied on them. However, with
the change of algorithms, convergence and implementation issues
must be carefully checked.

In this paper, we point out that the above conventional wisdom
on sequential methods is not always true. The direct parallelization
can achieve excellent speedup for some types of problems. We will
see in Section 2 that because of the skewed distribution of non-zero
elements in most real-world data sets, if an algorithm accesses a
data set in a feature-wise manner, then by simply parallelizing the
original algorithm, we can get a competitive or better speedup than
some sophisticated modifications. Our finding, though very simple,
is very useful in practice.

This paper is organized as follows. In Section 2, by detailed statis-
tics we show that the distribution of non-zero values across features
is very skewed. From this finding we conjecture that a sequential-
type algorithm that accesses one feature at a time can be directly
parallelized to achieve good speedup. In Section 3, we discuss CD
for L1-regularized linear classification as an example. Further, an
investigation on the shrinking technique commonly used to remove
some features in the training process shows that this technique
helps the parallelization of CD methods. Existing modifications to
parallelize CD are reviewed in Section 4. Experiments in Section
5 show the effectiveness of naive parallelization – our strategy
achieves better speedup than sophisticated modifications. Note that
CD-type methods are now considered the best single-thread tech-
nique for L1-regularized classification. Our work effectively extends
them to multi-core scenarios. Section 6 concludes our work.

Our proposed approach has been available in the multi-core ex-
tension of the package LIBLINEAR [6]: http://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/multicore-liblinear. Programs for experiments in
this work can be found through the same web page. Supplemen-
tary materials are at http://www.csie.ntu.edu.tw/~cjlin/papers/l1_
parallel_supp_cikm.pdf.

2 NAIVE PARALLELIZATION AND
DISTRIBUTION OF NON-ZEROS

The running time of a multi-threading task is roughly
#operations × time per operation

#threads
+ overhead. (1)

If the number of operations is small, the overhead may cause longer
running time than that of using a single thread. Take an inner prod-
uct as an example.While it is easy to split the computation to several
independent sub-tasks, simple experiments show that we may need
500 components to make parallelization not harmful, and 100,000
components to reach the maximum speedup. Unfortunately, for
large-scale linear classification on sparse data, an instance x i may
possess too few non-zero elements so that an inner productwT x i
cannot be effectively parallelized. This explains why traditionally
CD and SG are considered not suitable for effective parallelization.

Interestingly, our finding is that the direct parallelization of each
CD or SG step may not be entirely hopeless. In fact, for suitable
algorithms, the speedup can be dramatic. We begin with the idea

of running each CD or SG step in the following way:
if number of non-zeros ≥ a threshold then

Run the step by multiple threads
else

Run the step by a single thread
Clearly, we get good speedup only if a small subset of instances
or features includes most non-zeros of the entire data set. That is,
there are few dense features or instances, while all others are sparse.
Intuitively, this situation should rarely happen, but to our surprise,
it happens frequently. Subsequently we analyze all large and sparse
binary classification problems in LIBSVM Data Sets.1

Assume a data set includes l instances. We rearrange them so
that

x1, . . . ,x l

are in the descending order according to their number of non-
zero entries. Then we investigate the distribution of non-zeros and
obtain the following information.
• a: the subset {x1, . . . ,xa } contains 50% of all non-zero en-
tries
• b: the subset {x1, . . . ,xb } contains 80% of all non-zero en-
tries
• nnza : number of non-zero entries in xa
• nnzb : number of non-zero entries in xb
• nnza : average number of non-zeros in {x1, . . . ,xa }
• nnzb : average number of non-zeros in {x1, . . . ,xb }

If n is the number of features, we can consider the data from a
feature-wise setting to have

x̄1, . . . , x̄n ,

and obtain the same statistics. Table 1 presents all values.
We observe a huge difference between instance-wise and feature-

wise settings. From an instance-wise perspective in general the val-
ues a/l andb/l are respectively close to 0.5 and 0.8, so the number of
non-zeros per instance does not vary much. Further, each instance
in most problems has no more than a few hundred non-zeros. In
contrast, from a feature-wise perspective, most non-zero elements
are associated with a small subset of features. For example, in the
url_combined data set, 0.00002% of features (i.e., around 60 out
of more than three millions) contain half of all non-zero elements.
Therefore, each of these “dense” features has many non-zeros. We
plot the distribution of a real-world data set criteo in Figure 1.
The distribution is extremely skewed under the feature-wise setting
but is uniform under the instance-wise setting. We explain why the
difference may commonly happen in practice. For criteo, as a data
set for CTR (click-through rate) prediction, it may contain features
such as one “device type” and one “device id.” Because the same
type of devices is used by many people, this feature has a large
number of non-zero values. In contrast, “device id” is the identifier
of a user device, so it may correspond to very few data instances.
With these sparse features we have a long tail of the distribution.
In contrast, an instance often corresponds to only one “device type”
and one “device id.” Thus each instance has very few non-zeros and
the number of non-zeros is similar (or exact the same). The same

1We use data sets that have more than ten million non-zeros and density less than
0.001. We also add a non-public data set yahoo-korea.

Instance-wise Feature-wise
Data set a/l b/l nnza nnzb nnza nnzb a/n b/n nnza nnzb nnza nnzb

avazu-app 0.50 0.80 15 15 15 15 0.002 0.01 759,125 72,405 2,422,727 538,899
criteo 0.50 0.80 39 39 39 39 0.0001 0.002 1,114,789 40,477 4,150,931 456,739

kdd2010-a 0.40 0.73 37 30 44 39 0.0003 0.02 5,734 46 31,609 536
kdd2012 0.50 0.80 11 11 11 11 0.00003 0.005 45,151 331 456,195 5,154

rcv1_test 0.24 0.54 100 53 151 107 0.01 0.05 22,990 4,172 54,818 20,329
splice.t 0.50 0.80 3,331 3,309 3,343 3,335 0.09 0.57 169 106 1,034 270

url_combined 0.44 0.76 113 105 130 121 0.00002 0.00006 2,264,387 115,088 2,360,644 1,204,444
webspam 0.29 0.55 4,910 3,570 6,451 5,383 0.006 0.02 98,573 16,401 165,841 74,478

yahoo-korea 0.20 0.48 502 265 857 571 0.0007 0.005 11,986 1,067 35,698 7,525
Table 1: The values of a, b, nnza , nnzb , nnza , nnzb in selected data sets under instance-wise and feature-wise perspectives. For
splice.t, a 10% subset is considered.

