
Naive Parallelization of Coordinate Descent Methods and an

Application on Multi-core L1-regularized Classification

Yong Zhuang∗ Yuchin Juan† Guo-Xun Yuan‡ Chih-Jen Lin§

Abstract

It is well known that a direct parallelization of sequen-
tial optimization methods (e.g., coordinate descent and
stochastic gradient methods) is often not effective. The
reason is that at each iteration, the number of opera-
tions may be too small. In this paper, we point out that
because of the skewed distribution of non-zero values in
real-world data sets, this common understanding may
not be true if the method sequentially accesses data in
a feature-wise manner. Because some features are much
denser than others, a direct parallelization of loops in a
sequential method may result in excellent speedup. This
approach possesses an advantage of retaining all conver-
gence results because the algorithm is not changed at all.
We apply this idea on a coordinate descent (CD) method
for L1-regularized classification, and explain why direct
parallelization should work in practice. Further, an in-
vestigation on the shrinking technique commonly used
to remove some features in the training process shows
that this technique helps the parallelization of CD meth-
ods. Experiments indicate that a naive parallelization
achieves better speedup than existing methods that la-
boriously modify the algorithm to achieve parallelism.
Though a bit ironic, we conclude that the naive paral-
lelization of the CD method is the best and the most ro-
bust multi-core implementation for L1-regularized clas-
sification.

1 Introduction

Among convex optimization methods for large-scale
linear classification we can roughly categorize them
to two types according to the amount of information
accessed each time for updating the model. The first
is “sequential methods,” which at each step use either
only one data point or one feature vector. The second
type is “batch methods,” which use more information

∗Carnegie Mellon University. yongzhua@andrew.cmu.edu.

Most of the work done during the internship in Criteo Research.
†Criteo Research. yc.juan@criteo.com. Contribute equally

with Yong Zhuang.
‡Facebook, Inc. gxyzuan@gmail.com
§National Taiwan University. cjlin@csie.ntu.edu.tw

(sometimes the whole set) at a time. We are interested
in their parallelization in multi-core environments.

Examples of batch methods for linear classification
include gradient descent, Newton methods [11], and
quasi Newton methods [12]. It is often easy to parallelize
such methods because each time a significant number of
operations are assigned to a thread. Note that because
of the overhead, paralleling few operations is not useful.
For example, at each iteration of batch methods we must
calculate

wTxi,∀i,
where xi,∀i are training instances and w is the model.
Not only can these independent inner products be
conducted in parallel, but also each task (i.e., an inner
product between two vectors) assigned to a thread
involves a substantial number of operations. The direct
parallelization of batch methods has been successfully
reported in, for example, [10].

For sequential methods such as coordinate descent
(CD) [3, 8, 9] or stochastic gradient (SG), the amount of
information used at each step is much less than that in
batch methods. Typically one instance or one feature
is considered. Because a relatively smaller number of
operations are conducted, the common understanding is
that it is not effective to parallelize sequential methods
like CD or SG. For example, assume the main task at a
step is to calculate a single wTxi. We can use multiple
threads for the inner product, but the speedup is often
poor because very few operations are assigned to each
thread. Therefore, instead of directly parallelizing the
sequential methods, existing works often modify the
algorithm so that a significant amount of operations
can be conducted at a thread. For example, a mini-
batch algorithm considers some instances or features at
a time so parallel computation can be applied on them.
However, with the change of algorithms, convergence
and implementation issues must be carefully checked.

In this paper, we point out that the above conven-
tional wisdom on sequential methods is not always true.
The direct parallelization can achieve excellent speedup
for some types of problems. We will see in Section 2
that because of the skewed distribution of non-zero el-
ements in most real-world data sets, if an algorithm

Copyright c© 20XX by SIAM

Unauthorized reproduction of this article is prohibited

accesses a data set in a feature-wise manner, then by
simply parallelizing the original algorithm, we can get a
competitive or better speedup than some sophisticated
modifications. Our finding, though very simple, is very
useful in practice.

This paper is organized as follows. In Section 2,
by detailed statistics we show that the distribution of
non-zero values across features is very skewed. From
this finding we conjecture that a sequential-type algo-
rithm that accesses one feature at a time can be di-
rectly parallelized to achieve good speedup. In Section
3, we discuss CD for L1-regularized linear classification
as an example. Further, an investigation on the shrink-
ing technique commonly used to remove some features
in the training process shows that this technique helps
the parallelization of CD methods. Existing modifica-
tions to parallelize CD are reviewed in Section 4. Ex-
periments in Section 5 show the effectiveness of naive
parallelization – our strategy achieves better speedup
than sophisticated modifications. Section 6 concludes
our work.

Our proposed approach has been available in
the multi-core extension of the package LIBLIN-
EAR [6]: http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/multicore-liblinear. Programs for
experiments in this work can be found through the
same web page.

2 Naive Parallelization and Distribution of
Non-zeros

Roughly speaking, the running time of a multi-
threading task is

(2.1)
#operations× time per operation

#threads
+ overhead.

If the number of operations is small, the overhead
may cause longer running time than that of using a
single thread. Take an inner product as an example.
While it is easy to split the computation to several
independent sub-tasks, simple experiments show that
we may need 500 components to make parallelization
not harmful, and 100,000 components to reach the
maximum speedup. Unfortunately, for large-scale linear
classification on sparse data, an instance xi may possess
too few non-zero elements so that an inner product
wTxi cannot be effectively parallelized. This explains
why traditionally CD and SG are considered not suitable
for effective parallelization.

