
An Improved GLMNET for L1-regularized Logistic
Regression

Guo-Xun Yuan
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
r96042@csie.ntu.edu.tw

Chia-Hua Ho
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
b95082@csie.ntu.edu.tw

Chih-Jen Lin
Dept. of Computer Science
National Taiwan University

Taipei 106, Taiwan
cjlin@csie.ntu.edu.tw

ABSTRACT
GLMNET proposed by Friedman et al. [1] is an algorithm for
generalized linear model with elastic net. It has been widely
applied to solve L1-regularized logistic regression. However,
recent experiments indicated that the existing GLMNET im-
plementation may not be stable for large-scale problems. In
this paper, we propose an improved GLMNET to address
some theoretical and implementation issues. In particular,
as a Newton-type method, GLMNET achieves fast local con-
vergence, but may fail to quickly obtain a useful solution. By
a careful design to adjust the effort for each iteration, our
method is efficient regardless of loosely or strictly solving
the optimization problem. Experiments demonstrate that
the improved GLMNET is more efficient than a state-of-the-
art coordinate descent method.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
Logistic regression is a popular classification method in

machine learning. Recently, L1-regularized logistic regres-
sion is widely used because it can generate a sparse model.
Given a set of instance-label pairs (xi, yi), i = 1, . . . , l, xi ∈
Rn, yi ∈ {−1,+1}, L1-regularized logistic regression solves
the following unconstrained optimization problem:

min
w

f(w) ≡ ‖w‖1 + C
∑l

i=1
log(1 + e−yiw

Txi), (1)

where ‖ · ‖1 denotes the 1-norm. The regularization term
‖w‖1 is used to avoid overfitting the training data, while the
other term is the sum of training losses. The user-defined
parameter C > 0 is used to balance the regularization and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, CA, USA.
Copyright 2011 ACM 978-1-4503-0055-1/10/07 ...$10.00.

loss terms. Different from the 2-norm regularization, the
1-norm regularization gives a sparse solution of (1).

A difficulty for solving (1) is that ‖w‖1 is not differ-
entiable. Many optimization approaches have been pro-
posed; for example, [2, 3, 4, 5, 6]. Recently, Yuan et al.
[7] made a comprehensive comparison among state-of-the-
art algorithms and software for L1-regularized logistic re-
gression and SVM. They conclude that coordinate descent
(CD) methods perform better than others for large sparse
data (e.g., document data). In particular, CD methods can
quickly obtain a useful solution.

In [7], the method GLMNET by Friedman et al. [1] is in-
cluded for comparison and the performance is reasonably
well. GLMNET is a Newton-type approach by iteratively
minimizing the second-order approximation. The result in
[7] indicates that GLMNET has fast local convergence, but
may spend too much time in early iterations. Thus, differ-
ent from CD methods, GLMNET could not quickly obtain a
useful model. Further, in [7], the existing GLMNET imple-
mentation failed to solve two large problems.

In this paper, we propose an improved GLMNET called
newGLMNET. Our contributions are as follows. First, we
modify GLMNET to be under a general framework in [8] for
establishing the theoretical convergence. Second, we address
some implementation concerns in GLMNET. In particular,
by a careful design to adjust the effort for each iteration, our
method is efficient for both loosely and strictly solving the
optimization problem. Third, we show that the CD method
recommended by [7] may be inefficient for dense data (i.e.,
each instance contains many non-zero feature values). The
reason is that compared to newGLMNET and GLMNET, in a
similar number of operations, CD methods need much more
exponential/logarithmic operations.

We define notation and discuss some basic properties of
(1). The logistic loss is twice differentiable, so most existing
approaches use the gradient and the Hessian of the second
term in (1): By defining

L(w) ≡ C
∑l

i=1
log (1 + e−yiw

Txi),

the gradient and Hessian of L(w) are respectively

∇L(w) = C
∑l

i=1
(τ(yiw

Txi)−1)yixi and

∇2L(w) = CXTDX,
(2)

where τ(s) is the derivative of the logistic loss log(1 + es):

τ(s) =
1

1 + e−s
,

D ∈ Rl×l is a diagonal matrix with

Dii = τ(yiw
Txi)

(
1− τ(yiw

Txi)
)
,

and

X ≡

x
T
1

...
xTl

 ∈ Rl×n.

From standard convex analysis, w∗ is optimal for problem
(1) if and only if w∗ satisfies the optimality conditions:

∇jL(w∗) + 1 = 0 if w∗j > 0,

∇jL(w∗)− 1 = 0 if w∗j < 0,

−1 ≤ ∇jL(w∗) ≤ 1 if w∗j = 0.

(3)

Equivalently, w∗ is optimal if and only if the minimum-norm
sub-gradient at w∗ is zero:

∇Sf(w∗) = 0, (4)

where

∇Sj f(w) ≡

∇jL(w) + 1 if wj > 0,

∇jL(w)− 1 if wj < 0,

sgn(∇jL(w)) max(|∇jL(w)| − 1, 0) if wj = 0.

This paper is organized as follows. Section 2 discusses
a framework of decomposition methods by [8]. The CD
method recommended by [7] and GLMNET by [1] can be
considered as examples of this framework. We also point
out some theoretical and implementation issues of GLM-
NET. In Section 3, we propose an improved GLMNET called
newGLMNET. Experiments in Section 4 shows the superior-
ity of newGLMNET. Section 5 concludes this work.