nnza ≈ 1.1M

a ≈ 100

nnzb ≈ 40k

b ≈ 2k

feature-wise

nnza = nnzb = 39

a ≈ 23M b ≈ 36M

instance-wise

Figure 1: The distribution of non-zero elements in criteo.
x-axis of left: {1, . . . ,n}, right: {1, . . . , l}; y-axis of left: log
scaled, right: linear scaled.

situation happens for webspam, which is a document set generated
by the bag-of-words setting. From a feature-wise perspective, fre-
quent words may occur in millions of documents and rare words
may only appear in tens of documents. However, from an instance-
wise perspective, for documents collected from the same or similar
sources their numbers of words may not vary significantly.

The above discussion indicates that if a sequential-type algorithm
processes a feature at a time and the main task is to go over the
feature’s non-zero entries, then a naive parallelization can be very
useful. The reason is that most operations are associated with those
super-dense features and can be easily parallelized. However, for
an algorithm processing an instance at a time, because the number
of non-zeros is small, a naive parallelization may not be effective.

For splice.t, it seems that even with feature-wise data accesses,
direct parallelization may not be effective because nnza and nnzb
are both small. However, for L1-regularized classification, we show
in Section 5.2 that the speedup is still good because a technique
called “shrinking” to remove sparse features helps to make direct
parallelization effective.

3 CD FOR L1-REGULARIZED LINEAR
CLASSIFICATION

Based on the result in Section 2, we discuss why L1-regularized
classification is a type of problems suitable for CD to be directly
parallelized.

Given label-instance pairs {(yi ,x i)},yi ∈ {−1,+1}, x i ∈ Rn , i =
1, ..., l , a binary linear classifier obtains a model vectorw ∈ Rn by

solving a convex optimization problem:
min
w

f (w), where

f (w) ≡

{
∥w ∥1

1
2w

Tw
+C

l∑
i=1

ξ (wT x i ,yi)
(2)

depending on the use of L1 regularization ∥w ∥1 or L2 regulariza-
tionwTw/2. The loss function ξ (wT x ,y) measures the difference
between the predicted valuewT x and the true label y, and C is the
regularization parameter. Two commonly used loss functions are

ξ (wT x ,y) ≡

{
log(1 + exp(−ywT x)) logistic loss,
max(0, 1 − ywT x)2 squared hinge loss.

To apply a CD method to solve (2), a coordinatew j is updated at a
time. If

w j ← w j + d (3)
is the change of the variablew j , to get the new loss values, we need
all non-zero values of feature j

wT x i ← wT x i + d(x i)j , ∀i . (4)
Examples of CD to solve (2) include [3, 22] for L2-regularized prob-
lems and [7, 16, 18] for L1 problems.

On the other hand, instead of (2), which is often referred to as the
primal problem, we may solve the dual problem. If L2 regularization
is used with the squared hinge loss, the dual problem of (2) is

min
α

1
2

l∑
i=1

l∑
j=1

yiyjx
T
i x jαiα j +

1
4C

l∑
i=1

α2
i −

l∑
i=1

αi

subject to αi ≥ 0 ∀i . (5)
ExistingCDworks to solve the dual problem (5) include [8, 17]. Each
time a coordinateαi is updated, andwhile we do not give details, the
corresponding instance x i is used. Therefore, CD methods to solve
the dual problem access/use data in an instance-wise manner. In
contrast, CD methods for the primal problem (2) access/use data in
a feature-wise manner. From features’ skewed non-zero distribution
shown in Section 2, we anticipate that the direct parallelization of
a primal CD method to solve (2) can achieve a better speedup than
a dual CD method for solving (5). We will experimentally confirm
this conjecture. In the rest of this section we discuss primal CD in
detail.

Primal CD methods have been developed for both L1 and L2
regularization. We focus on L1 problems because primal CD is

among the most efficient single-thread training methods for L1-
regularized classification. In contrast, primal CD does not enjoy the
same status for L2 problems since under L2 regularization, dual CD
is generally considered more efficient than primal CD [8]. Note that
for L1-regularized problems, dual-based methods (not necessarily
CD-type methods) have not been very successful because the dual
problem involves a more complicated L∞-ball constraint. Take the
L1-regularized problem with the squared hinge loss as an example.
The dual is

min
α

1
4C

∑l

i=1
α2
i −

∑l

i=1
αi

subject to αi ≥ 0 ∀i
∥α1y1x1 + ... + αlylx l ∥∞ ≤ 1.

(6)

For (5), if an αi is updated by fixing others, the problem is reduced
to a single-variable sub-problem with a simple constraint αi ≥ 0
and can be easily solved. For (6), to update an αi , it is unclear
how to easily form and solve a sub-problem. Therefore, between
primal CD for L1 and L2 problems, it is more important to study
the former. Besides, in Section 3.2 we show that the model sparsity
by L1 regularization and the features’ skewed distribution of non-
zeros can together make parallel primal CD more effective. Next
we discuss a primal CD for L1-regularized problems and its direct
parallelization.

3.1 CDN: A Primal CDMethod
For L1-regularized problems with both squared hinge and logistic
losses, the comparison [18] has shown that primal CD is the best
among state-of-the-art algorithms. For the logistic loss, later [19]
proposed a new and more efficient method called newGLMNET. It
involves a sequence of sub-problems, but each one is still solved by
a CD procedure. Therefore, CD plays a vital role for L1-regularized
linear classification.

