
Limited-memory Common-directions Method for Distributed Optimization and its
Application on Empirical Risk Minimization

Ching-pei Lee∗ Po-Wei Wang† Weizhu Chen‡ Chih-Jen Lin§

Abstract
Distributed optimization has become an important research topic
for dealing with extremely large volume of data available in the
Internet companies nowadays. Additional machines make compu-
tation less expensive, but inter-machine communication becomes
prominent in the optimization process, and efficient optimization
methods should reduce the amount of the communication in order
to achieve shorter overall running time. In this work, we utilize the
advantages of the recently proposed, theoretically fast-convergent
common-directions method, but tackle its main drawback of exces-
sive spatial and computational costs to propose a limited-memory
algorithm. The result is an efficient, linear-convergent optimiza-
tion method for parallel/distributed optimization. We further dis-
cuss how our method can exploit the problem structure to efficiently
train regularized empirical risk minimization (ERM) models. Ex-
perimental results show that our method outperforms state-of-the-
art distributed optimization methods for ERM problems.

1 Introduction
Distributed optimization is now an active research topic be-
cause of the rapid growth of data volume. By using multiple
machines in distributed optimization, each machine shares
a lower computational burden, but as the expensive inter-
machine communication cost emerges, the overall running
time may not be shortened. However, it is a must to use
multiple machines to store and operate on these high-volume
data. Therefore the question to ask is not “Can we accelerate
the optimization process by multiple machines,” but “How
do we make the optimization procedure in distributed envi-
ronments more efficient.” In order to conduct distributed op-
timization efficiently, we should carefully consider methods
that address the issue of the communication.

Recently, [17] proposed the common-directions method,
which has both the optimal global-linear convergence rate
for first-order methods and local-quadratic convergence. For
empirical risk minimization (ERM) problems, experiments
in [17] show that among state-of-the-art batch optimiza-
tion methods, their algorithm has the fewest number of data

∗University of Wisconsin-Madison. ching-pei@cs.wisc.edu.
Parts of this work were done when this author was at Microsoft.
†Carnegie Mellon University. poweiw@cs.cmu.edu
‡Microsoft. wzchen@microsoft.com
§National Taiwan University. cjlin@csie.ntu.edu.tw

passes (i.e., pass through the whole training data), which is
proportional to the rounds of communication. These proper-
ties of fast convergence and few data passes are desirable for
distributed optimization. However, [17] combines all previ-
ous gradients to form the update direction, so the compu-
tational and spatial costs of involving past gradients from
the first iteration on can grow unlimitedly. This high spatial
cost and the expense of some non-parallelizable operations
make it less ideal for commonly seen distributed environ-
ments such that the machines being used have only limited
memory and computational capability.

In this work, to remedy the unbounded growing spatial
and computational costs of the common-directions method,
we utilize the idea of how limited-memory BFGS (L-BFGS)
[9] is derived from BFGS to propose a limited-memory
common-directions framework for unconstrained smooth
optimization. The proposed algorithm has an upper-bounded
per-iteration computational cost, and consumes a control-
lable amount of memory just like L-BFGS, meanwhile
possesses faster theoretical/empirical convergence from the
common-directions method because of using the Hessian in-
formation. Our method is highly parallelizable, and the fast
convergence inherited from the common-directions method
makes our method communication-efficient. These proper-
ties make our method suitable for large-scale distributed or
parallel optimization.

Besides past gradients used in the common-directions
method in [17], we investigate combinations of other vectors
to form the update direction. We utilize the ideas from the
heavy-ball method [14] and L-BFGS [9]. Results show our
choices of vectors for combination have better convergence
in the limited-memory setting. We provide convergence
analysis for a general framework that includes our method.
Empirical studies show our method pushes forward state of
the art of distributed batch optimization for ERM.

This work is organized as follows. Section 2 describes
motivations and details of our method. The theoretical con-
vergence is in Section 3. We illustrate efficient implementa-
tions for the ERM problems in Section 4. Section 5 discusses
related works. Empirical comparisons are conducted in Sec-
tion 6. Section 7 concludes this work. The program used in
this paper is available at http://www.csie.ntu.edu.
tw/˜cjlin/papers/l-commdir/.

ching-pei@cs.wisc.edu
poweiw@cs.cmu.edu
wzchen@microsoft.com
cjlin@csie.ntu.edu.tw
http://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/
http://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/

2 Our Method
We consider optimizing the following problem.

(2.1) minw∈Rn f(w),

where f is strictly convex, lower-bounded, and differentiable
with its gradient being ρ-Lipschitz continuous. That is, there
exists ρ > 0 such that for any w1,w2, we have

‖∇f(w1)−∇f(w2)‖ ≤ ρ‖w1 −w2‖.

Lipschitzness of the gradient indicates that f is twice-
differentiable almost everywhere. Therefore, if the Hessian
does not exist, we can still use the generalized Hessian [5] in
our algorithm. However, for the ease of description, we will
always use the notation ∇2f(w) to represent either the real
or the generalized Hessian.

We will first briefly describe some motivating works,
and then propose our algorithm.