2. DECOMPOSITION METHODS
Decomposition methods are a commonly-used optimiza-

tion approach by iteratively solving smaller sub-problems.
At each iteration of a decomposition method, a set J of
working variables is chosen and the following sub-problem
is solved:

min
d

f(w + d)− f(w) subject to dj = 0 ∀j /∈ J, (5)

where

f(w + d)− f(w) = L(w + d)− L(w) + ‖w + d‖1 − ‖w‖1.

Only variables in J are updated at each iteration. If d is an
optimal solution of (5), then w is updated by

wj ← wj + dj , ∀j ∈ J.

There are two key issues of a decomposition method: one is
the selection of the working set J ; the other is how to solve
the sub-problem (5). Practically, because the smaller sub-
problem (5) may be still hard, most existing decomposition
methods only approximately solve (5).

Tseng and Yun [8] study a general decomposition method
CGD (Coordinate Gradient Descent) for L1-regularized prob-
lems. They assume that at each iteration, a second-order
approximation to L(w + d) − L(w) is used. Specifically,
given a symmetric positive-definite matrix Hk ∈ Rn×n ap-
proximating the Hessian matrix ∇2L(wk) and a working set

Algorithm 1 A decomposition framework by [8] for L1-
regularized logistic regression

1. Given w1. Choose a strategy for selecting working
sets. Given 0 < β, σ < 1 and 0 ≤ γ < 1.

2. For k = 1, 2, 3, . . .
• Choose an Hk and a working set Jk.
• Get dk by solving the sub-problem (6).
• Compute λ = max{1, β, β2, . . . } such that λdk

satisfies (8).
• wk+1 = wk + λdk.

Jk ⊆ N = {1, . . . , n} at the kth iteration, CGD solves the
following quadratic sub-problem:

min
d

qk(d) ≡ ∇L(wk)Td +
1

2
dTHkd + ‖wk + d‖1 − ‖wk‖1

subject to dj = 0 ∀j /∈ Jk, (6)

where wk is the current iterate.
Many methods are available to select the working set J . A

common rule is to choose working variables in a cyclic man-
ner. That is, elements of the sequence {{1}, {2}, . . . , {n}}
repeatedly take turns to serve as the working set J . The
cyclic rule for choosing working variables is often called the
Gauss-Seidel rule. Besides, because the gradient reveals
the closeness to an optimal solution, some methods, called
Gauss-Southwell rules, select J based on the gradient in-
formation. The concept is extended in [8] by checking the
relationship between d(J) and d(N), which are optimal so-
lutions of (6) using J and N as working sets, respectively.
For example, one rule selects J satisfying

‖d(J)‖∞ ≥ v‖d(N)‖∞, (7)

where v ∈ (0, 1).1

To ensure the convergence, [8] conducts line search after
obtaining an optimal solution d of (6). A step size λ ∈ {βi |
i = 0, 1, . . . } is found such that λd satisfies the following
sufficient decrease condition:

f(wk + λd)− f(wk)

≤σλ
(
∇L(wk)Td + γdTHkd + ‖wk + d‖1 − ‖wk‖1

)
,

(8)

where 0 < β < 1, 0 < σ < 1, and 0 ≤ γ < 1. The over-
all procedure is in Algorithm 1. Under some assumptions,
[9] proved the asymptotic convergence and the local linear
convergence of Algorithm 1.

In the rest of this section, we discuss two examples of
Algorithm 1. One is a CD method recommended by [7] and
the other is GLMNET [1]. The latter is what we would like
to improve upon in this paper, while the former is used for
comparison.

2.1 Size of Working Set is One: Cyclic Coor-
dinate Descent Method

This method cyclically selects a singleton working set J =
{j}, where j = 1, . . . , n. We describe the specific version in
[7]. The sub-problem (6) has only one variable:

min
z

qk(zej), (9)

1We explain why (7) indirectly uses gradient information. If
the 1-norm term is not considered and Hk is diagonal, then
d(N) is a “scaled” gradient with dj(N) = −∇jL(wk)/Hk

jj .
Thus, (7) selects indices with larger scaled gradient values.

where

qk(zej) = ∇jL(wk)z +
1

2
Hk
jjz

2 + |wkj + z| − |wkj | (10)

and ej = [0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0]T is an indicator vector.

Because of only one variable in (9), [7] considers the exact
Hessian matrix to have Hk

jj = ∇2
jjL(wk). It is well known

that (9) has a simple closed-form solution

d =

−∇jL(wk)+1

Hk
jj

if ∇jL(wk) + 1 ≤ Hk
jjw

k
j ,

−∇jL(wk)−1

Hk
jj

if ∇jL(wk)− 1 ≥ Hk
jjw

k
j ,

−wkj otherwise.

(11)

Because (11) gives a Newton direction, [7] refers to this set-
ting as CDN (CD method using one-dimensional Newton di-
rections). By setting γ = 0, the sufficient decrease condition
(8) in the line search procedure is reduced to

f(wk+λdej)−f(wk) ≤ σλ
(
∇jL(wk)d+ |wkj + d| − |wkj |

)
.

(12)
Because CDN is a special case of Algorithm 1, any limit point
of the sequence {w1,w2, . . . } is an optimum of (1).