Interestingly, our finding is that the direct paral-
lelization of each CD or SG step may not be entirely
hopeless. In fact, for suitable algorithms, the speedup
can be dramatic. We begin with the idea of running
each CD or SG step in the following way:

if number of non-zeros ≥ a threshold then
Run the step by multiple threads

else
Run the step by a single thread

Clearly, we get good speedup only if a small subset of in-
stances or features includes most non-zeros of the entire
data set. That is, there are few dense features or in-
stances, while all others are sparse. Intuitively, this sit-
uation should rarely happen, but to our surprise, it hap-
pens frequently. Subsequently we analyze all large and
sparse binary classification problems in LIBSVM Data
Sets.1

Assume a data set includes l instances. We rear-
range them so that

x1, . . . ,xl

are in the descending order according to their number of
non-zero entries. Then we investigate the distribution
of non-zeros and obtain the following information.
• a: the subset {x1, . . . ,xa} contains 50% of all non-
zero entries
• b: the subset {x1, . . . ,xb} contains 80% of all non-
zero entries
• nnza: number of non-zero entries in xa

• nnzb: number of non-zero entries in xb

• nnza: average number of non-zeros in {x1, . . . ,xa}
• nnzb: average number of non-zeros in {x1, . . . ,xb}
If n is the number of features, we can consider the data
from a feature-wise setting to have

x̄1, . . . , x̄n,

and obtain the same statistics. Table 1 presents all
obtained values.

We observe a huge difference between instance-
wise and feature-wise settings. From an instance-
wise perspective in general the values a/l and b/l are
respectively close to 0.5 and 0.8, so the number of
non-zeros per instance does not vary much. Further,
each instance in most problems has no more than a
few hundred non-zeros. In contrast, from a feature-
wise perspective, most non-zero elements are associated
with a small subset of features. For example, in
the url combined data set, 0.00002% of features (i.e.,
around 60 out of more than three millions) contain
half of all non-zero elements. Therefore, each of these
“dense” features has many non-zeros. We plot the
distribution of a real-world data set criteo in Figure 1.
The distribution is extremely skewed under the feature-

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary. We use data sets that have more than

ten million non-zeros and density less than 0.001. We also add a
non-public data set yahoo-korea.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary

Instance-wise Feature-wise
Data set a/l b/l nnza nnzb nnza nnzb a/n b/n nnza nnzb nnza nnzb

avazu-app 0.50 0.80 15 15 15 15 0.002 0.01 759,125 72,405 2,422,727 538,899
criteo 0.50 0.80 39 39 39 39 0.0001 0.002 1,114,789 40,477 4,150,931 456,739

kdd2010-a 0.40 0.73 37 30 44 39 0.0003 0.02 5,734 46 31,609 536
kdd2012 0.50 0.80 11 11 11 11 0.00003 0.005 45,151 331 456,195 5,154

rcv1 test 0.24 0.54 100 53 151 107 0.01 0.05 22,990 4,172 54,818 20,329
splice site.t.10% 0.50 0.80 3,331 3,309 3,343 3,335 0.09 0.57 169 106 1,034 270

url combined 0.44 0.76 113 105 130 121 0.00002 0.00006 2,264,387 115,088 2,360,644 1,204,444
webspam 0.29 0.55 4,910 3,570 6,451 5,383 0.006 0.02 98,573 16,401 165,841 74,478

yahoo-korea 0.20 0.48 502 265 857 571 0.0007 0.005 11,986 1,067 35,698 7,525

Table 1: The values of a, b, nnza, nnzb, nnza, nnzb in selected data sets under instance-wise and feature-wise
perspectives. Additional information of these sets is in Table 2.

nnza ≈ 1.1M

a ≈ 100

nnzb ≈ 40k

b ≈ 2k

feature-wise

nnza = nnzb = 39

a ≈ 23M b ≈ 36M

instance-wise

Figure 1: The distribution of non-zero elements in
criteo. x-axis of left: {1, . . . , n}, right: {1, . . . , l}; y-
axis of left: log scaled, right: linear scaled.

wise setting but is uniform under the instance-wise
setting. We explain why the difference may commonly
happen in practice. For criteo, as a data set for
CTR (click-through rate) prediction, it may contain
features such as one “device type” and one “device
id.” Because the same type of devices is used by many
people, this feature has a large number of non-zero
values. In contrast, “device id” is the identifier of a
user device, so it may correspond to very few data
instances. With these sparse features we have a long
tail of the distribution. In contrast, an instance often
corresponds to only one “device type” and one “device
id.” Thus each instance has very few non-zeros and
the number of non-zeros is similar (or exact the same).
The same situation happens for webspam, which is a
document set generated by the bag-of-words setting.
From a feature-wise perspective, frequent words may
occur in millions of documents and rare words may only
appear in tens of documents. On the other hand, from
an instance-wise perspective, for documents collected
from the same or similar sources their numbers of words
may not significantly vary.