2.1 The Common-directions Method. Recently, to im-
prove the convergence of sub-sampled Hessian Newton
method for ERM problems [2], the work [16] proposed to
incorporate the stochastic Newton step with the update direc-
tion at the previous iteration by minimizing the second-order
Taylor expansion.

min
β1,β2

∇f(wk)TpSN
k +

1

2
(pSN
k)T∇2f(wk)pSN

k

subject to pSN
k = β1dk + β2p

SN
k−1,(2.2)

where dk is the stochastic Newton step at the iteratewk, and
pSN
k−1 is the update direction at the previous iteration. The

optimum of this quadratic problem can easily be obtained
by solving a 2 × 2 linear system. Then pSN

k is taken as the
final update direction, and the step size along this direction
is chosen by a backtracking line search procedure.

Extending this idea of combining two directions to
multiple directions, [17] proposed the common-directions
method that at each iteration, uses the gradients from the
first iteration on to decide the update direction by solving
a k × k linear system, where k is the iteration counter. This
approach is shown to possess the optimal global linear con-
vergence rate of first-order methods as well as local quadratic
convergence. Moreover, they showed that the computational
cost for ERM using their method can be significantly reduced
by exploiting the problem structure. However, a drawback of
the common-directions method is that the memory consump-
tion grows linearly with the number of iterations, and the
computational cost at the k-th iteration has a factor of O(k3)
for solving the linear system. Moreover, when being applied
in distributed environments, it requires a communication of
an O(k2) matrix. These quadratic and cubic factors of k can
be prohibitively expensive for large k, which depends on the
number of iterations required to solve a problem.

2.2 From BFGS to L-BFGS. BFGS is a quasi-Newton
method that uses the curvature information obtained from
the gradient differences and the iterate differences to approx-
imate the Newton step. Given an initial positive definite B0,
at the current iterate wk, BFGS constructs a symmetric pos-
itive definite matrix Bk to approximate (∇2f(wk))−1, and
the update direction pBFGS

k is obtained by

(2.3) pBFGS
k = −Bk∇f(wk).

The matrix Bk is constructed by

Bk ≡V Tk−1 · · ·V T1 B0V1 · · ·Vk−1

+
∑k−1

j=1
ρjV

T
k−1 · · ·V Tj+1sjs

T
j Vj+1 · · ·Vk−1,(2.4)

where

Vj ≡ I − ρjsjuTj , ρj ≡ 1/(uTj sj), uj ≡ wj+1 −wj ,

sj ≡ ∇f(wj+1)−∇f(wj).(2.5)

A widely used choice of B0 is B0 = τI for some τ > 0.
To avoid explicitly computing and storing Bk, by (2.4), one
can use a sequence of vector operations to compute (2.3).
After deciding the update direction, a line search procedure
is conducted to ensure the convergence.

It is known that BFGS has local superlinear convergence
[12, Theorem 6.6]. However, the major drawback of BFGS
is that the computational and spatial costs of obtaining the
update direction via (2.4) grows linearly with the number
of iterations passed, so for large-scale or difficult problems,
BFGS may be impractical. Therefore, [9] proposed its
limited-memory version, L-BFGS. The idea is that given a
user-specified integer m > 0, only uj , sj for j = k −
m, . . . , k − 1 are kept. The definition of Bk then changes
from (2.4) to

Bk ≡V Tk−1 · · ·V Tk−mBk0Vk−m · · ·Vk−1

+
∑k−1

j=k−m
ρjV

T
k−1 · · ·V Tj+1sjs

T
j Vj+1 · · ·Vk−1,(2.6)

where Bk0 are positive definite matrices that can be changed
with k. The most common choice is

(2.7) Bk0 = (uTk−1sk−1/(s
T
k−1sk−1))I,

where I is the identity matrix. Because earlier history is dis-
carded, L-BFGS no longer possesses local superlinear con-
vergence, but as shown in [9], it is linear-convergent. Ex-
periments in [17] showed that L-BFGS is competitive with
BFGS for linear classification under a single-core setting.

It is observed in [4] that ifBk0 in (2.6) is a multiple of the
identity matrix like (2.7), the L-BFGS step pBFGS

k is a linear
combination of uj , sj , j = k−m, . . . , k−1, and the current
gradient ∇f(wk). They utilized this property to efficiently
parallelize the L-BFGS method.

2.3 The Proposed Method. Since the common-directions
method shares the same major drawback with BFGS, the
success of the L-BFGS algorithm derived from BFGS mo-
tivates us to consider a limited-memory modification of the
common-directions method. Our method absorbs the advan-
tages of the common-directions method and ideas for using
only recent historical vectors to have the following settings.

Consider a matrix Pk so that its columns include m
selected vectors. We consider a linear combination of these
vectors to form the search direction at the k-th iteration. The
coefficients for the linear combination are decided by solving
the following quadratic program that involves the Hessian
∇2f(wk) at wk.

min
tk

∇f(wk)Tpk +
1

2
pTk∇2f(wk)pk

subject to pk = Pktk.(2.8)

Our settings differs from that in [17] in two aspects.
1. A fixed number of vectors rather than k vectors, where
k is the iteration index, are used.

2. Instead of using past gradients to form the matrix Pk,
we will investigate other choices.

Regarding our setting and L-BFGS, they differ in the follow-
ing aspects.

1. We solve (2.8) to decide the coefficients for combining
vectors, while [4] uses (2.6) to derives coefficients for
the vector combination in L-BFGS.

2. For the candidate vectors to be combined, L-BFGS
considers ui, vj in (2.5) derived from approximating
the Hessian inverse while ours allows flexible choices.