We discuss the computational complexity of CDN. While
solving (9) by (11) takes a constant number of operations,
calculating ∇jL(wk) and ∇2

jjL(wk) for constructing the
sub-problem (9) is expensive. From (2),we need O(nl) op-
erations for obtaining wTxi,∀i. A common trick to make
CD methods viable for classification problems is to store and

maintain wTxi,∀i. [7] stores ew
Txi instead and updates the

values by

ew
Txi ← ew

Txi · eλ̄dxij ,∀i, (13)

where λ̄ is the step size decided by the line search procedure

and d is the optimal solution of (9). If ew
Txi , ∀i are avail-

able, the evaluation of ∇jL(wk) and ∇2
jjL(wk) in (10), and

f(wk + λdej) in (12) takes O(l) operations. Therefore, the
complexity of one cycle of n CD steps is:

n× (1+ # steps of line search)×O(l). (14)

We call the n CD steps to update w1, . . . , wn as a cycle,
which will be frequently used in our subsequent analysis and
experiments.

We discuss two implementation techniques in [7]. A con-
ventional CD method sequentially minimizes qk(zej) in the
order of {1, . . . , n}. Many past works have indicated that
solving n sub-problems in a random order leads to faster
convergence. Thus, [7] uses a randomly permuted sequence
π(1), . . . , π(n) as the order of solving n sub-problems.

The second technique is shrinking. Because problem (1)
has a sparse solution, [7] heuristically removes some zero
elements during the optimization procedure. They use the
following property to conjecture zero elements in an optimal
solution: From (3), if w∗ is optimal for (1), then

− 1 < ∇jL(w∗) < 1 implies w∗j = 0. (15)

Assume the previous CD cycle contains iterates wk−|J̄|+1,
. . . , wk, where elements in J̄ = {j̄1, . . . , j̄|J̄|} were updated.

Then, J̄ also corresponds to variables remained in the be-
ginning of the current cycle. Sequentially, j ∈ J̄ is checked

at the current cycle. It is removed if

wk+t−1
j = 0 and − 1 +

M

l
< ∇jL(wk+t−1) < 1− M

l
,

(16)
where t is the iteration index for the current cycle and

M ≡ max
(∣∣∣∇Sj̄1f(wk−|J̄|)

∣∣∣ , . . . , ∣∣∣∇Sj̄|J̄|f(wk−1)
∣∣∣) . (17)

If (16) does not hold, then a CD iteration is conducted to
update w. After all elements in J̄ have been processed, a
smaller subset J is obtained and passed to the next cycle.
Note that in (16), we have t = 1, . . . , |J | instead of 1, . . . , |J̄ |
because a new iterate is generated only if j remains.

Because (15) holds only for an optimal solution, in (16),
an interval slightly smaller than (−1, 1) is used. Further,
this interval is adjusted according to M , which uses the
minimum-norm sub-gradient to measure the maximum vio-
lation of the optimality condition in the previous cycle. The
calculation of M is in a sequential manner because for up-
dating wj , we only calculate ∇jL(w) and can easily obtain
∇Sj f(w). We never need the whole vector ∇L(w).

2.2 Size of Working Set is Full
An extreme setting of Tseng and Yun’s framework [8] is to

update all variables at every iteration. That is, we consider
a working set J = N = {1, . . . , n}. Because (7) holds if
J = N , this selection is a special Gauss-Southwell rule. The
method GLMNET by Friedman et al. [1] can be considered
as an example. GLMNET supports different choices of Hk,
but here we discuss the setting of using Hk = ∇2L(wk).
Then, (6) becomes the second-order approximation of (5)
and a Newton direction is obtained.

For the sake of computational efficiency, GLMNET does
not conduct line search after solving (6). Therefore, seri-
ously speaking it is not an example of Algorithm 1. Also,
the convergence is in question. In Section 3, we will add
line search back and conduct proper changes to ensure the
convergence. Further, we experimentally show in Section 4
that these changes do not cause any inefficiency.

Many optimization methods can be applied to solve the
sub-problem (6). Friedman et al. [1] consider a cyclic co-
ordinate descent method, so the procedure for solving sub-
problem (6) is almost the same as CDN in Section 2.1. In-
deed, it is simpler because (6) is a quadratic problem. Se-
quentially, d’s values are updated by minimizing the follow-
ing one-variable function:

qk(d + zej)− qk(d) (18)

=|wkj + dj + z| − |wkj + dj |+∇j q̄k(d)z +
1

2
∇2
jj q̄k(d)z2,

where

q̄k(d) ≡ ∇L(wk)Td +
1

2
dTHkd

represents the smooth terms of qk(d) and plays a similar role
to L(w) for (1). We have

∇j q̄k(d)=∇jL(wk)+(∇2L(wk)d)j ,∇2
jj q̄k(d)=∇2

jjL(wk).
(19)

Since (18) is in the same form as (10), it can be easily solved
by (11). Regarding the line search required in Algorithm 1,
because (18) is exactly solved, the sufficient decrease condi-

tion (8) holds with λ = 1 and γ = 1/2.2 Thus, line search
is not needed.

Because an iterative procedure (CD method) is used to
solve the sub-problem (6), GLMNET contains two levels of
iterations. An “outer iteration” corresponds to the process
from wk to wk+1, while the “inner” level consists of CD iter-
ations for solving (6). For an algorithm involving two levels
of iterations, the stopping condition of the inner iterations
must be carefully designed. A strict inner stopping condi-
tion may cause the algorithm to take a prohibitive amount
of time at the first outer iteration. Alternatively, a loose
inner condition leads to an inaccurate solution of (6) and
possibly lengthy outer iterations. GLMNET terminates the
CD procedure by checking if d is still significantly changed.
That is, in a cycle of n CD steps to update d1, . . . , dn, the
corresponding changes z1, . . . , zn satisfy

max
j

(∇2
jjL(wk) · z2

j) ≤ εin, (20)

where εin is the inner stopping tolerance. For the outer
stopping condition, similarly, GLMNET checks if w is still
significantly changed. Let wk+1 = wk+dk. GLMNET stops
if the following condition holds:

max
j

(∇2
jjL(wk+1) · (dkj)2) ≤ εout, (21)

where εout is the outer stopping tolerance. GLMNET uses
the same value for inner and outer tolerances; i.e., εin =
εout. We will propose better settings in Section 3 and show
experiments in Section 4.