At each CD step, if the j-th feature is chosen, we aim to solve
the following one-variable sub-problem:

minz f (w + ze j) − f (w), (7)
wherew is the current solution and

e j ≡ [0, ..., 0︸ ︷︷ ︸
j−1

, 1, 0, ..., 0]T ∈ Rn . (8)

Regardless of using the logistic loss or the squared hinge loss, (7)
does not have a closed-form solution. Thus [18] develops a New-
ton method with line search to approximately solve (7), and their
method is referred to as CDN (CD Newton). Specifically, we con-
sider the second-order approximation of the loss term atw j .

f (w + ze j) − f (w) = |w j + z | + Lj (z;w)

≈ |w j + z | + L
′
j (0;w)z +

1
2
L′′j (0;w)z2, (9)

where

Lj (z;w) ≡ C
∑l

i=1
ξ ((w + ze j)

T x i ,yi), (10)

L′j (0;w) = C
∑

i :(x i)j,0
(x i)j · ∂wT x ξ (w

T x i ,yi), (11)

L′′j (0;w) = C
∑

i :(x i)j,0
(x i)

2
j · ∂

2
wT x

ξ (wT x i ,yi). (12)

Algorithm 1 The CDN procedure for L1-regularized classification

Givenw ; set b = [wT x1, ...,wT x l]
T

while true do
for j = 1, 2, ...,n do

Find d by solving (9); let t ← 0
while (13) fails do

Update b by (14)
t ← t + 1

w j ← w j + β
td

The work [18] takes a direction d by solving (9), which has a closed-
form solution (details not shown). To ensure the convergence, [18]
conducts a line search process to check if d, βd, β2d, ... satisfy

f (w + βtde j) − f (w) (13)

= |w j + β
td | − |w j | +C

∑
i :(x i)j,0

(
ξ ((w + βtde j)

T x i ,yi)

−ξ (wT x i ,yi)
)
≤ σβt

(
L′j (0;w)d + |w j + d | − |w j |

)
,

where t = 0, 1, 2, ..., and β ∈ (0, 1) and σ ∈ (0, 1) are given constants.
Clearly, in each of the following two places we need a loop to go
over feature j’s non-zero entries.

(1) The calculation of L′j (0;w) and L′′j (0;w) in (11) and (12).
(2) The function-value evaluation in line search; see the sum-

mation in (13).
At the first glance, these operations are not the bottleneck be-

cause calculating (w + βtde j)T x i ,∀i in (13) is much more expen-
sive. CDN considers a cost-saving technique by maintaining b ≡
[wT x1, ...,wT x l]

T . That is, at the line search we update b by
bi ← bi + d(x i)j , if t = 0,

bi ← bi − (β
t−1d − βtd)(x i)j , otherwise.

(14)

Therefore, we always have the currentwT x i ,∀i . A summary of the
CDN procedure is in Algorithm 1.2 From (11)–(14), all we need are
loops to go over (x i)j , 0, ∀i . We can directly parallelize these
operations though from Section 2, the effectiveness depends on
the number of non-zeros in x̄ j . For (11) and (12), we need a reduce
operation to sum up values obtained from different threads, while
(14) can be conducted by a simple parallel loop. The implementation
can be easily done by, for example, using OpenMP [5].

3.2 Shrinking Technique Helps the
Parallelization

For L1-regularized problems, because of themodel sparsity, a shrink-
ing technique is often used to accelerate the training. It skips those
features that are likely to have corresponding w j = 0 in the final
model. More details can be found in [18, 19].

An interesting question is whether shrinking influences the par-
allelization of the algorithm. Conceptually, a dense feature, usually
more important, may have a non-zero weight in the final model
and is less likely be shrunk. Because operations on a dense feature
can be more effectively parallelized, shrinking may improve the
speedup. In Section 5.2, we experimentally confirm this result.

2In [18], a technique is developed to further reduce the line-search cost, though details
are not shown here.

Algorithm 2 Shotgun CDN procedure

Givenw ; set b = [wT x1, ...,wT x l]
T

while true do
Randomly get |B | indices, where |B | = #cores
for j in B in parallel do

Find d by solving (9); let t ← 0
while (13) fails do

atomic: update b by (14)
t ← t + 1

w j ← w j + β
td

3.3 Multi-core Implementation for
newGLMNET

For problem (2) with the logistic loss (i.e., L1-regularized logistic
regression), [19] pointed out an issue of CDN on the relatively high
portion of expensive log(·)/exp(·) operations in the entire proce-
dure. Thus they propose newGLMNET, which is now considered
the state-of-the-art. Although newGLMNET is a Newton method,
at each iteration it finds a Newton direction by applying a CD
procedure to solve the subproblem

min
d
∥w + d ∥1 + ∇L(w)

Td +
1
2
dTHd . (15)

The subproblem is in a form of L1-regularized least squares. To
perform the CD subroutine, the training data is accessed/used in a
feature-wise manner, which is the same as how data is used in CDN
for problem (2). Thus, the applicability of the naive parallelization
to the CD subroutine should hold here and the speedup is predicted
to be at a comparable level. In Section 5.4, we demonstrate the
effectiveness of naive parallelization in newGLMNET.

4 EXISTING PARALLEL CDMETHODS FOR
L1-REGULARIZED CLASSIFICATION

Several works have modified the CDmethod to solve (2) in parallel,
e.g., [1, 2, 13–15]. They mostly change the sequential update rule to
parallel updates so that multiple threads can work simultaneously.
We focus on two CDN-based methods.

Shotgun [2]: This method is an asynchronous CD approach.
Each time a feature subset B is randomly obtained, where |B | is
the number of cores. Then these cores conduct the CDN procedure
to update all w j ∈ B in parallel. The procedure is summarized in
Algorithm 2. A known issue of using asynchronous CD is that the
procedure may diverge. To have the convergence, a conservative
update (e.g., gradient direction with fixed size rather than Newton
direction with line search) is often needed, but such a setting is
impractical [2]. Some approaches consider semi-asynchronous set-
tings to fix the convergence issue, but they are problem dependent.
For example, [21] considers CD for the dual problem and assumes
that each one-variable sub-problem can be exactly solved. It is not
obvious how their method and convergence analysis can be applied
to our primal problem, for which the single-variable sub-problem
has no closed-form solution.