We note that (2.8) is related to the second-order approxima-
tion of f(w) in obtaining the Newton direction:

(2.9) min
pk∈Rn

∇f(wk)Tpk +
1

2
pTk∇2f(wk)pk

They both consider the Hessian matrix. However, (2.8) is a
simplified form of (2.9) by converting from pk ∈ Rn to pk
in the column space of Pk.

2.3.1 Choices of Pk. In general we let Pk have m + 1
columns, in which m vectors are obtained from the previous
m iterations, and the current gradient ∇f(wk) is included
to ensure convergence. The most natural choice of Pk is
to discard older gradients in the common-directions method,
resulting in

(2.10) Pk = [∇f(wk−m), . . . ,∇f(wk)] ∈ Rn×(m+1).

However, in a limited-memory setting, empirically we find
that the gradients may not be sufficient to capture the curva-
ture information to ensure good convergence. We thus also
consider other choices.

The first one extends the idea from the heavy-ball
method [14] to use the updates at the previous iterations. The
heavy-ball method updates the iterate by

wk+1 = wk + α∇f(wk) + βuk−1

with some pre-specified α and β. We thus consider uj =
wj+1 −wj for j = k −m, . . . , k − 1, so

(2.11) Pk ≡ [uk−m, . . . ,uk−1,∇f(wk)] ∈ Rn×(m+1).

For the second choice, we mentioned in Section 2.2
that the L-BFGS step is a linear combination of uj , sj ,
j = k−m, . . . , k− 1, and∇f(wk). This property suggests
that we can also consider these directions to form Pk.
(2.12)
[uk−m, sk−m, . . . ,uk−1, sk−1,∇f(wk)] ∈ Rn×(2m+1).

Note that under the samem, this setting usesmmore vectors
in Pk than (2.10) and (2.11).

In Section 6, we empirically confirm the advantages of
considering the choices of (2.11) or (2.12) over (2.10) in
solving logistic regression problems. As our method uses
the real Hessian information to combine these vectors more
wisely, one can expect that it converges at least as good as, if
not better than, the heavy-ball method and L-BFGS. Finally,
we note that the choice of Pk is not limited to (2.10)-(2.12).

2.3.2 Solving (2.8). We can get the solution of (2.8) by
solving the following.

(2.13) PTk ∇2f(wk)Pkt = −PTk ∇f(wk).

Obtaining PTk ∇2f(wk)Pk and then solving (2.13) may be
expensive. However, for problems with special structures
(e.g., linear risk minimization in Section 4), we are able to
compute it cheaply. Because the columns of Pk may be
linearly dependent, PTk ∇2f(wk)Pk may be positive semi-
definite rather than positive definite. We can use the pseudo
inverse (denoted asA+ of a matrixA) to obtain a solution for
(2.13). Thus, if PTk ∇2f(wk)Pk and PTk ∇f(wk) have been
calculated, then the computational cost for solving (2.13) is
O(m3), which is negligible when m is small.

2.3.3 Overall Procedure After solving (2.13), we take
pk = Pktk, and conduct a backtracking line search to ensure
global convergence. Specifically, we find the minimum
nonnegative integer i such that for a given β ∈ (0, 1),
θk = βi satisfies

f(wk + θkpk) ≤ f(wk) + c1θk∇f(wk)Tpk,(2.14)

for some pre-specified 0 < c1 < 1. The next iterate is then
obtained by wk+1 = wk + θkpk.

To update from Pk to Pk+1, new vectors are needed.
We discuss the most complex case (2.12), and the other two

Algorithm 1: Limited-memory common-directions
method
Given w0,m > 0, compute∇f(w0) and an initial P

that includes∇f(w0)
for k=0,1,. . . do

Compute PT∇2f(wk)P and PT∇f(wk)

Let tk = −(PT∇2f(wk)P)+PT∇f(wk)
∆w = P tk
Backtracking line search on f(wk + θ∆w) to obtain
θk that satisfies (2.14)
uk = θk∆w
wk+1 = wk + uk
Compute∇f(wk+1)
Update P by some choice that includes∇f(wk+1)

end

choices (2.10) and (2.11) follow the same technique. For
(2.12), three vectors uk, sk, and ∇f(wk+1) are needed.
After line search, we have

(2.15) wk+1 = wk + θkP tk = wk + uk,

so uk is obtained. We then calculate ∇f(wk+1) that is
needed in the next iteration, and sk is obtained by (2.5).

Algorithm 1 summarizes our framework, which allows
a flexible choice of Pk and requires only that the current
gradient ∇f(wk) is included in Pk. Although we describe
the framework in a sequential manner, with suitable choices
of Pk, it is possible that most computation-heavy steps are
parallelizable. We will demonstrate an example in Section 4.

Regarding the number of vectors included inPk, one can
expect that larger m leads to faster empirical convergence,
but has larger cost per iteration because the linear system
(2.13) becomes larger.

3 Convergence Analysis
We now discuss the convergence of our method to under-
stand the overall cost. To have a more general analysis we
relax the condition on (2.1) so that f(w) may not even be
convex.

ASSUMPTION 1. The objective is bounded below, differen-
tiable, and has ρ-Lipschitz continuous gradient with ρ > 0.

By replacing the real Hessian ∇2f(wk) in (2.8) with a ma-
trix, we consider a more general setting in finding coeffi-
cients for combining vectors.

min
tk

∇f(wk)Tpk +
1

2
pTkHkpk

subject to pk = Pktk,(3.16)

where vectors to be combined are included in

Pk ≡ [q1, . . . , qm] ∈ Rn×m.