The above discussion indicates that if a sequential-
type algorithm processes a feature at a time and the
main task is to go over the feature’s non-zero entries,
then a naive parallelization can be very useful. The
reason is that most operations are associated with those
super-dense features and can be easily parallelized. On
the other hand, for an algorithm processing an instance

at a time, because the number of non-zeros is small, a
naive parallelization may not be effective.

For splice site.t.10%, it seems that even with
feature-wise data accesses, direct parallelization may
not be effective because nnza and nnzb are both small.
However, for L1-regularized classification, we show in
Section 5.2 that the speedup is still good because a
technique called “shrinking” to remove sparse features
helps to make direct parallelization effective.

For dense data, the effectiveness of parallelization
under a feature-wise setting depends on the value of l
(the number of instances). If a data set has enough
instances, then the parallelization should be effective.

3 CD for L1-regularized Linear Classification

Based on the result in Section 2, we discuss why L1-
regularized classification is a type of problems suitable
for CD to be directly parallelized.

Given label-instance pairs {(yi,xi)}, yi ∈
{−1,+1}, xi ∈ Rn, i = 1, ..., l, a binary linear clas-
sifier predicts the class label of a test instance x by the
decision value wTx. The weight vector w ∈ Rn fits to
the data set by solving the optimization problem:

min
w

f(w), where

f(w) ≡

{
‖w‖1

1
2w

Tw
+ C

l∑
i=1

ξ(wTxi, yi)
(3.2)

depending on the use of L1 regularization ‖w‖1 or L2
regularization wTw/2. The loss function ξ(wTx, y)
measures the difference between the predicted value
wTx and the true label y, and C is the regularization
parameter. Two commonly used loss functions are

ξ(wTx, y) ≡(3.3) {
log(1 + exp(−ywTx)) logistic loss,

max(0, 1− ywTx)2 squared hinge loss.

To apply a CD method to solve (3.2), a coordinate wj

is updated at a time. If

(3.4) wj ← wj + d

Copyright c© 20XX by SIAM

Unauthorized reproduction of this article is prohibited

is the change of the variable wj , to get the new loss
values, we need all non-zero values of feature j

(3.5) wTxi ← wTxi + d(xi)j , ∀i.

Examples of CD to solve (3.2) include [3, 21] for L2-
regularized problems and [7, 18, 16] for L1 problems.

On the other hand, instead of (3.2), which is often
referred to as the primal problem, we may solve the dual
problem. If L2 regularization is used with the squared
hinge loss, the dual problem of (3.2) is

min
α

1

2

l∑
i=1

l∑
j=1

yiyjx
T
i xjαiαj +

1

4C

l∑
i=1

α2
i −

l∑
i=1

αi

subject to αi ≥ 0 ∀i.(3.6)

Existing CD works to solve the dual problem (3.6) in-
clude [8, 17]. Each time a coordinate αi is updated, and
while we do not give details, the instance xi is used.
Therefore, CD methods to solve the dual problem ac-
cess/use data in an instance-wise manner. In contrast,
CD methods for the primal problem (3.2) access/use
data in a feature-wise manner. From features’ skewed
non-zero distribution shown in Section 2, we anticipate
that the direct parallelization of a primal CD method
to solve (3.2) can achieve a better speedup than a dual
CD method for solving (3.6). We will experimentally
confirm this conjecture.

Primal CD methods have been developed for both
L1 and L2 regularization, but we focus on L1 prob-
lems because of the following reasons. Currently, pri-
mal CD is among the most efficient single-thread train-
ing methods for L1-regularized problems. However, it
does not enjoy the same status for L2 problems because
under L2 regularization, dual CD is generally consid-
ered more efficient than primal CD [8]. In contrast, for
L1-regularized problems, dual-based methods (not nec-
essarily CD-type methods) have not been very successful
because the dual problem involves a more complicated
L∞-ball constraint. Taking the L1-regularized problem
with the squared hinge loss as an example, the dual is

min
α

1

4C

∑l

i=1
α2
i −

∑l

i=1
αi

subject to αi ≥ 0 ∀i
‖α1y1x1 + ...+ αlylxl‖∞ ≤ 1.

(3.7)

For (3.6), if an αi is updated by fixing others, the
problem is reduced to a single-variable sub-problem
with a simple constraint αi ≥ 0 and can be easily solved.
For (3.7), to update an αi, it is unclear how to easily
form and solve a sub-problem. Therefore, between
primal CD for L1 and L2 problems, it is more important

to study the former. Besides, in Section 3.2 we will show
that the model sparsity by L1 regularization and the
features’ skewed distribution of non-zeros can together
make parallel primal CD more effective.

Next we discuss a primal CD for L1-regularized
problems and its direct parallelization.

3.1 CDN: A Primal CD Method For L1-regularized
problems with both squared hinge and logistic losses,
the comparison [18] has shown that primal CD is the
best among all state-of-the-art algorithms. For the lo-
gistic loss, later [19] proposed a new method called
newGLMNET. It involves a sequence of sub-problems,
but each one is still solved by a CD procedure. There-
fore, CD plays a vital role for L1-regularized linear clas-
sification. For simplicity, we consider the standard CD
setting and leave the details of newGLMNET in the sup-
plementary materials.

At each CD step, if the j-th feature is chosen, we
aim to solve the following one-variable sub-problem:

(3.8) minz f(w + zej)− f(w),

where w is the current solution and

(3.9) ej ≡ [0, ..., 0︸ ︷︷ ︸
j−1

, 1, 0, ..., 0]T ∈ Rn.