We discuss the computational complexity of GLMNET.
At each CD step, most operations are spent on calculat-
ing ∇j q̄k(d) and ∇2

jj q̄k(d) in (19). Note that ∇2
jj q̄k(d) =

∇2
jjL(wk), ∀j can be pre-calculated before the CD proce-

dure. For ∇j q̄k(d), from (2),

(∇2L(wk)d)j = C

n∑
t=1

l∑
i=1

XT
jiDiiXitdt = C

l∑
i=1

XT
jiDii(Xd)i.

Thus, if Xd (i.e., xTi d,∀i) is maintained and updated by

(Xd)i ← (Xd)i +Xijz, ∀i,

then calculating ∇j q̄k(d) costs O(l) operations.3 Therefore,
the CD method for (6) requires

O(nl) operations for one cycle of n CD steps. (22)

GLMNET applies a shrinking technique to obtain a smaller
sub-problem (6). That is, some w’s elements are conjectured
to be already optimal, so the working set J becomes only a
subset of N . At the kth iteration, GLMNET conducts a loop
to sequentially solve some smaller sub-problems:

While (TRUE)
• Conduct one cycle of n CD steps. Let J include those
dj ’s which still need to be changed.
• If (20) holds, then break.
• Use CD to solve a sub-problem with the working set
J .

The working set J chosen in the above procedure excludes
the following elements satisfying the optimality conditions

2 Now qk(d) is minimized, so in (8) f(·) is replaced by qk(·)
and L(·) is replaced by q̄k(·).
3 This is like how ew

Txi , ∀i are handled in Section 2.1.

of minz qk(d− zej)− qk(d):

∇j q̄k(d) + 1 = 0 if wkj + dj > 0, (23)

∇j q̄k(d)− 1 = 0 if wkj + dj < 0, (24)

−1 ≤ ∇j q̄k(d) ≤ 1 if wkj + dj = 0. (25)

This shrinking method differs from (16) of CDN in several
aspects. First, (16) shrinks only zero elements. Second,
while (25) is similar to (16), CDN uses an interval slightly
smaller than (−1, 1). Thus, (23)–(25) are more aggressive in
removing variables. In Section 3.5, we will propose a setting
similar to (16) for GLMNET.

3. AN IMPROVED GLMNET: NEWGLMNET
As discussed in Section 2.2, GLMNET lacks theoretical

convergence properties. In this section, we propose an im-
proved GLMNET to have the asymptotic convergence. More-
over, we carefully address some implementation concerns.
We refer to the improved algorithm as newGLMNET.

3.1 Positive Definite Hk

The convergence proof in [8] requires that Hk in (6) is
positive definite. However, from (2), Hk = ∇2L(wk) in
GLMNET is only positive semi-definite. For example, if X
has dependent columns, then ∇2L(wk) is not positive def-
inite. To make GLMNET a case in the framework [8], we
slightly enlarge the diagonal elements of ∇2L(wk):

Hk ≡ ∇2L(wk) + νI, (26)

where ν > 0 is a small positive value and I ∈ Rn×n is an
identity matrix.

3.2 Line Search and Asymptotic Convergence
For computational efficiency, GLMNET omits the line search

procedure after obtaining the Newton direction. Thus, the
function value may not be decreasing. To use the conver-
gence result in [8], we include the line search procedure. Ex-
periments in Section 4 show that in almost all cases, λ = 1
satisfies the sufficient decrease condition (8). Thus, the line
search procedure does not introduce extra cost. We prove
that all conditions needed in [8] are satisfied, so any limit
point of {wk} generated by newGLMNET is an optimal so-
lution of (1). The proof is omitted due to space limit.

3.3 CD Method for Solving Sub-problem (6)

As shown in Section 2.2, the CD method for the quadratic
problem (6) is simpler than CDN for (1) because each one-
variable function can be exactly minimized and line search
is not needed. Thus, following an analysis similar to that
in Section 3.2, any limit point of the CD procedure is an
optimum of (6).

The similarity to CDN implies that two implementation
tricks discussed in Section 2.1 can be applied. We discuss
the shrinking implementation in detail in Section 3.5.

3.4 An Adaptive Inner Stopping Condition
We mentioned in Section 2.2 that the inner tolerance must

be carefully decided. For example, under GLMNET’s current
setting of εin = εout, if users specify a small εout, a huge
amount of time is needed for the first outer iteration.

For newGLMNET, we propose an adaptive inner stopping
condition. The design principle is that in the early stage,

newGLMNET should behave like CDN to quickly obtain a
reasonable model, while in the final stage, newGLMNET
should achieve fast local convergence by using Newton-like
directions. In a cycle of updating d’s n variables, we assume
that d1, . . . ,dn are sequentially generated and from dj to
dj+1, the jth element is changed. Then, we propose the fol-
lowing inner stopping condition by checking the minimum-
norm sub-gradient:∑n

j=1
|∇Sj qk(dj)| ≤ εin. (27)

Note that we do not need to calculate the whole ∇Sqk(dj).
Instead, ∇Sj qk(dj) is easily available via ∇j q̄k(dj) in (19).