Note that for easy description we let m be the number of
columns in Pk though in (2.10)-(2.12) we have m + 1 or
2m + 1 vectors. In (3.16), we require that Hk is positive
definite and there exist M1 ≥M2 > 0 satisfying

(3.17) M1I � Hk �M2I, ∀k.

If f is strongly convex, then the choice of the real Hessian
in Algorithm 1 satisfies (3.17), as we discuss below in
Corollary 3.1.

The following theorems show the finite termination of
line search and the iteration complexity of our method. All
the proofs are in the supplementary material.

THEOREM 3.1. Consider (3.16) for f(w) satisfying As-
sumption 1. If at iteration k,

(3.18)

∣∣∇f(wk)Tqj
∣∣

‖∇f(wk)‖‖qj‖
≥ δ > 0, for some qj in Pk,

then backtracking line search for (2.14) with any given
β, c1 ∈ (0, 1) terminates in finite steps.

THEOREM 3.2. Assume f(w) satisfies Assumption 1. In
an algorithm of sequentially solving (3.16) that satisfies the
conditions (3.17) and (3.18), and using the solution as the
update direction with backtracking line search, the minimum
of the norm of gradients of the iterates vanishes at an
O(1/ε2) rate:

(3.19) min
0≤j≤k

‖∇f(wj)‖ = O(1/
√
k + 1),

and ‖∇f(wk)‖ also converges to zero as k approaches
infinity. If in addition f(w) satisfies the Polyak-Łojasiewicz
condition [10, 13, 6] for some σ > 0, i.e.,

(3.20) ‖∇f(w)‖2 ≥ 2σ(f(w)− f∗), ∀w,

where f∗ is the optimum of f(w), then the function values
linearly converge. That is, it takes O(log(1/ε)) iterations to
get an ε-accurate solution satisfying

f(wk)− f∗ ≤ ε.

Note that if {wk} is in a compact set, then it has convergent
sub-sequences, and every limit point of {wk} is stationary
because the gradient vanishes.

Our theorems provide convergence not only for our al-
gorithm, but also many others. For example, the algorithm in
[16] for convex L2-regularized ERM, whose analysis proved
(3.18) and (3.20) but only showed asymptotic convergence,
is linearly convergent by using our results. Our result also
provides a convergence-rate result of (3.19) for their algo-
rithm on the nonconvex neural network problem; see Section
VI in the supplementary material. Similarly, the algorithm of

combining past gradients in [17] can also be treated as a spe-
cial case of our framework, and our analysis coincides with
their linear convergence result. However, we notice that the
convergence rate of their another algorithm that uses multi-
ple inner iterations before updating the possible directions is
better than the result one can obtain using the analysis flow
here, as that algorithm does not fit in our framework.

If f is strongly convex, for Algorithm 1, we show (3.20)
holds and establish the linear convergence.

COROLLARY 3.1. Consider using Algorithm 1 to solve
(2.1) satisfying Assumption 1 with f being σ-strongly con-
vex for some σ ∈ (0, ρ]. If the backtracking line search
procedure picks the step size as the largest βi, i = 0, 1, . . .
that satisfies (2.14) for some given β, c1 ∈ (0, 1), then
at each iteration, the line search procedure terminates
within dlogβ(β(1 − c1)(σ/ρ))e steps, and the number
of iterations needed to attain an ε-accurate solution is
O(log(1/ε)/ log(1/(1−2βc1(1−c1)σ3/ρ3))) for any ε > 0.

When f is convex but not strongly convex, (3.17) may
not hold and we cannot apply Corollary 3.1. In this case, we
can use Hk = ∇2f(wk) + τI with some τ > 0 so that

(ρ+ τ)I � Hk � τI.

Then from Theorem 3.2 we have the result in (3.19) by
letting (M1,M2) = (ρ+ τ, τ) in (3.17).

4 Application on Distributed Optimization for ERM
We apply Algorithm 1 to distributedly solve the L2-
regularized ERM problem.

(4.21) min
w∈Rn

f(w) ≡ wTw/2+C
∑l

i=1
ξ(yi;w

Txi),

where C > 0 is a parameter specified by users, (yi,xi),
i = 1, . . . , l are the training instances, such that xi ∈ Rn

are the features while yi are the labels, and the loss function
ξ is convex with respect to the second argument. We simplify
our notation by ξi(wTxi) ≡ ξ(yi;w

Txi) and consider an ξ
function that makes f(w) in (4.21) satisfy Assumption 1.
A typical example is the logistic regression. For distributed
optimization, we assume the data set is split across K
machines in a instance-wise manner: Jr, r = 1, . . . ,K form
a disjoint partition of {1, . . . , l}, and the r-th machine stores
the instances (yi,xi) for i ∈ Jr.1 We then split the Pk matrix
to K parts by their rows. We define J̃r, r = 1, . . . ,K as a
disjoint partition of {1, . . . , n}, and the i-th row of Pk is
stored on machine r if i ∈ J̃r. Similar to the way Pk is
stored, the model vector w is also maintained distributedly

1Implementing our method with splitting the data feature-wisely is also
possible, in which case the split of Pk remains the same, but details are
omitted because of the space limit.

under the J̃r,∀r partitions. The partitions can be defined
to best parallelize the computation, but for simplicity we
assume all J̃r are of the same size n/K and the data set
is partitioned such that each machine has #nnz/K entries,
where #nnz is the number of nonzero entries in the data. In
notation, for a vector ψ, we denote ψJr as the sub-vector
of ψ with the indices in Jr, and for a matrix A, AJr1 ,Jr2
is the sub-matrix consists of Ai,j , (i, j) ∈ Jr1 × Jr2 . For
simplicity, we assume a master-master framework such that
for any non-parallelizable parts, each machine conducts the
same task individually. Adapting the algorithm for a master-
slave setting should be straightforward.