Regardless of using the logistic loss or the squared hinge
loss, (3.8) does not have a closed-form solution. Thus
[18] develops a Newton method with line search to
approximately solve (3.8), and their method is referred
to as CDN (CD Newton). Specifically, we consider the
second-order approximation of the loss term at wj .

min
z
f(w + zej)− f(w)

= min
z
|wj + z|+ Lj(z;w)

≈min
z
|wj + z|+ L′j(0;w)z +

1

2
L′′j (0;w)z2,(3.10)

where

Lj(z;w) ≡ C
∑l

i=1
ξ((w + zej)

Txi, yi),(3.11)

L′j(0;w) = C
∑

i:(xi)j 6=0

(xi)j · ∂wTxξ(w
Txi, yi),(3.12)

L′′j (0;w) = C
∑

i:(xi)j 6=0

(xi)
2
j · ∂2wTxξ(w

Txi, yi).(3.13)

The work [18] takes a direction d by solving (3.10),
which has a closed-form solution (details not shown).
To ensure the convergence, [18] conducts a line search

Copyright c© 20XX by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 1 The CDN procedure

Given w; set b = [wTx1, ...,w
Txl]

T

while true do
for j = 1, 2, ..., n do

Find d by solving (3.10); let t← 0
while (3.14) fails do

Update b by (3.15)
t← t+ 1

wj ← wj + βtd

process to check if d, βd, β2d, ... satisfy

f(w + βtdej)− f(w)(3.14)

= |wj + βtd| − |wj |+ C
∑

i:(xi)j 6=0

(
ξ((w + βtdej)

Txi, yi)

−ξ(wTxi, yi)
)
≤ σβt

(
L′j(0;w)d+ |wj + d| − |wj |

)
,

where t = 0, 1, 2, ..., and β ∈ (0, 1) and σ ∈ (0, 1) are
given constants. For both logistic and squared hinge
losses, the convergence of CDN was established in [18].
Clearly, in each of the following two places we need a
loop to go over feature j’s non-zero entries.
1. The calculation of L′j(0;w) and L′′j (0;w) in (3.12)
and (3.13).
2. The function-value evaluation in line search; see the
summation in (3.14).

At the first glance, these operations are not the bot-
tleneck because calculating (w+βtdej)

Txi,∀i in (3.14)
is much more expensive. CDN considers a cost-saving
technique by maintaining b ≡ [wTx1, ...,w

Txl]
T . That

is, at the line search we update b by

bi ← bi + d(xi)j , if t = 0,

bi ← bi − (βt−1d− βtd)(xi)j , otherwise.
(3.15)

Therefore, we always have the current wTxi,∀i. A
summary of the CDN procedure is in Algorithm 1.2

From (3.12)–(3.15), all we need are loops to go over
(xi)j 6= 0, ∀i. We can directly parallelize these
operations though from Section 2, the effectiveness
depends on the number of non-zeros in x̄j . For (3.12)
and (3.13), we need a reduce operation to sum up
values obtained from different threads, while (3.15)
can be conducted by a simple parallel loop. The
implementation can be easily done by, for example,
using OpenMP [5].

3.2 Shrinking Technique Helps the Paralleliza-
tion For L1-regularized problems, because of the model

2In [18], a technique is developed to future reduce the line-
search cost, though details are not shown here.

sparsity, a shrinking technique is often used to acceler-
ate the training. It skips those features that are likely
to have corresponding wj = 0 in the final model. More
details can be found in [18, 19].

An interesting question is whether shrinking influ-
ences the parallelization of the algorithm. For this ques-
tion, there are three possible answers:
1. Sparse features tend to be shrunk earlier than dense
features. In this case dense features (which are easy
to be parallelized) are updated more times than sparse
features (which are hard to be parallelized), so the
speedup of using shrinking is better than not.
2. Dense features tend to be shrunk earlier than sparse
features. In this case shrinking causes worse speedup.
3. Shrinking is not related to feature density, and
therefore has no influence on parallelization.

Conceptually, a dense feature, usually more impor-
tant, may have a non-zero weight in the final model and
is less likely be shrunk. Because operations on a dense
feature can be more effectively parallelized, shrinking
may improve the speedup. In Section 5.2 we experi-
mentally confirm this result.

4 Existing Parallel CD Methods for
L1-regularized Classification

Several works have modified the CD method to solve
(3.2) in parallel, e.g., [2, 15, 1, 14, 13]. They mostly
change the sequential update rule to parallel updates
so that multiple threads can work simultaneously. We
focus on two CDN-based parallel methods.

Shotgun [2]: This method is an asynchronous CD
approach. Each time a feature subset B is randomly
obtained, where |B| is the number of cores. Then
these cores conduct the CDN procedure to update all
wj ∈ B in parallel. The procedure is summarized in
Algorithm 2. A known issue of using asynchronous CD
is that the procedure may not converge to an optimal
solution. A convergence result was established in [2] by
using the gradient direction with a fixed step size, but
the same work states that “we can avoid divergence by
imposing a step size, but our experiments showed that
approach to be impractical.” Therefore, for experiments
they implemented Algorithm 2 that uses a Newton
direction with line search. Further, cores are applied
to the full feature set {1, 2, ..., n} rather than a subset
B to achieve better parallelism. Unfortunately, we will
show in experiments that such practical settings may
lead to the divergence in some situations.