If at one outer iteration, the condition (27) holds after
only one cycle of n CD steps, then we reduce εin by

εin ← εin/4. (28)

Therefore, we can choose a large εin in the beginning. The
program automatically adjusts εin if it finds that too few CD
steps are conducted for minimizing qk(d).

We use an outer stopping condition similar to (27):∑n

j=1
|∇Sj f(wk)| ≤ εout. (29)

3.5 A Two-level Shrinking Scheme
Sections 2.1 and 2.2 have discussed shrinking schemes for

CDN and GLMNET, respectively. Following the nature of
newGLMNET, we propose a two-level shrinking scheme: the
outer level removes some w’s elements so that a smaller sub-
problem (6) is solved; the inner level is applied to remove
elements in d so that (6) becomes an even smaller problem.

In the beginning of each outer iteration, we remove wj if

wkj = 0 and − 1 +
Mout

l
< ∇jL(wk) < 1− Mout

l
,

where

Mout ≡ max
(∣∣∣∇S1 f(wk−1)

∣∣∣ , . . . , ∣∣∣∇Snf(wk−1)
∣∣∣) .

This setting is different from (23)–(25) in several aspects.
First, because we must calculate ∇jL(wk) in the beginning
of the kth iteration, we do not need a special cycle of n
CD steps in GLMNET. Note that ∇Sf(wk) can be easily
obtained via ∇L(wk) and then used for Mout of the next
iteration.4 Second, like (17), Mout is used to adjust the
shrinking scheme from a conservative setting in the begin-
ning to an aggressive setting in the end.

As indicated in Section 2.2, the CD procedure in each
GLMNET’s outer iteration for solving (6) is very similar to
CDN for (1). Thus, we can apply CDN’s shrinking scheme to
the inner loop of newGLMNET. Assume the previous cycle of

CD steps contains points dr−|J̄|+1,. . . , dr, where elements
in the set J̄ = {j̄1, . . . , j̄|J̄|} were updated. Then, J̄ corre-
sponds to variables remained in the beginning of the current
cycle. Sequentially, j ∈ J̄ is checked at the current cycle. It
is removed if

wkj+dr+t−1
j = 0 and −1+

M in

l
< ∇j q̄k(dr+t−1) < 1−M

in

l
,

(30)

4 If k = 1, ∇Sf(wk−1) is not available. We set Mout =∞,
so no variables are shrunk at the first outer iteration.

Algorithm 2 newGLMNET with two-level shrinking

1. Given w1, εin, and εout. Choose a small positive num-
ber ν. Choose β ∈ (0, 1), γ ∈ [0, 1), and σ ∈ (0, 1).

2. Let Mout ←∞.
3. For k = 1, 2, 3, . . .

• Let J ← {1, . . . , n}, M ← 0, and M̄ ← 0.
• For j = 1, . . . , n

– Calculate Hk
jj , ∇jL(wk) and ∇Sj f(wk).

– If wkj = 0 (outer-level shrinking)

∗ If |∇jL(wk)| < 1−Mout/l
J ← J\{j}.

– M ← max(M, |∇Sj f(wk)|).
– M̄ ← M̄ + |∇Sj f(wk)|.

• If M̄ ≤ εout

return wk.
• Let Mout ←M and M in ←∞.
• Let T ← J and d← 0.
• For p = 1, 2, 3, . . . , 1000

– Let m← 0 and m̄← 0.
– For j ∈ T
∗ Let ∇2

jj q̄k(d) = Hk
jj . Calculate ∇j q̄k(d)

and ∇Sj qk(d).

∗ If wkj + dj = 0 (inner-level shrinking)

· If |∇j q̄(d)| < 1−M in/l
T ← T\{j}.

∗ Else
· m← max(m, |∇Sj q(d)|).
· m̄← m̄+ |∇Sj q(d)|.
· dj ← dj + arg minz q(d+zej)− q(d).

– If m̄ ≤ εin
∗ If T = J (inner stopping)

break.
∗ Else (active set reactivation)

T ← J and M in ←∞.
– Else

M in ← m.
• If p = 1, then εin ← εin/4.
• Compute λ = max{1, β, β2, . . . } such that λd sat-

isfies (8). wk+1 = wk + λd.

where t is the iteration index for the current cycle and

M in ≡ max
(∣∣∣∇Sj̄1qk(dr−|J̄|)

∣∣∣ , . . . , ∣∣∣∇Sj̄|J̄|qk(dr−1)
∣∣∣) .

If (30) does not hold, element j remains.5 Then, a regular
CD iteration is conducted by solving (18) to obtain z̄ and
generating dr+t = dr+t−1 + z̄ej . After the whole set J̄ has
been processed, a smaller subset J is obtained and we move
to the next cycle.6 The overall procedure of newGLMNET
with two-level shrinking is shown in Algorithm 2.

3.6 Analysis on the Number of Exponential
and Logarithmic Operations

Algorithms for logistic regression involve exponential and
logarithmic operations, each of which is much more expen-
sive than one multiplication/division. It is important to

5Note that in (30), t = 1, . . . , |J | instead of 1, . . . , |J̄ |; see
the explanation in Section 2.1.
6Similar to the way to initialize Mout, for the first CD cycle,
we set M in =∞.

Table 1: Number of exp/log operations in a cycle of n coor-
dinate descent steps.