Under Assumption 1, f in (4.21) is twice-differentiable
almost everywhere. Its gradient and (generalized) Hessian
[11] are respectively

∇f(w) = w + CXTvw,(4.22)

∇2f(w) ≡ I + CXTDwX,(4.23)

where XT = [x1, . . . ,xl], Dw is a diagonal matrix, and

(Dw)i,i ≡ ξ′′i (z) |z=(Xw)i , i = 1, . . . , l,(4.24)
(vXw)i ≡ ξ′i(z) |z=(Xw)i , i = 1, . . . , l.(4.25)

The wTw/2 term guarantees that f is 1-strongly convex,
and therefore Corollary 3.1 applies here.

Now we propose techniques to make our algorithm more
efficient for (4.21). We focus the description on using (2.12)
for choosing Pk, as the other two choices follow the same
techniques. Because we aim to handle large-scale data,
throughout the discussion we assume

(4.26) m� l and m� n.

4.1 Reducing Data-related Costs. The main computation
at each iteration of Algorithm 1 is to construct and solve the
linear system (2.13). For ERM, the matrix in (2.13) is

(4.27) PTk ∇2f(wk)Pk = PTk Pk + C(XPk)TDwk
XPk.

We can compute it without explicitly forming the Hessian
matrix. We begin with discussing the efficient calculation of
the second term, which is related to the data matrix X , while
leave details of the first term in Section 4.2.

Following [17], we maintain XPk and Xwk so that the
second term of (4.27) can be cheaply computed in O(m2l).
Otherwise, O(#nnz · m) for directly calculating XPk is
generally more expensive. We begin with the case of a single
machine. For obtaining XPk, we use XPk−1 and some
cheap operations. From (2.12), three new vectors

(4.28) Xuk−1, Xsk−1, X∇f(wk)

must be calculated. From (2.5) and (2.15),

Xsk−1 = X∇f(wk)−X∇f(wk−1),(4.29)
Xuk−1 = θk−1(XPk−1)tk−1.(4.30)

Because X∇f(wk−1) is maintained in XPk−1, the main
operation for (4.28) is X∇f(wk) that costs O(#nnz). For
obtaining Xwk, from (2.15),

Xwk = Xwk−1 +Xuk−1,(4.31)

where Xuk−1 is calculated in (4.30).
In our distributed setting, (4.29)-(4.31) become

(4.32)

(Xsk−1)Jr =(X∇f(wk))Jr−(X∇f(wk−1))Jr ,

(Xuk−1)Jr = θk−1(XPk−1)Jr,:tk−1,

(Xwk)Jr = (Xwk−1)Jr + (Xuk−1)Jr .

That is, we aim to maintain (XPk)Jr,: and (Xwk)Jr at the
r-th node. If these two terms and tk−1 (see Section 4.3) have
been available, (Xuk−1)Jr and (Xwk)Jr can be locally
computed. For (Xsk−1)Jr , we need an allreduce operation
to compute∇f(wk) and make it available to all nodes.

(4.33) ∇f(wk) =

K⊕
r=1

(
CXT

Jr,:(vwk
)Jr +

 0
(wk)J̃r

0

),
where ⊕ denotes the allreduce operation that gathers results
from each node, sums them up, and then broadcasts the result
to all nodes. Afterwards, the computation of (X∇f(wk))Jr
is conducted locally using only instances on the r-th node.
Therefore, the computation of the second term of (4.27)
is fully parallelized and thus costs O((#nnz + m2l)/K)
computation for each machine, with one round of O(n)
communication to generate the gradient.

Before the allreduce operation (4.33), we need (vwk
)Jr .

It together with (Dwk
)Jr,Jr can be calculated using the lo-

cally maintained (Xwk)Jr . Then XT
Jr,:

(vwk
)Jr can also be

computed locally. After the allreduce operation, (Xsk−1)Jr
can be obtained because (X∇f(wk))Jr involves only local
instances and (X∇f(wk−1))Jr is maintained from the pre-
vious iteration.

Finally, we need an allreduce operation on local matri-
ces of size O(m2) to get the second term in (4.27).⊕K

r=1
(XPk)TJr,:(Dwk

)Jr,Jr (XPk)Jr,:.(4.34)

In summary, the computation of the second term of (4.27) is
fully parallelized, with O(n+m2) communication cost.

4.2 Reducing Cost for PTk Pk. 2 Let Mk ≡ PTk Pk be
the first term in (4.27). We mentioned in Section 2.2 that in
[4] for distributed L-BFGS, their method, called VL-BFGS,
combines uj , sj vectors in (2.5). Their method also requires

2After this work was published in the proceedings of SIAM 2017
Conference on Data Mining, Wei-Lin Chiang pointed out to us that the
approach discussed in this section has already been proposed in [3].