Bundle CDN: [1] proposed a method to address the divergence
issue of Shotgun. Following the block CD framework in [20], at
each iteration, a feature subset B is considered and the direction d

Data set #instances #features
avazu-app 14,596,137 1,000,000
criteo 45,840,617 1,000,000
epsilon 400,000 2,000
HIGGS 11,000,000 28
kdd2010-a 8,407,752 20,216,830
kdd2012 149,639,105 54,686,452
rcv1_test 677,399 47,236
splice.t 462,033 11,725,480
url_combined 2,396,130 3,231,961
webspam 350,000 16,609,143
yahoo-korea 460,554 3,052,939

Table 2: Data statistics.

is obtained by solving

min
d B
∥wB + dB ∥1 + ∇BL(w)

TdB +
1
2
dTBHdB

subject to dj = 0, j < B,
(16)

where L(w) ≡ C
∑l
i=1 ξ (w

T x i ,yi) and the matrix H can be any
approximation of ∇2

BBL(w). By considering

H = diag(∇2
BBL(w)) (17)

to include all diagonal entries of ∇2
BBL(w), (16) becomes |B | inde-

pendent one-variable sub-problems, each of which is the same as
(9) considered in CDN. Thus these sub-problems can be solved in
parallel to get a direction dB . Note that |B | can be any value regard-
less of the number of cores. Then a line search process is needed
to ensure the convergence. Unfortunately, it is not easy to select a
suitable bundle size |B |, which is discussed in Section A.1.

5 EXPERIMENTS
In this section, we first demonstrate that a naive parallelization
of CDN is very effective for L1-regularized classification. Then,
we investigate the role of shrinking technique and the impact of
the threshold. At last, we conduct experiments to demonstrate the
speedup of parallelizing newGLMNET for L1-regularized classifica-
tion and dual CD for L2-regularized classification.

The detailed statistics of the 11 public sets are in Table 2. For
webspam, the tri-gram version is used. For splice.t, it is a 10%
random subset because the original set is too large for our ma-
chine. Experiments were conducted on an Amazon EC2 r4.8xlarge
machine with an 16-core Intel Xeon E5-2686 v4 Processor.3 For pa-
rameters, we chooseC = 1 and apply LIBLINEAR’s default stopping
condition [6]. We use 500 as the threshold to decide if a feature is
dense enough and operations should be parallelized. In Section 5.3,
we show this threshold can be easily selected.

5.1 Comparison Between State-of-the-art
Methods

We extensively compare the following CDN-based approaches im-
plemented in C++ and OpenMP.

3We disable hyperthreading in the machine.

• Naive CDN: We parallelize loops in the CDN implementa-
tion of LIBLINEAR [6], a popular linear classification pack-
age. For LR we use an earlier version 1.7 because in the
current LIBLINEAR the solver has been changed to newGLM-
NET. Results of parallelizing newGLMNET are in Section
5.4.
• Shotgun CDN [2]: Although the code is publicly available
at https://github.com/akyrola/shotgun, to make a fair com-
parison by using, for example, the same data structure, we
implement this method based on LIBLINEAR.
• Bundle CDN [1]: We use the authors’ code (https://github.
com/bianan/ParallelCDN) because it is directly extended
from LIBLINEAR-1.7. Their code considers the model with a
bias term (i.e.,wT x +b is the decision value), so we modify it
to use the same decision valuewT x as others. We use 10,000
as the bundle size, but for kdd2010-a, the same size (29,500)
as in [1] is considered.

For all the above methods, the shrinking technique discussed
in Section 3.2 is applied. We give experimental analysis of this
technique in Section 5.2.

Following [2], we measure parallel algorithms by the speedup
defined as

Time to reach 1.005 × f ∗ with 1 thread
Time to reach 1.005 × f ∗ with multiple threads

, (18)

where f ∗ is the objective value by LIBLINEAR with the default
stopping condition. All three methods reduce to the standard CDN
if one thread is used. Thus, the comparison is fair because the same
numerator is used in (18).

From results in Table 3, we observe that the speedup of Naive
CDN is generally better than Shotgun, and is significantly better
than Bundle CDN. Further the performance of Shotgun is not stable.
While it is the best for highly sparse sets such as kdd2010-a and
kdd2012, it fails to converge on the dense data epsilon and HIGGS
when 8 and 16 threads are used. This result is consistent with
earlier findings in asynchronous CD experiments [4] (for dual L2-
regularized problems), where they showed that for dense data,
threads more easily collide with each other. For Bundle CDN, in
many data sets it is even slower than the baseline. Besides the
analysis in Section 4, we study Bundle CDN in more details in
appendix and supplementary materials.

Different from Shotgun and Bundle CDN, Naive CDN changes
neither the algorithm nor the convergence of the vanillaCDN. Thus
we have a concrete example where the direct parallelization of a CD
method is faster and more robust than sophisticated modifications.

Besides, we observe that the speedup of Naive CDN on LR is
better than that on SVM. The reason is that for LR, exp(·)/log(·)
operations are involved in (12)-(14). Because each exp(·)/log(·) op-
eration is more expensive than regular arithmetic operations, loops
suitable to be parallelized occupy a larger portion of the total cost.
Further, when a loop involves expensive operations at each element,
the speedup is often better. That is, the overhead in (1) becomes
relatively less important.

5.2 Effectiveness of Shrinking under L1
Regularization

The speedup with and without shrinking is shown in Table 4. In

general the shrinking technique helps to significantly improve the
speedup. This result confirms the conjecture in Section 3.2: denser
features tend to be retained and are updated more times. We give
further details in Table 5 by splitting all features to 10 bins according
to the density of features and letting each bin have about the same
number of non-zeros. Then the first bin corresponds to the densest
features, while the last corresponds to the sparsest ones. We then
check the average number of updates of features in each bin.

For data sets that benefit more from shrinking, dense features
are updated more times than sparse features. Apparently, many
sparse features are removed in the middle of training procedure. For
url_combined although only features in the last bin are updated
fewer times, the speedup after applying shrinking is still improved.
This set has a very long tail on the distribution of features’ non-
zeros – the last bin contains thousand times more features than all
other bins combined.