One cycle of n CD steps CDN newGLMNET
Total # of operations (dense data) O(nl) O(nl)
exp/log (dense data) O(nl) ≤ O(l)
Total # of operations (sparse data) O(nnz) O(nnz)
of exp/log (sparse data) O(nnz) ≤ O(l)

check how many exp/log operations are required in an al-
gorithm because a high proportion of exp/log operations
may substantially influence the performance. We analyze
both CDN and newGLMNET by checking each cycle of n
CD steps. We make an assumption that the number of line
search steps in CDN is small (e.g., one or two). Table 1 shows
the number of total operations and the number of exp/log
operations. From (14) and (22), CDN and newGLMNET
both require O(nl) total operations in a cycle. However,
their numbers of exp/log operations are very different. In

CDN, because ew
Txi ∀i must be updated in (13), O(l) exp

operations are needed at each CD iteration. In line search,
calculating f(wk + λdej) in (12) takes O(l) log operations.
Thus, O(nl) exp/log operations are needed in one cycle. In
contrast, because qk(d) in (6) has no exp/log terms, the CD
procedure in newGLMNET does not require any exp/log op-
erations. To construct (6) in the beginning of each outer
iteration, from (2), O(l) exp operations are required. Be-
cause several cycles are used to solve (6), we can say that
each cycle shares no more than O(l) exp operations.

Therefore, CDN’sO(nl) exp/log operations are much more
than newGLMNET’s O(l). The difference becomes smaller
for sparse data because CDN’s O(nl) is replaced by O(nnz),
where nnz is the total number of non-zero elements in X
(i.e., training data). From this analysis, we expect that CDN
suffers from many slow exp/log operations if data are dense
and n is not small. This result will be clearly observed in
Section 4. A related discussion on exp/log operations for
L2-regularized problems is in [10].

Besides, newGLMNET is also superior to CDN in terms of
the cost of line search. More analysis appears in the long
version of the paper [11, Section 4].

4. EXPERIMENTS
In this section, we investigate the performance of CDN,

GLMNET, and newGLMNET. All these methods can be easily
extended to solve logistic regression with a bias term:

min
w,b

‖w‖1 + C
∑l

i=1
log(1 + e−yi(w

Txi+b)). (31)

Because the GLMNET implementation solves (31) instead of
(1), in our comparison, (31) is used. We do not consider
other methods because in [7], CDN is shown to be the best
for sparse data.

4.1 Data Sets and Experimental Settings
We use eight data sets in our experiments. Five of them

(news20, rcv1, yahoo-japan, yahoo-korea, and webspam) are
document data sets. The other three data sets come from
different learning problems: gisette is a handwriting digit
recognition problem from NIPS 2003 feature selection chal-
lenge; epsilon is an artificial data set for Pascal large scale
learning challenge in 2008; KDD2010-b includes student per-

formance prediction data for a tutoring system and is used
for the data mining competition KDD Cup 2010. All docu-
ment data sets are instance-wisely normalized, so the length
of each instance is one. For non-document data, gisette
is feature-wisely scaled to the [−1, 1] interval, and epsilon
is feature-wisely scaled to N(1, 0) and then instance-wisely
normalized. KDD2010-b is preprocessed in [12].

We prepare training and testing sets for each problem.
For gisette and KDD2010-b, we use their original training
and test sets. For others, we randomly split data to one
fifth for testing and the remaining for training.

We choose the parameter C in (31) by five-fold cross vali-
dation on the training set. All methods then solve (31) with
the best C to obtain the model for prediction. Table 2 shows
the statistics and the best C of all data sets. We can clearly
see that two data sets (epsilon and gisette) are very dense,
while others are sparse.

Next, we describe software information and parameter set-
tings in our experiments.
• CDN: this coordinate descent method is described in Sec-

tion 2.1. In the line search procedure, we use σ = 0.01
and β = 0.5. The C/C++ implementation is included
in LIBLINEAR (version 1.7), which is available at http:

//www.csie.ntu.edu.tw/~cjlin/liblinear/.
• newGLMNET: an improved GLMNET is described in Sec-

tion 3. For the positive definiteness of Hk, we set ν =
10−12 in (26). To check the sufficient decrease condition
(8), we use β = 0.5, γ = 0, and σ = 0.01. We choose the
initial εin = ‖∇Sf(w1)‖1. newGLMNET is implemented
in C/C++.
• GLMNET: this method is described in Section 2.2. GLM-

NET is implemented in Fortran with an R interface. The
source code (version 1.5.3) is available at http://cran.

r-project.org/web/packages/glmnet/. GLMNET uses
the regularization parameter λ = 1/(Cl) instead of C.
We ensure that the equivalent settings have been made in
our experiments.
GLMNET offers an option to find a solution path {wC1 , . . . ,

wC∗} of an increasing parameter sequence {C1, . . . , C∗}. It
applies a warm start technique so that the optimal solu-
tion of the previous Ci−1 is used as the initial point for
the current Ci. The number of outer iterations should be
small because of a more accurate initial point. GLMNET
authors suggest that finding a solution path may be faster
than solving a single optimization problem under a fixed C.
[1, Section 2.5]. We refer to this approach as GLMNETpath
and include it for comparison. By their default setting, we
consider a parameter sequence of length 100 starting from
the smallest C1 such that wC1 = 0. Given our desired pa-
rameter C∗, a geometric sequence is generated by a fixed
ratio between successive C values..

We set the initial w1 = 0 for all methods. All experi-
ments are conducted on a 64-bit machine with Intel Xeon
2.0GHz CPU (E5504), 128KB L1 cache, 1GB L2 cache, and
32GB main memory. We use GNU C/C++/Fortran com-
pilers (version 4.4.1) and the optimization flag is properly
set.