Algorithm 2: A distributed implementation of Algorithm
1 for (4.21); (2.12) is used for constructing Pk
Given m > 0,w0, and partitions Jr, J̃r
Compute zJr = XJrw0

Use zJr to calculate (vw0
)Jr and (Dw0

)Jr,Jr in (4.25)
and (4.24)

Compute∇f(w0) by (4.33)
PJ̃r,: = [(∇f(w0))J̃r], M0 =

⊕K
r=1 ‖∇f(w0)J̃r‖

2

(û0)Jr = XJr,:∇f(w0), UJr = (û0)Jr , g = M0

for k=0,1,. . . do
Compute UTDwk

U by (4.34)
. O(m2l/K); O(m2) communication

Obtain t by solving (2.13) with . O(m3)

t = [Mk + CUTDwk
U]+[−g]

Compute ∆zJr = UJr,:t . O(ml/K)
Backtracking line search on f(wk + θ∆w) to obtain
θ that satisfies (2.14) using zJr and ∆zJr for (4.40)

(Xuk)Jr = θ∆zJr
(wk+1)J̃r = (wk)J̃r + θkPJ̃r,:t . O(mn/K)

zJr = zJr + (Xuk)Jr
Use zJr to calculate (vwk+1

)Jr and (Dwk+1
)Jr,Jr

Calculate∇f(wk+1) by (4.33)
. O(#nnz/K); O(n) communication

(ûk+1)Jr = XJr,:∇f(wk+1) . O(#nnz/K)
(sk)J̃r = ∇f(wk+1)J̃r −∇f(wk)J̃r
(Xsk)Jr = (ûk+1)Jr − (ûk)Jr
Update PJ̃r,: according to (2.12)
Update UJr,: = (XP)Jr,: by (Xsk)Jr , (Xuk)Jr ,
(ûk+1)Jr

Calculate g = PT∇f(wk+1) and sTk sk by (4.38)
and (4.39)

. O(mn/K); O(m) communication
Update Mk+1 using (4.37) . O(m2)

end

calculating Mk (i.e., inner products between Pk’s columns).
They pointed out that Mk−1 and Mk share most elements,
so only the following new entries must be calculated.

(4.35) PTk [uk−1, sk−1,∇f(wk)],

where Pk ∈ Rn×(2m+1). Clearly 6m+ 6 inner products are
needed. Besides, their method involves 2m vector additions
(details omitted). The cost is thus higher than 2m inner
products and 2m vector additions in the standard L-BFGS.3

However, the advantage of [4]’s setting is that the 6m + 6
inner products can be parallelized when Pk is distributedly
stored. In this section, we will show that by a careful design,

3An iteration of standard L-BFGS involves two loops, each of which
includes m inner products and m vector additions. See details in [9].

(4.35), or Mk, can be done by 2m + 2 parallelizable inner
products in (4.36). Hence, this technique is useful not only
for our method but also for improving upon VL-BFGS.

To obtain (4.35), we first calculate

(4.36) PTk ∇f(wk), and sTk sk

by 2m + 2 inner products of vectors in Rn. For PTk sk−1,
from (2.5) and Mk

2m+1,i = (PTk ∇f(wk))i,(
PTk sk−1

)
i

=
(
PTk ∇f (wk)

)
i
−
(
PTk ∇f (wk−1)

)
i

=
Mk

2m+1,i −M
k−1
2m+1,i+2 if i < 2m− 1

Mk
2m+1,i − θk−1M

k−1
2m+1,:tk−1 if i = 2m− 1

sTk−1sk−1 if i = 2m

∇f (wk)
T
sk−1 =

(
PTk ∇f (wk)

)
2m

if i = 2m+ 1

,

where for i = 2m− 1, we used(
PTk ∇f (wk−1)

)
2m−1 = ∇f(wk−1)Tuk−1

= θk−1∇f(wk−1)TPk−1tk−1 = θk−1M
k−1
2m+1,:tk−1.

Next, for PTk uk−1, we have

(
PTk uk−1

)
i

=


θk−1M

k−1
i+2,:tk−1 if i < 2m− 1

θ2k−1t
T
k−1M

k−1tk−1 if i = 2m− 1(
PTk sk−1

)
2m−1 if i = 2m

(PTk ∇f(wk))2m−1 if i = 2m+ 1

,

where detailed derivations are in the supplementary material.
The rest terms are available from Mk−1 because they are
inner products between vectors in Pk−1. In summary,

Mk
i,j =



Mk−1
i+2,j+2, if i, j < 2m− 1(
PTk uk−1

)
i
, if j = 2m− 1(

PTk sk−1
)
i
, if j = 2m(

PTk ∇f (wk)
)
i
, if j = 2m+ 1

Mk
j,i, if i ≥ 2m− 1 > j

.(4.37)

In the above calculation, the most expensive operation takes
O(m2) cost for Mk−1tk−1 in obtaining PTk uk−1. This is
smaller than the inner products in (4.36).

In our distributed setting, we compute and make
PTk ∇f(wk) and sTk−1sk−1 available at all nodes by the fol-
lowing allreduce operations with O(mn/K) cost and O(m)
communication.

PTk ∇f (wk) =
⊕K

r=1
(Pk)

T
J̃r,:
∇f (wk)J̃r ,(4.38)

sTk−1sk−1 =
⊕K

r=1
(sk−1)

T
J̃r

(sk−1)J̃r ,(4.39)

By maintaining Mk and tk on all nodes (see Section 4.3),
we have that all other operations can be conducted locally
without any communication.