5.3 The Impact of the Threshold
For naive parallelization, a parameter is the threshold to decide if
operations associatedwith the current feature should be parallelized
or not. We investigate its selection by an experiment on the data
set url_combined.

From the discussion in Section 2, the threshold should not be too
small. Nor should it be too large as otherwise very few features’
operations are parallelized and the resulting speedup is not good.
We present in Table 6 the speedup by varying the threshold from
0 to 100,000. Clearly, the selection of the threshold is not difficult.
We observe similar speedup when the threshold ranges from a few
hundreds to a few thousands.

5.4 Speedup of newGLMNET for L1-regularized
Logistic Regression

In Section 3.3, we have mentioned that newGLMNET is currently
the state-of-the-art for L1-regularized logistic regression under a
single-core setting. It is thus essential to check if a naive paralleliza-
tion on the CD procedure in solving the sub-problem (15) can give
good speedup.

We show in Table 7 that naive parallelization can achieve a good
speedup. However, the speedup of newGLMNET is not as good
as CDN for logistic regression. Instead, the speedup is closer to
that of CDN for SVM with the squared hinge loss. The reason
should be that log(·)/exp(·) operations occupy a smaller percentage
of the total running time. More precisely, newGLMNET conducts
log(·)/exp(·) operations only in generating the sub-problem (15),
which is closer to (2) with the squared hinge loss.

5.5 Speedup of Dual CD for L2-regularized
Problems

We conduct experiments to demonstrate the ineffectiveness of naive
parallelization on methods that access data instance-wisely. We
consider the dual CD implementation [8] in LIBLINEAR for L2-
regularized squared hinge-loss SVM.

We present in Table 8 the results of some sparse and dense sets.
For sparse sets, none of their instances has more non-zeros than
the threshold for choosing between multiple- and single-thread
tasks, so we consider the setting of always using multiple threads

Data set
#threads LR SVM

Naive Bundle Shotgun Naive Bundle Shotgun
4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16

avazu-app 3.4 5.5 7.5 0.7 1.0 1.3 2.5 3.2 2.9 3.1 4.2 4.6 0.3 0.5 0.6 2.5 3.4 2.6
criteo 3.5 5.8 7.5 1.2 1.9 2.6 2.9 4.9 7.5 3.2 4.2 4.4 1.1 1.5 1.8 2.5 3.9 4.8
epsilon 3.9 7.8 14.9 x x x 2.0 x x 3.9 7.8 14.8 x x x 2.1 x x
HIGGS 3.9 7.2 12.9 0.8 0.9 1.0 1.6 x x 3.5 4.9 5.1 x x x 2.0 x x
kdd2010-a 2.4 3.2 3.5 1.4 2.4 3.4 2.8 5.0 8.0 2.0 2.3 2.2 1.2 1.9 2.3 2.2 3.7 5.8
kdd2012 2.9 4.1 4.8 0.4 0.6 0.7 4.2 5.9 7.8 2.4 3.0 3.0 0.1 0.1 0.2 3.6 4.9 5.1
rcv1_test 3.4 6.0 8.5 x x x 2.5 4.5 7.8 2.4 3.3 3.0 0.1 0.3 0.4 1.3 2.4 3.6
splice.t 3.5 6.1 9.2 x x x 3.0 4.2 5.3 3.2 5.1 6.2 x x x 1.4 2.5 3.6
url_combined 3.4 5.9 8.9 0.8 1.2 1.3 1.4 1.3 2.0 2.5 3.5 3.9 0.1 0.2 0.3 1.1 1.0 1.6
webspam 3.2 5.1 6.9 0.3 0.5 0.9 2.5 3.6 5.7 2.3 3.4 4.1 x x x 1.1 2.0 2.7
yahoo-korea 3.5 5.8 8.0 0.3 0.5 0.9 2.5 4.4 7.7 2.3 2.8 2.7 x 0.1 0.2 1.8 3.1 5.2

Table 3: Speedup of CDN-based methods by using 4, 8, and 16 cores. Left: L1-regularized LR. Right: L1-regularized SVM (with
squared hinge loss). The symbol “x” means the approach fails to achieve the desired function value or the speedup is smaller
than 0.1. Under the same number of cores, the best approach is bold-faced.

Data set
#threads LR SVM

Shrinking No shrinking Shrinking No shrinking
2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

avazu-app 1.9 3.4 5.5 7.5 1.8 3.3 5.3 7.0 1.8 3.1 4.2 4.6 1.8 3.0 3.9 4.1
criteo 1.9 3.5 5.8 7.5 1.9 3.4 5.3 6.9 1.9 3.2 4.2 4.4 1.8 3.1 4.0 4.1
kdd2010-a 1.7 2.4 3.2 3.5 1.3 1.6 1.8 1.8 1.5 2.0 2.3 2.2 1.2 1.4 1.4 1.4
kdd2012 1.8 2.9 4.1 4.8 1.4 1.9 2.3 2.4 1.6 2.4 3.0 3.0 1.3 1.6 1.8 1.8
rcv1_test 1.9 3.4 6.0 8.5 1.8 3.3 5.6 7.7 1.6 2.4 3.3 3.0 1.5 2.3 3.1 2.8
splice.t 1.9 3.5 6.1 9.2 1.2 1.3 1.3 1.3 1.8 3.2 5.1 6.2 1.1 1.2 1.2 1.1
url_combined 1.9 3.4 5.9 8.9 1.8 3.2 5.2 7.2 1.7 2.5 3.5 3.9 1.5 2.0 2.5 2.6
webspam 1.8 3.2 5.1 6.9 1.7 2.7 3.9 4.5 1.5 2.3 3.4 4.1 1.4 1.9 2.3 2.3
yahoo-korea 1.9 3.5 5.8 8.0 1.7 2.8 4.0 4.5 1.6 2.3 2.8 2.7 1.3 1.7 1.9 1.8

Table 4: Speedup of naive parallelization of CDN with and without shrinking.