4.2 Running Time Comparison
We begin with checking the change of function values

along the running time. We show in Figure 1 pairs of (time,
function value) by gradually reducing the stopping toler-

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://cran.r-project.org/web/packages/glmnet/
http://cran.r-project.org/web/packages/glmnet/

(a) KDD2010-b (b) rcv1 (c) yahoo-japan

(d) yahoo-korea (e) news20 (f) epsilon

(g) webspam (h) gisette

Figure 1: Relative difference to the optimal function value versus training time. Both x-axis and y-axis are log-scaled.
GLMNET and GLMNETpath failed to generate some results because of either memory problems or lengthy running time.

(a) rcv1 (b) yahoo-japan (c) yahoo-korea

(d) news20 (e) epsilon (f) gisette

Figure 2: Effect of two-level shrinking. “Inner only” (“Outer only”) indicates that only inner-level (outer-level) shrinking is
conducted.

Table 2: Data statistics and the best parameter C. Data sets are sorted by the number of nonzero elements per instance in
the training data. We conduct five-fold cross validation on the training set to select C in

{
2k | k = −4,−3, . . . , 6

}
. All data

sets except yahoo-japan and yahoo-korea are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Data set
#data

#features
#nonzeros #nonzeros

C
train test in training per instance

KDD2010-b 19,264,097 748,401 29,890,095 566,345,888 29 0.5
rcv1 541,920 135,479 47,236 39,625,144 73 4
yahoo-japan 140,963 35,240 832,026 18,738,315 133 4
yahoo-korea 368,444 92,110 3,052,939 125,190,807 340 4
news20 15,997 3,999 1,355,191 7,281,110 455 64
epsilon 400,000 100,000 2,000 800,000,000 2,000 0.5
webspam 280,000 70,000 16,609,143 1,043,724,776 3,727 64
gisette 6,000 1,000 5,000 29,729,997 4,955 0.25

ance.7 The x-axis is the log-scaled training time and the
y-axis is the relative difference to the optimal function value:

f(w)− f∗

f∗
,

where w is the solution under the specified tolerance and f∗

is the optimal function value. Because f∗ is not available,
we obtain an approximation by running newGLMNET with
a small stopping tolerance

εout = ε ·min(#pos,#neg)/l · ‖∇Sf(w1)‖1, (32)

where ε = 10−8, and #pos and #neg indicate the numbers of
positive and negative labels in a data set, respectively. The
horizontal dotted line in Figure 1 indicates the relative func-
tion difference by running CDN using LIBLINEAR’s default
stopping tolerance with ε = 0.01 in (32). The point where a
method’s curve passes this horizontal line roughly indicates
the time needed to obtain an accurate enough solution.

From Figure 1, if the optimization problem is loosely solved
using a large εout, CDN is faster than newGLMNET and GLM-
NET. This result is reasonable because CDN uses a greedy
setting to sequentially update variables. In contract, in each
outer iteration, newGLMNET uses only a fixed Hk. If using
a smaller εout, newGLMNET surpasses CDN and achieves
fast local convergence. For dense data (epsilon and gisette),
newGLMNET is always better than CDN. Take epsilon as
an example. In Figure 1(f), to reach the horizontal line,
newGLMNET is ten times faster than CDN. This huge dif-
ference is expected following the analysis on the number of
exp/log operations in Section 3.6.

From results above the horizontal lines in Figure 1, we see
that newGLMNET is faster than GLMNET in the early stage.
Recall that GLMNET sets εin = εout, while newGLMNET uses
an adaptive setting to adjust εin. Because a large εin is con-
sidered in the beginning, newGLMNET can compete with
CDN in the early stage by loosely solving (6). We use an ex-
ample to further illustrate the importance to properly choose
εin. By running GLMNET with the default εout = 10−4 on
news20 and rcv1, the training time is 218.15 and 4171.74
seconds, respectively. The first outer iteration already takes
108.62 seconds on news20 and 656.14 on rcv1. A quick fix
is to enlarge the initial εin, but the local convergence in the
later stage may be slow. A better inner stopping condition

7For GLMNET and newGLMNET, the tolerance means the
outer tolerance εout in (21). For GLMNETpath, under any
given εout, a sequence of problems (1) is solved.

should be adaptive like ours so that the sub-problem (6) can
be solved properly at each outer iteration.

In Figure 1, GLMNET and GLMNETpath failed to generate
some results because of either memory problems or lengthy
running time. This indicates that a careful implementa-
tion is very important for large-scale problems. We also
observe that GLMNETpath is not faster than GLMNET. An-
other drawback of GLMNETpath is that it is hard to quickly
obtain an approximate solution. That is, regardless of εout

specified, a sequence of problems (1) still needs to be solved.
We have checked the relationship between the testing ac-

curacy and the training time. The comparison result, not
presented due to space limit, is similar to that in Figure 1.

Recall we added a line search procedure in newGLMNET.
We find that the sufficient decrease condition (8) holds for
λ = 1 in all cases. In contrast, CDN spends considerable
time on line search.

In summary, because of the proposed adaptive inner stop-
ping condition, newGLMNET takes both advantages of fast
approximation in the early stage like CDN and of fast local
convergence in the final stage like GLMNET.

4.3 Effect of Exp/log Operations
In Table 2, we sort data sets according to nnz/l (the av-

erage number of non-zero values per instance). The purpose
is to see the effect of exp/log operations, where CDN needs
O(nnz) and GLMNET needs O(l) operations per cycle of
n CD steps, respectively. Clearly, for the two dense data
(epsilon and gisette), newGLMNET is much faster. Because
many other issues affect the running time, we focus on the
first CD cycle and present running time in Table 3. Clearly,
for dense data, CDN’s exp/log operations are much more
expensive than other operations, so the total time is longer
than that of newGLMNET. This result indicates that CDN
is not competitive for data with a large nnz/l.