In the implementation, like CDN, Shotgun main-
tains bi = wTxi ∀i in an array and updates the array
through (3.5). Because cores may change bi at the same
time, an atomic operation is imposed for the update.
Here we see another issue of asynchronous CD. A direc-

Copyright c© 20XX by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 2 Shotgun CDN procedure

Given w; set b = [wTx1, ...,w
Txl]

T

while true do
Randomly get |B| indices, where |B| = #cores
for j in B in parallel do

Find d by solving (3.10); let t← 0
while (3.14) fails do

atomic: update b by (3.15)
t← t+ 1

wj ← wj + βtd

tion d is found based on w, but when doing line search,
w may have been changed to w′. Hence, dej may not
be a descent direction at w′ and line search may fail.

Bundle CDN: [1] proposed a method to address
the divergence issue of Shotgun, which is caused by the
dependency breaking of coordinate updates. The pro-
posed method basically resolves the issue by introducing
an extra layer of coordination to parallel updates. Fol-
lowing the block CD framework in [20], at each iteration,
a feature subset B is considered and the direction d is
obtained by solving

min
dB

‖wB + dB‖1 +∇BL(w)TdB +
1

2
dT
BHdB

subject to dj = 0, j /∈ B,
(4.16)

where L(w) ≡ C
∑l

i=1 ξ(w
Txi, yi) and the matrix H

can be any approximation of ∇2
BBL(w). By considering

(4.17) H = diag(∇2
BBL(w))

to include all diagonal entries of ∇2
BBL(w), (4.16)

becomes |B| independent one-variable sub-problems,
each of which is the same as (3.10) considered in CDN.
Thus these sub-problems can be solved in parallel to
get a direction dB . Note that |B| can be any value
regardless of the number of cores. Then a line search
process finding the largest βt, t = 0, 1, ... such that

f(w + βt

[
dB

0

]
)− f(w)

≤σβt
(
∇BL(w)TdB + ‖wB + dB‖1 − ‖wB‖1

)(4.18)

ensures the convergence by the theoretical result in [20].
The bundle size |B| can be as large as n, but the

diagonal approximation in (4.17) may result in a poor
direction. In experiments we follow [1]’s setting to
use a rather large bundle size (10, 000 or more), but
find that the convergence is slow. This result is not
surprising because CD is designed to greedily update
w in a sequential manner, but now we obtain |B| CD
steps based on the same w. To improve the consequence

we may consider a smaller bundle size (e.g., a value
slightly larger than the number of cores). However,
some implementation issues occur. To conduct line
search, the following vector indicating the change of
wTxi, ∀i must be obtained

(4.19)
∑

j∈B
djx̄j .

Because cores may simultaneously update the same
entry in (4.19), in [1], a compare-and-swap atomic array
update is implemented. These atomic updates will
cause a significant waiting time in some situations (e.g.,
there are some dense features in the bundle). Further,
the implementation requires that (4.19) is stored as
a dense array. To have (w + βtd)Txi, ∀i for the
new function value, we need O(l) for summing up two
vectors. This O(l) cost is very expensive when |B|
is small. For sparse sets, the cost of obtaining each
dj , j ∈ B is only O(#non-zeros in feature j), which is
much smaller than O(l). In summary, our discussion
fully demonstrates the difficulty in making bundle CDN
an efficient approach.

5 Experiments

In this section, we experimentally demonstrate that a
naive parallelization of CDN is very effective for L1-
regularized classification. We further investigate the
role of shrinking and the ineffectiveness of parallelizing
dual CD for L2-regularized classification.

We consider 11 public sets,3 where statistics are
in Table 2. For webspam, the tri-gram version is
used. For splice site.t.10%, it is a 10% random
subset because the original set is too large for our
machine. Experiments were conducted on an Amazon
EC2 r4.4xlarge machine with an 8-core Intel Xeon E5-
2686 v4 Processor.4 For parameters, we choose C = 1
and apply LIBLINEAR’s default stopping condition [6].
We use 500 as the threshold to decide if a feature is
dense enough and operations should be parallelized. In
supplementary materials, we show this threshold can be
easily selected because we simply need to use neither a
too small nor a too large value.

5.1 Comparison Between State-of-the-art
Methods We extensively compare the following
approaches implemented in C++ and OpenMP.
• Naive CDN: We parallelize loops in the CDN imple-
mentation of LIBLINEAR. For LR we use an earlier ver-
sion 1.7 because in the current LIBLINEAR the solver

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary.html. Note that yahoo-korea is not available.
4We disable hyperthreading in the machine.

Copyright c© 20XX by SIAM

Unauthorized reproduction of this article is prohibited

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Data set #instances #features
avazu-app 14,596,137 1,000,000
criteo 45,840,617 1,000,000
epsilon 400,000 2,000
HIGGS 11,000,000 28
kdd2010-a 8,407,752 20,216,830
kdd2012 149,639,105 54,686,452
rcv1 test 677,399 47,236
splice site.t.10% 462,033 11,725,480
url combined 2,396,130 3,231,961
webspam 350,000 16,609,143
yahoo-korea 460,554 3,052,939

Table 2: Data statistics.

has been changed to newGLMNET.5

• Shotgun CDN [2]: Although the code is publicly
available,6 to make a fair comparison by using, for
example, the same data structure, we implement this
method based on LIBLINEAR.
• Bundle CDN [1]: We use the authors’ code7 because
it is directly extended from LIBLINEAR-1.7. Their code
considers the model with a bias term (i.e., wTx+b is the
decision value), so we modify it to use the same decision
value wTx as others. We use 10,000 as the bundle size,
but for kdd2010-a, the same size (29,500) as in [1] is
considered.