(i.e., threshold is decreased to zero). The resulting speedup is very
poor for sparse sets because few operations are conducted per
instance and the overhead in (1) accounts for a significant portion
of the running time. This experiment confirms the conventional
thinking that the naive parallelization of CD is in general not useful.
An exception is the primal CD discussed in Section 3, where the
extremely skewed distribution of features’ non-zeros in real-world
sparse sets makes the naive parallelization highly effective.

6 CONCLUSIONS
CD has been a state-of-the-art single-thread algorithm for L1-
regularized linear classification, but because of its sequential na-
ture, effective multi-core parallelization is not easy. Surprisingly,
a solution is the direct parallelization of loops in CD. We show
that this strategy is effective because first, many sparse data sets
have skewed feature-wise non-zero distributions, and second, the
shrinking technique, if applied to L1-regularized problems, helps
the parallelization. We retain the same convergence property and
achieve excellent speedup without modifying the CD algorithm at
all. For future works, we are developing techniques to cover the
few data sets that have less skewed distributions.

REFERENCES
[1] Yatao Bian, Xiong Li, Mingqi Cao, and Yuncai Liu. 2013. Bundle CDN: a highly

parallelized approach for large-scale l1-regularized logistic regression. In Pro-
ceedings of European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML/ PKDD).

[2] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. 2011.
Parallel coordinate descent for l1-regularized loss minimization. In Proceedings of
the Twenty Eighth International Conference on Machine Learning (ICML). 321–328.

[3] Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. 2008. Coordinate Descent
Method for Large-scale L2-loss Linear SVM. Journal of Machine Learning Research
9 (2008), 1369–1398. http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf

[4] Wei-Lin Chiang, Mu-Chu Lee, and Chih-Jen Lin. 2016. Parallel dual coordinate
descent method for large-scale linear classification in multi-core environments.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). http://www.csie.ntu.edu.tw/~cjlin/papers/
multicore_cddual.pdf

[5] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. IEEE Computational Science and Engineering
5 (1998), 46–55.

[6] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: a library for large linear classification. Journal of Machine
Learning Research 9 (2008), 1871–1874. http://www.csie.ntu.edu.tw/~cjlin/papers/
liblinear.pdf

[7] Alexandar Genkin, David D. Lewis, and David Madigan. 2007. Large-scale
Bayesian logistic regression for text categorization. Technometrics 49, 3 (2007),
291–304.

[8] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellaman-
ickam Sundararajan. 2008. A dual coordinate descent method for large-scale
linear SVM. In Proceedings of the Twenty Fifth International Conference on Machine
Learning (ICML). http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf

Data set First bin: densest features. Last bin: sparsest features.
1 2 3 4 5 6 7 8 9 10

avazu-app
#features 2.0e+00 3.0e+00 7.0e+00 1.4e+01 2.5e+01 3.8e+01 7.3e+01 1.9e+02 6.0e+02 2.3e+04
#updates 90 90 90 90 90 90 90 90 89 54

criteo
#features 6.0e+00 9.0e+00 1.5e+01 2.3e+01 4.5e+01 1.0e+02 2.6e+02 9.8e+02 6.3e+03 6.6e+05
#updates 64 64 64 64 64 64 64 63 63 28

kdd2010-a
#features 9.7e+01 2.1e+02 4.3e+02 1.0e+03 3.1e+03 1.5e+04 8.6e+04 3.5e+05 1.5e+06 1.7e+07
#updates 347 346 347 340 323 243 166 140 99 46

kdd2012
#features 2.0e+00 3.0e+00 1.0e+01 3.2e+02 2.3e+03 1.1e+04 4.4e+04 2.4e+05 2.8e+06 5.2e+07
#updates 1,000 1,000 1,000 971 967 886 759 564 332 52

url_combined
#features 1.2e+01 1.2e+01 1.2e+01 1.2e+01 1.2e+01 1.5e+01 2.3e+01 1.0e+02 1.1e+03 3.2e+06
#updates 24 24 24 24 24 24 24 23 22 5

webspam
#features 4.6e+02 5.8e+02 7.4e+02 9.5e+02 1.2e+03 1.7e+03 2.9e+03 5.5e+03 1.4e+04 6.5e+05
#updates 31 24 17 12 8 9 8 6 5 5

rcv1_test
#features 3.1e+01 5.3e+01 8.0e+01 1.2e+02 1.8e+02 2.6e+02 4.3e+02 8.2e+02 2.2e+03 3.9e+04
#updates 13 13 12 12 12 12 12 12 11 7

splice.t
#features 1.0e+03 5.6e+03 2.9e+04 1.4e+05 5.6e+05 1.1e+06 1.3e+06 1.4e+06 1.5e+06 5.7e+06
#updates 312 61 4 2 2 2 2 2 2 2

yahoo-korea
#features 8.5e+01 1.9e+02 3.4e+02 5.9e+02 1.0e+03 1.8e+03 3.7e+03 9.0e+03 3.6e+04 3.0e+06
#updates 24 24 23 23 23 22 20 18 12 5

Table 5: The number of features in each bin and the average number of updates of features in the same bin. Each bin contains
roughly 10% of total non-zeros.

Threshold SVM LR
4 8 16 4 8 16

0 2.9 2.8 1.7 1.0 0.6 0.3
50 3.5 6.0 8.4 2.5 3.2 2.7
100 3.5 6.1 8.8 2.5 3.3 3.0
200 3.5 6.1 9.0 2.5 3.7 3.5
500 3.5 6.0 8.8 2.6 3.5 3.9
1000 3.4 5.8 8.7 2.5 3.7 4.3
2000 3.3 5.5 8.1 2.5 3.6 4.1
3000 3.3 5.3 7.5 2.5 3.5 3.9
5000 3.2 5.0 6.8 2.5 3.3 4.0
10000 3.0 4.5 5.8 2.2 3.0 3.4
50000 2.5 3.4 4.1 1.9 2.5 2.8
100000 2.3 3.0 3.6 1.9 2.1 2.5

Table 6: The impact of the threshold on the speedup of naive
parallelization of CDN. The data set url_combined is consid-
ered.