4.3 Solving the Linear System (2.13). Once the matrix
in (4.27) is generated, we must solve a linear system of m
variables. Because m is small from (4.26), it may not be
cost-effective to solve (2.13) distributedly. We thus make the
information of the linear system available at all computing
nodes, and each node takes O(m3) to obtain the same tk. To
have the matrix (4.27) of the linear system, we mentioned in
Section 4.2 that all nodes maintain the same Mk while the
second term is from the allreduce operation in (4.34). For
the right-hand side vector PTk ∇f(wk), we have seen from
(4.38) that it is available at all nodes.

4.4 Line Search. Similar to how we evaluate the new Dw

and vw efficiently in Section 4.1, one can compute the loss
function in the line search procedure by

(4.40)
⊕K

r=1
(
∑

i∈Jr
ξi((Xwk)i + θ(XPk)i,:tk)).

With the availability of (Xwk)Jr and (XPk)Jr,:, this
cheaply costs O(l/K) in computation, and O(1) in com-
munication for allreduce. Note that ∇f(wk)Tpk needed in
(2.14) for line search can be obtained inO(m) byMk

2m+1,:tk
rather than an inner product between two O(n) vectors.

4.5 Cost Analysis. We list details of applying Algorithm 1
to (4.21) in a distributed environment with instance-wise data
split in Algorithm 2. The computational cost per iteration per
machine is

O

(
#nnz +m2l + l ×# (line search) +mn

K
+m3

)
,

where from (4.26), #nnz is in general the dominant term. For
the communication, the cost per iteration is

O
(
n+m2 + # (line search)

)
.

From Theorem 3.1, #(line search) is bounded by a constant,
and in practice (2.14) is often satisfied at θk = 1.

5 Related Works
Besides L-BFGS, another effective batch distributed opti-
mization method is the truncated Newton method. At each
iteration, the second-order approximation in (3.16) is consid-
ered. The update direction pN

k is obtained by approximately
solving the following linear system.

(5.41) ∇2f(wk)pN
k = −∇f(wk).

Then either line search or trust region methods are applied
to decide the update from wk to wk+1. To solve (5.41), a
Hessian-free approach is considered by using the conjugate
gradient (CG) method, where a sequence of Hessian-vector
products is needed. Take (4.21) as an example. From (4.23),

(5.42) ∇2f(wk)d = d+XT (Dwk
(Xd)) ,

Table 1: Data statistics.

Data set #instances #features #nonzeros
criteo 45,840,617 1,000,000 1,787,773,969
kdd2012.tr 119,705,032 54,686,452 1,316,755,352
url 2,396,130 3.231,961 277,058,644
KDD2010-b 19,264,097 29,890,096 566,345,888
epsilon 400,000 2,000 800,000,000
webspam 350,000 16,609,143 1,304,697,446
news20 19,996 1,355,191 9,097,916
rcv1t 677,399 47.226 49,556,258

so we need only to store X rather than ∇2f(wk). Our
method also utilizes the Hessian matrix to decide the update
direction. However, for the Newton-type approaches, all CG
iterations within one Newton iteration use the same Hessian
matrix, but our method updates the Hessian more frequently.

In a distributed setting, X is stored across machines, so
each operation of (5.42) requires the communication. For
example, if an instance-wise split is used, we need

XTDwXd =
⊕K

r=1

∑
i∈Jr

xi(Dw)i,i(x
T
i d)

with one allreduce operation. This communication cost is
similar to that in our one iteration. The works [19, 8]
extended the single-machine trust region Newton method
(TRON) [15] for logistic regression in [7] to distributed
environments. Experiments in [19] show that TRON is faster
than another distributed optimization method ADMM [18, 1]
when both are implemented in MPI.

6 Experiments
We present results on solving (4.21) distributedly. We
consider logistic regression, whose loss term ξi(·) in (4.21)
is ξi(z) ≡ log (1 + exp (−yiz)), with yi ∈ {−1, 1}. The
distributed environment is a cluster with 16 nodes. In Table
1, we give statistics of problems obtained from the LIBSVM
data sets.4

We compare the following methods for logistic regres-
sion by checking the relative difference to the optimal ob-
jective value: |(f(w)− f(w∗))/f(w∗)| , where w∗ is the
optimum obtained by running our algorithm long enough.
• TRON [19, 8]: the distributed trust region Newton

method. We use the solver in MPI-LIBLINEAR.5
• VL-BFGS [4]: distributed L-BFGS. We use the tech-

niques in Section 4.2 to reduce the cost from the origi-
nal algorithm. We set m = 10, so Pk has 21 columns.

4http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets. For criteo, our version is slightly different because we did not
instance-wise scale the feature vectors.

5http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
distributed-liblinear/.

• L-CommDir: our method with different selections of
Pk, including GRAD (2.10), STEP (2.11), and BFGS
(2.12). We fix the number of columns of Pk to be 11
(current gradient plus 10 historical vectors). Specifi-
cally, for BFGS we take the past five pairs of (uj , sj),
and for the rest two, we take the past 10 gradients/steps.

The reason of using fewer columns in Pk of L-CommDir
than that of VL-BFGS is that our method takes more mem-
ory to additionally store XPk. We ensure a fair compari-
son such that both approaches consume a similar amount of
memory. All methods are implemented in C/C++ and MPI
with w0 = 0. Results using C = 1 are shown in Figure 1,
while more experiments are in the supplementary material.