For all the above methods, the shrinking technique
discussed in Section 3.2 is applied. We give experimen-
tal analysis of this technique in Section 5.2.

Speedup is commonly used to measure parallel
algorithms. Following [2], we define speedup as
(5.20)

Time to reach 1.005× f∗ with 1 thread

Time to reach 1.005× f∗ with multiple threads
,

where f∗ is the objective value obtained by LIBLINEAR
with the default stopping condition. All three methods
reduce to the standard CDN if one thread is used. Thus,
the comparison is fair because the same numerator is
used in (5.20).

From results in Table 3, we observe that the
speedup of Naive CDN is generally better than Shot-
gun, and is significantly better than Bundle CDN. Fur-
ther the performance of Shotgun is not stable. While it
is the best for highly sparse sets such as kdd2010-a and
kdd2012, it fails to converge on the dense data epsilon

and HIGGS when 8 threads are used. This result is con-
sistent with earlier findings in asynchronous CD experi-
ments [4] (for dual L2-regularized problems), where they

5Results of parallelizing newGLMNET are in supplementary

materials.
6https://github.com/akyrola/shotgun
7https://github.com/bianan/ParallelCDN

found that for dense data, threads more easily collide
with each other. For Bundle CDN, in many data sets
it is even slower than the baseline. Besides the analysis
in Section 4, we study Bundle CDN in more details in
supplementary materials.

Different from Shotgun and Bundle CDN, Naive
CDN changes neither the algorithm nor the convergence
of the vanilla CDN. Thus we have a concrete example
where the direct parallelization of a CD method is faster
and more robust than sophisticated modifications.

Besides, we observe that the speedup of Naive CDN
on LR is better than that on SVM. The reason is that
for LR, exp / log operations are involved in (3.13)-(3.15).
Because each exp / log operation is more expensive
than regular arithmetic operations, loops suitable to be
parallelized occupy a larger portion of the total cost.
Further, when a loop involves expensive operations at
each element, the speedup is often better. That is, the
overhead in (2.1) becomes relatively less important.

5.2 Effectiveness of Shrinking under L1 Regu-
larization The speedup with and without shrinking is
shown in Table 4. In general the shrinking technique
helps to significantly improve the speedup. This result
confirms the conjecture in Section 3.2: denser features
tend to be retained and are updated more times. We
give further details in Table 5 by splitting all features
to 10 bins according to the density of features and let-
ting each bin have about the same number of non-zeros.
Then the first bin corresponds to the densest features,
while the last corresponds to the sparsest ones. We then
check the average number of updates of features in each
bin. For data sets that benefit more from shrinking,
dense features are updated more times than sparse fea-
tures. Apparently, many sparse features are removed
in the middle of training procedure. For url combined

although only features in the last bin are updated fewer
times, the speedup after applying shrinking is still im-
proved. This set has a very long tail on the distribution
of features’ non-zeros – the last bin contains thousand
times more features than all other bins combined.

5.3 Speedup of Dual CD for L2-regularized
Problems We conduct experiments to demonstrate
the ineffectiveness of naive parallelization on methods
that access data instance-wisely. We consider the dual
CD implementation [8] in LIBLINEAR for L2-regularized
squared hinge-loss SVM.

Because of space limit, we present in Table 6 only
results of some sparse and dense sets. For sparse sets,
none of their instances has more non-zeros than the
threshold for choosing between multiple- and single-
thread tasks, so we always use multiple threads (i.e.,

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/akyrola/shotgun
https://github.com/bianan/ParallelCDN

Data set
#threads

LR SVM
Naive Bundle Shotgun Naive Bundle Shotgun

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
avazu-app 1.9 3.4 5.6 0.4 0.7 1.0 1.4 2.7 3.4 1.5 2.4 4.3 0.2 0.3 0.4 1.1 2.1 3.4
criteo 1.8 3.3 5.5 0.7 1.2 1.9 1.5 2.9 4.8 1.6 2.6 4.2 0.5 0.8 1.0 1.3 1.8 3.3
epsilon 2.0 4.0 7.9 x x x 1.3 2.1 x 2.0 3.9 7.8 x x x 1.0 2.1 x
HIGGS 2.0 3.9 7.5 0.7 0.8 0.9 1.0 1.3 x 1.8 2.8 4.7 x x x 0.8 2.2 x
kdd2010-a 1.7 2.4 3.1 0.8 1.4 2.4 1.5 2.7 4.8 1.5 1.9 2.2 0.7 1.3 1.9 1.2 2.2 3.7
kdd2012 1.9 2.8 3.9 0.2 0.4 0.6 2.1 4.7 7.0 1.5 2.4 3.0 x x x 1.5 3.2 5.0
rcv1 test 1.9 3.4 5.9 x x x 1.3 2.5 4.5 1.6 2.4 3.2 x 0.1 0.2 0.7 1.3 2.3
splice site.t.10% 1.9 3.6 6.2 x x x 1.6 2.7 4.3 1.8 3.1 4.4 x x x 1.0 1.3 2.2
url combined 2.0 3.5 6.2 0.5 0.9 1.3 1.0 1.7 1.7 1.7 2.6 3.7 x 0.1 0.2 0.5 1.0 0.8
webspam 1.8 3.2 4.8 0.1 0.3 0.5 1.4 2.5 4.1 1.5 2.2 3.0 x x x 0.7 1.2 1.9
yahoo-korea 1.9 3.5 5.9 0.2 0.3 0.5 1.3 2.4 4.4 1.6 2.2 2.8 x x 0.1 1.0 1.7 3.1