[9] Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. 2010. Iterative
Scaling and Coordinate Descent Methods for Maximum Entropy. Journal of
Machine Learning Research 11 (2010), 815–848. http://www.csie.ntu.edu.tw/
~cjlin/papers/maxent_journal.pdf

[10] Mu-Chu Lee, Wei-Lin Chiang, and Chih-Jen Lin. 2015. Fast Matrix-vector Mul-
tiplications for Large-scale Logistic Regression on Shared-memory Systems.
In Proceedings of the IEEE International Conference on Data Mining (ICDM).
http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf

[11] Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. 2008. Trust region Newton
method for large-scale logistic regression. Journal of Machine Learning Research
9 (2008), 627–650. http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf

[12] Dong C. Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for
large scale optimization. Mathematical Programming 45, 1 (1989), 503–528.

[13] Ji Liu and Stephen J Wright. 2015. Asynchronous Stochastic Coordinate Descent:
Parallelism and Convergence Properties. SIAM Journal on Optimization 25, 1
(2015), 351–376.

[14] Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar.
2015. An Asynchronous Parallel Stochastic Coordinate Descent Algorithm.
Journal of Machine Learning Research 16, 1 (2015), 285–322.

Data set
#threads 4 8 16

avazu-app 3.1 4.1 4.4
criteo 3.1 4.1 4.3
epsilon 3.8 6.5 8.3
HIGGS 3.5 4.5 4.6
kdd2010-a 2.1 2.5 2.5
kdd2012 2.5 3.0 3.0
rcv1_test 2.2 3.1 3.6
splice.t 2.2 2.6 2.8
url_combined 2.9 4.0 4.5
webspam 2.5 3.7 4.5

Table 7: The speedup of naive parallelization on newGLM-
NET.

Data set
#threads 4 8 16

sparse
sets

avazu-app 0.3 0.2 0.1
criteo 0.3 0.2 0.1
url_combined 0.4 0.3 0.2

dense
sets

epsilon 1.3 1.1 0.6
splice.t 2.9 4.1 4.2
webspam 2.5 2.9 2.6

Table 8: Speedup of the direct parallelization of CD on dual
L2-regularized SVM. For problems in the upper part, none
of the instances has more non-zeros than the threshold to
choose betweenmultiple- and single-thread tasks, sowe con-
sider the setting of always using multiple threads.

[15] Peter Richtárik and Martin Takáč. 2016. Parallel coordinate descent methods for
big data optimization. Mathematical Programming 156, 1-2 (2016), 433–484.

[16] Shai Shalev-Shwartz and Ambuj Tewari. 2011. Stochastic Methods for l1-
Regularized Loss Minimization. Journal of Machine Learning Research 12 (2011),

1865–1892.
[17] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. 2012. Large

linear classification when data cannot fit in memory. ACM Transactions on
Knowledge Discovery from Data 5, 4 (February 2012), 23:1–23:23. http://www.
csie.ntu.edu.tw/~cjlin/papers/kdd_disk_decomposition.pdf

[18] Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. 2010. A Com-
parison of Optimization Methods and software for Large-scale L1-regularized
Linear Classification. Journal of Machine Learning Research 11 (2010), 3183–3234.
http://www.csie.ntu.edu.tw/~cjlin/papers/l1.pdf

[19] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. 2012. An Improved GLM-
NET for L1-regularized Logistic Regression. Journal of Machine Learning Re-
search 13 (2012), 1999–2030. http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/
long-glmnet.pdf

[20] Sangwoon Yun and Kim-Chuan Toh. 2011. A Coordinate Gradient Descent
Method for L1-regularized Convex Minimization. Computational Optimizations
and Applications 48, 2 (2011), 273–307.

[21] Huan Zhang and Cho-Jui Hsieh. 2016. Fixing the Convergence Problems in
Parallel Asynchronous Dual Coordinate Descent. In Proceedings of the IEEE
International Conference on Data Mining (ICDM). 619–628.

[22] Tong Zhang and Frank J. Oles. 2001. Text Categorization Based on Regularized
Linear Classification Methods. Information Retrieval 4, 1 (2001), 5–31.

A MORE STUDY ON BUNDLE CDN
In Section A.1, we describe the difficulty of the selection of the
bundle size in Bundle CDN [1]. We then extensively study the
efficacy of Bundle CDN on sparse and dense data sets in Section
A.2. In Section A.3, we study the atomic operation in Bundle CDN.
In Section ?? of supplementary materials, we explain a line search
trick that can be applied in Naive CDN but cannot be applied in
Bundle CDN. Though our experiments are conducted on logistic
regression, we believe the same conclusion should hold for SVMs.

A.1 The Difficulty of the Selection of the
Bundle Size in Bundle CDN

The bundle size |B | can be as large as n, but the diagonal approx-
imation in (17) may result in a poor direction. In experiments in
Section 5 we follow [1]’s setting to use a rather large bundle size
(10, 000 or more), but find that the convergence is slow. This re-
sult is not surprising because CD is designed to greedily update
w in a sequential manner, but now we obtain |B | CD steps based
on the same w . To improve the convergence we may consider a
smaller bundle size (e.g., a value slightly larger than the number
of cores). However, some implementation issues occur. To conduct
line search, a formulation similar to (15) by updating |B | elements
shows that the following vector indicating the change ofwT x i , ∀i
must be obtained ∑

j ∈B
dj x̄ j . (19)

Because cores may simultaneously update the same entry in (19),
in [1], a compare-and-swap atomic array update is implemented.
These atomic updates will cause a significant waiting time in some
situations (e.g., there are some dense features in the bundle). Further,
the implementation requires that (19) is stored as a dense array. To
have (w + βtd)T x i , ∀i for the new function value, we need O(l)
for summing up two vectors. ThisO(l) cost is very expensive when
|B | is small. For sparse sets, the cost of obtaining each dj , j ∈ B is
only O(#non-zeros in feature j), which is much smaller than O(l).
In summary, our discussion fully demonstrates the difficulty in
making bundle CDN an efficient approach.