4.4 Effect of Shrinking
We compare newGLMNET implementations with/without

shrinking in Figure 2, which shows that shrinking signifi-
cantly improves the running time. The outer-level shrinking
is particularly useful. Interestingly, from [7, Figure 9] and
Figure 2, shrinking is more effective for newGLMNET than
CDN.

5. DISCUSSIONS AND CONCLUSIONS
In newGLMNET, a CD method is applied to solve the sub-

problem (6). Using the property that CD involves simple

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 3: Timing analysis of the first cycle of n CD steps.
Time is in seconds. (*: dense data)

Data set
CDN newGLMNET

exp/log Total exp/log Total
KDD2010-b 21.72 (30.7%) 70.80 3.88 (6.9%) 56.50
rcv1 4.61 (73.8%) 6.25 0.12 (5.3%) 2.20
yahoo-japan 1.47 (70.9%) 2.08 0.03 (4.2%) 0.71
yahoo-korea 10.65 (66.3%) 16.06 0.08 (1.2%) 6.66
news20 0.21 (27.3%) 0.76 0.003 (0.5%) 0.60
epsilon* 64.98 (73.0%) 89.07 0.09 (0.8%) 11.15
webspam 72.89 (66.6%)109.39 0.06 (0.1%) 41.10
gisette* 1.66 (66.8%) 2.49 0.002 (0.6%) 0.27

and cheap updates, we carefully adjust the stopping condi-
tion for sub-problems. Then, newGLMNET is competitive
with a CD method like CDN in the early stage, but becomes
a Newton method in the end. This design is similar to“trun-
cated Newton” methods in optimization. While CD seems
to be a good choice for solving the sub-problem, whether
there are better alternatives is an interesting future issue.

In this work, we not only improve GLMNET’s theoretical
properties, but also successfully address many implemen-
tation issues. The proposed newGLMNET is more stable
and efficient for large-scale L1-regularized logistic regression.
The implementation is included in LIBLINEAR (version 1.8).

6. REFERENCES
[1] J. Friedman, T. Hastie, and R. Tibshirani,

“Regularization paths for generalized linear models via
coordinate descent,” Journal of Statistical Software,
vol. 33, no. 1, pp. 1–22, 2010.

[2] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale
Bayesian logistic regression for text categorization,”
Technometrics, vol. 49, no. 3, pp. 291–304, 2007.

[3] K. Koh, S.-J. Kim, and S. Boyd, “An interior-point
method for large-scale l1-regularized logistic
regression,” Journal of Machine Learning Research,
vol. 8, pp. 1519–1555, 2007.

[4] G. Andrew and J. Gao, “Scalable training of
L1-regularized log-linear models,” in Proceedings of the
Twenty Fourth International Conference on Machine
Learning (ICML), 2007.

[5] J. Liu, J. Chen, and J. Ye, “Large-scale sparse logistic
regression,” in Proceedings of The 15th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 547–556, 2009.

[6] M. Schmidt, G. Fung, and R. Rosales, “Fast
optimization methods for l1 regularization: A
comparative study and two new approaches,” in
Proceedings of European Conference on Machine
Learning, pp. 286–297, 2007.

[7] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin,
“A comparison of optimization methods and software
for large-scale l1-regularized linear classification,”
Journal of Machine Learning Research, vol. 11,
pp. 3183–3234, 2010.

[8] P. Tseng and S. Yun, “A coordinate gradient descent
method for nonsmooth separable minimization,”
Mathematical Programming, vol. 117, pp. 387–423,
2009.

[9] S. Yun and K.-C. Toh, “A coordinate gradient descent
method for l1-regularized convex minimization,” 2009.
To appear in Computational Optimizations and
Applications.

[10] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, “Coordinate
descent method for large-scale L2-loss linear SVM,”
Journal of Machine Learning Research, vol. 9,
pp. 1369–1398, 2008.

[11] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “An improved
GLMNET for l1-regularized logistic regression and
support vector machines,” tech. rep., National Taiwan
University, 2011.

[12] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G.
McKenzie, J.-W. Chou, P.-H. Chung, C.-H. Ho, C.-F.
Chang, Y.-H. Wei, J.-Y. Weng, E.-S. Yan, C.-W.
Chang, T.-T. Kuo, Y.-C. Lo, P. T. Chang, C. Po,
C.-Y. Wang, Y.-H. Huang, C.-W. Hung, Y.-X. Ruan,
Y.-S. Lin, S.-D. Lin, H.-T. Lin, and C.-J. Lin,
“Feature engineering and classifier ensemble for KDD
cup 2010,” in JMLR Workshop and Conference
Proceedings, 2011. To appear.

	Introduction
	Decomposition Methods
	Size of Working Set is One: Cyclic Coordinate Descent Method
	Size of Working Set is Full

	An Improved GLMNET: newGLMNET
	Positive Definite Hk
	Line Search and Asymptotic Convergence
	CD Method for Solving Sub-problem (6)
	An Adaptive Inner Stopping Condition
	A Two-level Shrinking Scheme
	Analysis on the Number of Exponential and Logarithmic Operations

	Experiments
	Data Sets and Experimental Settings
	Running Time Comparison
	Effect of Exp/log Operations
	Effect of Shrinking

	Discussions and Conclusions
	References