Table 3: Speedup by using 2, 4, and 8 cores. Left: L1-regularized LR. Right: L1-regularized SVM (with squared
hinge loss). The symbol “x” means the approach fails to achieve the desired function value or the speedup is
smaller than 0.1. Under the same number of cores, the best approach is bold-faced.

Data set
#threads

LR SVM
Shrinking No shrinking Shrinking No shrinking
2 4 8 2 4 8 2 4 8 2 4 8

avazu-app 1.9 3.4 5.6 1.9 3.4 5.3 1.5 2.4 4.3 1.8 2.8 3.7
criteo 1.8 3.3 5.5 1.9 3.1 5.0 1.6 2.6 4.2 2.0 3.3 4.2
kdd2010-a 1.7 2.4 3.1 1.3 1.6 1.8 1.5 1.9 2.2 1.2 1.4 1.4
kdd2012 1.9 2.8 3.9 1.4 1.6 2.3 1.5 2.4 3.0 1.2 1.4 1.7
rcv1 test 1.9 3.4 5.9 1.8 3.3 5.5 1.6 2.4 3.2 1.6 2.3 3.0
splice site.t.10% 1.9 3.6 6.2 1.4 2.0 2.4 1.8 3.1 4.4 1.1 1.2 1.1
url combined 2.0 3.5 6.2 1.8 3.3 5.1 1.7 2.6 3.7 1.5 2.1 2.5
webspam 1.8 3.2 4.8 1.7 2.6 3.7 1.5 2.2 3.0 1.3 1.7 2.0
yahoo-korea 1.9 3.5 5.9 1.7 2.8 4.0 1.6 2.2 2.8 1.3 1.7 1.9

Table 4: Speedup of naive parallelization of CDN with and without shrinking.

threshold is decreased to zero). The resulting speedup
is very poor for sparse sets because few operations
are conducted per instance and the overhead in (2.1)
accounts for a significant portion of the running time.
This experiment confirms the conventional thinking
that the naive parallelization of CD is in general not
useful. Interestingly and surprisingly, our finding of the
extremely skewed distribution of features’ non-zeros in
real-world sparse sets comes to the rescue in making the
naive parallelization of primal CD highly effective.

6 Conclusions

As the developers of the popular package LIBLINEAR,
we have long wanted to provide multi-core extensions
for users. After some efforts we have had successful im-
plementations for L2-regularized classification [10, 4].
However, for L1-regularized problems we struggled to
develop an effective solution. Existing approaches ei-
ther have convergence issues (e.g., Shotgun) or do not
give good speedup. Surprisingly, a solution turns out
to be the direct parallelization of loops in CD. We show
that this strategy is effective because first, many sparse
data sets have skewed feature-wise non-zero distribu-

tions, and second, the shrinking technique, if applied
to L1-regularized problems, effectively helps the paral-
lelization. We retain the same convergence property and
achieve excellent speedup without modifying the CD al-
gorithm at all. For data sets that do not have skewed
distributions, we are developing some novel techniques
to achieve better speedup than the current naive paral-
lelization.

Acknowledgments

This work was supported by 2017 Criteo Faculty Re-
search Award. We also thank Criteo research team
members for giving us feedback.

References

[1] Y. Bian, X. Li, M. Cao, and Y. Liu. Bundle
CDN: a highly parallelized approach for large-scale l1-
regularized logistic regression. In ECML/PKDD, 2013.

[2] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin.
Parallel coordinate descent for l1-regularized loss min-
imization. In ICML, 2011.

[3] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate

Copyright c© 20XX by SIAM

Unauthorized reproduction of this article is prohibited

Data set
First bin: densest features. Last bin: sparsest features.

1 2 3 4 5 6 7 8 9 10

avazu-app
#features 2.0e+00 3.0e+00 7.0e+00 1.4e+01 2.5e+01 3.8e+01 7.3e+01 1.9e+02 6.0e+02 2.3e+04

#updates 90 90 90 90 90 90 90 90 89 54

criteo
#features 6.0e+00 9.0e+00 1.5e+01 2.3e+01 4.5e+01 1.0e+02 2.6e+02 9.8e+02 6.3e+03 6.6e+05

#updates 64 64 64 64 64 64 64 63 63 28

kdd2010-a
#features 9.7e+01 2.1e+02 4.3e+02 1.0e+03 3.1e+03 1.5e+04 8.6e+04 3.5e+05 1.5e+06 1.7e+07