A.2 Bundle CDN on Sparse and Dense Data Sets
In each epoch, Bundle CDN randomly splits n features to n/|B |
bundles, and for each bundle, Algorithm 3 summarizes that three
operations memset, find_d, and line_search are performed. Fol-
lowing the discussion in Section A.1 on the line-search cost, the
time complexity in an epoch is:
• memset: n

|B | × l

• find_d: non-zeros in the data set
• line_search: n

|B | × l × line-search steps
Clearly, the bundle size cannot be very small, otherwise n

|B | × l

will be very close to O(ln), which is much larger than O(nnz) for
going over all features once in CDN. Therefore, a large bundle
size is required to make this method feasible on sparse data sets.
However, the convergence of Bundle CDNmay get worse when we
increase the bundle size, because the larger the bundle size is, the
approximation H in (17) gets further from ∇2

BBL(w). We verify this
argument by conducting the following experiment. We run Bundle
CDN on kdd2010-a and url_combined with different bundle sizes.
Then we check the number of epochs needed to reach a manu-
ally specified objective value. Further, we record the time spent
on memset, find_d, and line_search. The experimental result in
Table 9 reveals the following observations when we increase the
bundle size:
• More epochs are needed to reach the target objective value.
• The running time of find_d is proportional to the number
of epochs.
• Because the running time of memset and line_search per
epoch decreases when we increase the bundle size, their total
time may decrease even if more epochs are needed.

Therefore, to maximize the performance of BundleCDN, the bundle
size must be carefully selected.

The next question is that if the bundle size is carefully selected,
can Bundle CDN outperform Naive CDN? To answer this question,
we run Bundle CDN with the best bundle size obtained in Table
9, and compare with Naive CDN. For both methods, 16 threads
are used. Note that because we are interested in the convergence
of Bundle CDN in the later stage, we do not impose the default
LIBLINEAR stopping criterion as we did in Section 5. Instead, we
let the two methods run for a long time (3,600 seconds), and report
the relative function value difference defined as follows.

| f (w) − f (w∗)|

| f (w∗)|
,

where the reference optimalw∗ is the minimal objective function
value of Bundle CDN and Naive CDN. The experimental results
are shown in Figures 2a and 2b. In url_combined, Naive CDN
outperforms BundleCDN all the time. For kdd2010-a, BundleCDN
with bundle size 29,500 is overall faster than Naive CDN. Note that
this figure seems to be inconsistent with Table 3, where the speedup
of Naive CDN is comparable to Bundle CDN. This is because Table
3 corresponds to only the situation in Figure 2a when the relative
function-value difference is around 10−2

For dense data, because the number of non-zeros equals n × l ,
memset and line_searchmay no longer be the bottleneck if a small
bundle size is used. Table 10 is the analysis of different bundle sizes.
We still see similar behavior as in the sparse data sets when the
bundle size increases. The experiment comparing the convergence

0 500 1000 1500 2000 2500 3000 3500

Time (s)

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
 d

if
fe

re
n
c
e

NCDN

BCDN

(a) kdd2010-a (bundle size 29,500)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
 d

if
fe

re
n
c
e

NCDN

BCDN

(b) url_combined (bundle size
5,000)

0 200 400 600 800 1000 1200

Time (s)

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
 d

if
fe

re
n
c
e

NCDN

BCDN

(c) HIGGS (bundle size 16)

Figure 2: Comparison between Naive CDN (NCDN) and
Bundle CDN (BCDN) on sparse data sets kdd2010-a and
url_combined, and on a dense set HIGGS. We use 16 threads
for sparse sets, while 8 for dense sets.

Algorithm 3 One epoch (scan data once) of Bundle CDN.

Randomly split {1, . . . ,n} to n/|B | bundles
for each bundle do

memset:
Initialize b ′ as a zero vector to store (19)

find_d:
Solve (16)

line_search:
Perform a line search step

of Bundle CDN and Naive CDN is in Figure 2c, which shows that
Bundle CDN does not out-perform Naive CDN.

A.3 Effect of the Atomic Operation
The implementation of find_d involves an atomic operation to
ensure (19) can be safely calculated by multiple threads. However,
a recent paper [10] shows that the atomic operation may hurt
the speedup. In Table 11, we investigate this problem by checking
the running time spent on memset, find_d, and line_search on
a sparse data set kdd2010-a and a dense data set HIGGS. On the
sparse data set, though the speedup of find_d is not as excellent as
line_search, it is still pretty good. In contrast, on the dense data
set, find_d has no speedup. Therefore, we expect that if we apply
the technique developed in [10], then we may get a better speedup
on dense data sets. We leave this as a future work.

time
|B | epochs total memset find_d line_search

5000 32 942 97 194 650
10000 34 769 50 204 514
20000 39 691 26 230 433
29500 39 602 18 231 353
50000 52 760 12 305 442

(a) kdd2010-a

time
|B | epochs total memset find_d line_search

1000 16 394 28 70 295
5000 28 389 8 120 261
10000 53 524 4 222 298
50000 112 751 1 464 285
100000 91 637 1 387 248
500000 194 1220 1 854 365

(b) url_combined

Table 9: Running time of Bundle CDN with different
bundle sizes (|B |) on two sparse data sets kdd2010-a and
url_combined. We include the size 29,500 in kdd2010-a be-
cause it is the best bundle size reported in [1]. Time is in
seconds.

time
|B | epochs total memset find_d line_search

1 16 316 4 57 253
2 16 197 2 58 136
4 20 180 1 72 106
8 23 184 1 82 100
16 43 313 0 154 157
24 37 240 0 134 105
28 100 634 1 360 272

Table 10: Running time of BundleCDNwith different bundle
size (|B |) on a dense data set HIGGS.

time
#threads total memset find_d line_search

1 1865 34 765 1065
16 213 7 117 87

speedup 8.8 4.9 6.5 12.2
(a) kdd2010-a

time
#threads total memset find_d line_search

1 1842 6 1000 836
16 962 1 900 59

speedup 1.9 6.0 1.1 14.2
(b) HIGGS

Table 11: The time (in seconds) consumed and the speedup
of memset, find_d, and line_search at a given epoch by using
1 and 16 threads.