We observe that L-CommDir-Step and L-CommDir-
BFGS are significantly faster than state-of-the-art methods
on most data sets, and are competitive on the rest. The rea-
sons for this efficiency are two-fold. First, our method con-
verges faster and requires fewer rounds of communication.
Second, our method has lower cost after parallelization (pro-
vided m is not too large) because most parts of the computa-
tion of our method are fully parallelized.

Among GRAD (2.10), STEP (2.11), or BFGS (2.12)
for choosing Pk under the limited-memory setting, we see
that the natural modification from the common-directions
method [17] of using (2.10) may be slower than the other
two choices in some data sets. Thus there is a necessity of
using different information from past gradients.

7 Conclusions
In this work, we present an efficient distributed optimization
algorithm that is inspired by the common-directions method,
but avoids the excessive memory consumption. Theoretical
results show that our method is linear convergent, and empir-
ical comparisons indicate that our method is more efficient
than state-of-the-art distributed optimization methods. Be-
cause of the high parallelizability, we expect the proposed
algorithm also works well in multi-core environments.

Based on this work, we have expanded the package
MPI-LIBLINEAR to include the proposed method.

Acknowledgement
This work was supported in part by MOST of Taiwan grant
104-2221-E-002-047-MY3. We thank Wei-Lin Chiang for
helpful discussion and pointing out to us that the approach in
Section 4.2 has already been proposed by [3].

References
[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.

Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found.
Trends Mach. Learn., 3:1–122, 2011.

[2] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

(a) criteo (b) kdd2012.tr (c) url (d) KDD2010-b

(e) epsilon (f) webspam (g) news20 (h) rcv1t
Figure 1: Comparison of different algorithms with C = 1. We show training time v.s. relative difference to the optimal
function value. The horizontal lines indicate when the algorithm is terminated in practice by marking the stopping condition
of TRON in MPI-LIBLINEAR: ‖∇f(w)‖ ≤ εmin(#yi=1,#yi=−1)

l ‖∇f(0)‖, with ε = 10−2 (default), 10−3, and 10−4.

the use of stochastic Hessian information in optimiza-
tion methods for machine learning. SIAM J. Optim.,
21(3):977–995, 2011.

[3] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Represen-
tations of quasi-Newton matrices and their use in lim-
ited memory methods. Mathematical Programming,
63(1):129–156, 1994.

[4] W. Chen, Z. Wang, and J. Zhou. Large-scale L-BFGS
using MapReduce. In NIPS, 2014.

[5] J.-B. Hiriart-Urruty, J.-J. Strodiot, and V. H. Nguyen.
Generalized Hessian matrix and second-order optimal-
ity conditions for problems with cL1 data. Appl. Math.
Optim., 11(1):43–56, 1984.

[6] H. Karimi, J. Nutini, and M. Schmidt. Linear conver-
gence of gradient and proximal-gradient methods under
Polyak-łojasiewicz condition. In ECML/PKDD, 2016.

[7] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust re-
gion Newton method for large-scale logistic regression.
JMLR, 9:627–650, 2008.

[8] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin. Large-
scale logistic regression and linear support vector ma-
chines using Spark. In IEEE BigData, 2014.

[9] D. C. Liu and J. Nocedal. On the limited memory
BFGS method for large scale optimization. Math.
Program., 45(1):503–528, 1989.

[10] S. Łojasiewicz. Une propriété topologique des sous-
ensembles analytiques réels. In Les Équations aus

Dérivées Partielles. Éditions du centre National de la
Recherche Scientifique, 1963.

[11] O. L. Mangasarian. A finite Newton method for
classification. Optim. Methods Softw., 17(5):913–929,
2002.

[12] J. Nocedal and S. Wright. Numerical Optimization.
Springer, second edition, 2006.

[13] B. T. Polyak. Gradient methods for minimizing func-
tionals. Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki, 3(4):643–653, 1963.

[14] B. T. Polyak. Some methods of speeding up the
convergence of iteration methods. Comput. Math.
Math. Phys., 4(5):1–17, 1964.

[15] T. Steihaug. The conjugate gradient method and trust
regions in large scale optimization. SIAM J. Numer.
Anal., 20:626–637, 1983.

[16] C.-C. Wang, C.-H. Huang, and C.-J. Lin. Subsampled
Hessian Newton methods for supervised learning. Neu-
ral Comput., 27:1766–1795, 2015.

[17] P.-W. Wang, C.-P. Lee, and C.-J. Lin. The common
directions method for regularized empirical loss min-
imization. Technical report, National Taiwan Univer-
sity, 2016.

[18] C. Zhang, H. Lee, and K. G. Shin. Efficient distributed
linear classification algorithms via the alternating di-
rection method of multipliers. In AISTATS, 2012.

[19] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin.
Distributed Newton method for regularized logistic
regression. In PAKDD, 2015.

	Introduction
	Our Method
	The Common-directions Method.
	From BFGS to L-BFGS.
	The Proposed Method.
	Choices of Pk.
	Solving (2.8).
	Overall Procedure

	Convergence Analysis
	Application on Distributed Optimization for ERM
	Reducing Data-related Costs.
	Reducing Cost for PkT Pk.
	Solving the Linear System (2.13).
	Line Search.
	Cost Analysis.

	Related Works
	Experiments
	Conclusions