#updates 347 346 347 340 323 243 166 140 99 46

kdd2012
#features 2.0e+00 3.0e+00 1.0e+01 3.2e+02 2.3e+03 1.1e+04 4.4e+04 2.4e+05 2.8e+06 5.2e+07

#updates 1,000 1,000 1,000 971 967 886 759 564 332 52

url combined
#features 1.2e+01 1.2e+01 1.2e+01 1.2e+01 1.2e+01 1.5e+01 2.3e+01 1.0e+02 1.1e+03 3.2e+06

#updates 24 24 24 24 24 24 24 23 22 5

webspam
#features 4.6e+02 5.8e+02 7.4e+02 9.5e+02 1.2e+03 1.7e+03 2.9e+03 5.5e+03 1.4e+04 6.5e+05

#updates 31 24 17 12 8 9 8 6 5 5

rcv1 test
#features 3.1e+01 5.3e+01 8.0e+01 1.2e+02 1.8e+02 2.6e+02 4.3e+02 8.2e+02 2.2e+03 3.9e+04

#updates 13 13 12 12 12 12 12 12 11 7

splice site.t.10%
#features 1.0e+03 5.6e+03 2.9e+04 1.4e+05 5.6e+05 1.1e+06 1.3e+06 1.4e+06 1.5e+06 5.7e+06

#updates 312 61 4 2 2 2 2 2 2 2

yahoo-korea
#features 8.5e+01 1.9e+02 3.4e+02 5.9e+02 1.0e+03 1.8e+03 3.7e+03 9.0e+03 3.6e+04 3.0e+06

#updates 24 24 23 23 23 22 20 18 12 5

Table 5: The number of features in each bin and the average number of updates of features in the same bin. Each
bin contains roughly 10% of total non-zeros.

Data set
#threads

2 4 8

sparse
sets

avazu-app 0.4 0.3 0.2
criteo 0.5 0.3 0.2
url combined 0.6 0.4 0.3

dense
sets

epsilon 1.3 1.3 1.1
splice site.t.10% 1.8 2.8 4.1
webspam 1.6 2.4 2.9

Table 6: Speedup of the direct parallelization of CD on
dual L2-regularized SVM. For problems in the upper
part, none of the instances has more non-zeros than the
threshold to choose between multiple- and single-thread
tasks, so we always use multiple threads. Because of
space limit, not all sparse sets are presented.

descent method for large-scale L2-loss linear SVM.
JMLR, 9:1369–1398, 2008.

[4] W.-L. Chiang, M.-C. Lee, and C.-J. Lin. Parallel
dual coordinate descent method for large-scale linear
classification in multi-core environments. In KDD,
2016.

[5] L. Dagum and R. Menon. OpenMP: an industry
standard API for shared-memory programming. IEEE
Comput. Sci. Eng., 5:46–55, 1998.

[6] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: a library for large linear
classification. JMLR, 9:1871–1874, 2008.

[7] A. Genkin, D. D. Lewis, and D. Madigan. Large-scale
Bayesian logistic regression for text categorization.
Technometrics, 49(3):291–304, 2007.

[8] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan. A dual coordinate descent method for
large-scale linear SVM. In ICML, 2008.

[9] F.-L. Huang, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin.
Iterative scaling and coordinate descent methods for

maximum entropy. JMLR, 2010.
[10] M.-C. Lee, W.-L. Chiang, and C.-J. Lin. Fast matrix-

vector multiplications for large-scale logistic regression
on shared-memory systems. In ICDM, 2015.

[11] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust re-
gion Newton method for large-scale logistic regression.
JMLR, 9:627–650, 2008.

[12] D. C. Liu and J. Nocedal. On the limited memory
BFGS method for large scale optimization. Math.
Program., 45(1):503–528, 1989.

[13] J. Liu and S. J. Wright. Asynchronous stochastic co-
ordinate descent: Parallelism and convergence proper-
ties. SIAM J. Optim., 25, 2015.

[14] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar.
An asynchronous parallel stochastic coordinate descent
algorithm. JMLR, 16, 2015.

[15] P. Richtárik and M. Takáč. Parallel coordinate descent
methods for big data optimization. Math. Program.,
156:433–484, 2016.

[16] S. Shalev-Shwartz and A. Tewari. Stochastic methods
for l1-regularized loss minimization. JMLR, 12:1865–
1892, 2011.

[17] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin.
Large linear classification when data cannot fit in
memory. ACM TKDD, 5, 2012.

[18] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin.
A comparison of optimization methods and software for
large-scale l1-regularized linear classification. JMLR,
11:3183–3234, 2010.

[19] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved
GLMNET for l1-regularized logistic regression. JMLR,
13, 2012.

[20] S. Yun and K.-C. Toh. A coordinate gradient descent
method for l1-regularized convex minimization. Com-
putational Opt. and App., 48:273–307, 2011.

[21] T. Zhang and F. J. Oles. Text categorization based on
regularized linear classification methods. IR, 4, 2001.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Naive Parallelization and Distribution of Non-zeros
	CD for L1-regularized Linear Classification
	CDN: A Primal CD Method
	Shrinking Technique Helps the Parallelization

	Existing Parallel CD Methods for L1-regularized Classification
	Experiments
	Comparison Between State-of-the-art Methods
	Effectiveness of Shrinking under L1 Regularization
	Speedup of Dual CD for L2-regularized Problems

	Conclusions

