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Abstract

For distributed linear classification, L1 regularization is
useful because of a smaller model size. However, with
the non-differentiability, it is more difficult to develop
efficient optimization algorithms. In the past decade,
OWLQN has emerged as the major method for dis-
tributed training of L1 problems. In this work, we point
out issues in OWLQN’s search directions. Then we ex-
tend the recently developed limited-memory common-
directions method for L2-regularized problems to L1
scenarios. Through a unified interpretation of batch
methods for L1 problems, we explain why OWLQN has
been a popular method and why our method is superior
in distributed environments. Experiments confirm that
the proposed method is faster than OWLQN in most
situations.

1 Introduction

Given training data (yi,xi), i = 1, . . . , l with label
yi = ±1 and feature vector xi ∈ Rn, we consider L1-
regularized linear classification problem

(1.1) min
w

f(w) ≡ ‖w‖1 + C
∑l

i=1
ξ(yiw

Txi),

where ‖w‖1 =
∑n
j=1 |wj | and ξ is a differentiable and

convex loss function. Here we consider the logistic loss

ξ(z) = log(1 + e−z).

For large applications, (1.1) is often considered because
of the model sparsity. Many optimization techniques
have been proposed to solve (1.1); see, for example,
the comparison in [13]. Generally (1.1) is more diffi-
cult than L2-regularized problems because of the non-
differentiability.

For large-scale data, distributed training is needed.
Although for some applications an online method like [9]
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is effective, for many other applications batch methods
are used to more accurately solve the optimization
problem. Currently, OWLQN [1], an extension of a
limited-memory quasi-Newton method (LBFGS) [7], is
the most commonly used distributed method for L1-
regularized classification. For example, it is the main
linear classifier in Spark MLlib [10], a popular machine
learning tool on Spark. OWLQN’s popularity comes
from several attributes. First, in a single-machine
setting, the comparison [13] shows that OWLQN is
competitive among solvers for L1-regularized logistic
regression. Second, while coordinate descent (CD) or
its variants [14] are state-of-the-art, they are inherently
sequential and are difficult to parallelize in distributed
environments. Even if they have been modified for
distributed training (e.g., [8]), usually a requirement is
that data points are stored in a feature-wise manner. In
contrast, as we will see in the discussion in this paper,
OWLQN is easier to parallelize and allows data to be
stored either in an instance-wise or a feature-wise way.

The motivation of this work is to study why
OWLQN has been successful and whether we can de-
velop a better distributed training method. We begin
with showing in Section 2 how OWLQN is extended
from the method LBFGS [7]. From that we point out
some issues of OWLQN’s direction finding at each it-
eration. Then in Section 3 we extend a recently devel-
oped limited-memory common-directions method [12, 6]
for L2-regularized problems to the L1 setting. In Sec-
tion 4, through a unified interpretation of methods for
L1 problems, we explain why our proposed method is
more principled than OWLQN. Although from Section 3
our method is slightly more expensive per iteration, the
explanation in Section 4 and the past results on L2-
regularized problems indicate the potential of fewer iter-
ations. For distributed implementations, in Section 5 we
show that OWLQN and our method have similar com-
munication costs per iteration. Therefore, our method
can be very useful for distributed training because the
communication occupies a significant portion of the to-
tal running time after parallelizing the computation,
and our method needs fewer total iterations. The result
is confirmed through detailed experiments in Section 6.
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The proposed method has been implemented in MPI-
LIBLINEAR (http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/distributed-liblinear/). Supplemen-
tary materials and programs used in this paper are
available at http://www.csie.ntu.edu.tw/~cjlin/

papers/l-commdir-l1/.

2 OWLQN: Orthant-Wise Limited-memory
Quasi-Newton Method

We introduce OWLQN and discuss its issues.

2.1 Limited-memory BFGS (LBFGS) Method.
OWLQN is an extension of the method LBFGS [7] for
the following L2-regularized problem.

(2.2) f(w) ≡ wTw

2
+ L(w),

where

(2.3) L(w) ≡ C
∑l

i=1
ξ(yiw

Txi).

To minimize f(w), Newton methods are commonly
used. At the current wk, a direction is obtained by

(2.4) d = −∇2f(wk)−1∇f(wk).

Because calculating ∇2f(wk) and its inverse may be
expensive, quasi-Newton techniques have been proposed
to obtain an approximate direction

d = −Bk∇f(wk), where Bk ≈ ∇2f(wk)−1.

BFGS [11] is a representative quasi-Newton technique
that uses information from all past iterations and the
following update formula

Bk = V Tk−1Bk−1Vk−1 + ρk−1sk−1s
T
k−1,

where

Vk−1 ≡ I − ρk−1uk−1s
T
k−1, ρk−1 ≡ 1/(uTk−1sk−1),

sk−1 ≡ wk −wk−1, uk−1 ≡ ∇f(wk)−∇f(wk−1),

and I is the identity matrix.
To reduce the cost, LBFGS [7] proposes using

information from the previous m iterations. From
the derivation in [7], the direction d can be efficiently
obtained by 2m inner products using columns in the
following matrix

(2.5) P =
[
sk−m,uk−m, . . . , sk−1,uk−1

]
∈ Rn×2m.

After obtaining d, a line search ensures the sufficient
decrease of the function value (details not shown).
Algorithm I in the supplementary materials summarizes
the procedure of LBFGS.

2.2 Modification from LBFGS to OWLQN.
OWLQN extends LBFGS by noticing that instead of
the optimality condition

∇f(w) = 0

for smooth optimization, for L1 problems in (1.1), w is
a global optimum if and only if the projected gradient
(PG) is zero.

∇Pf(w) = 0,

where for j = 1, . . . , n,

∇P
j f(w) ≡(2.6)

∇jL(w) + 1 if wj > 0, or wj = 0,∇jL(w) + 1 < 0,

∇jL(w)− 1 if wj < 0, or wj = 0,∇jL(w)− 1 > 0,

0 otherwise.

The concept of projected gradient is from bound-
constrained optimization. If we let

w = w+ −w−,

an equivalent bound-constrained problem of (1.1) is

min
w+,w−

∑
j

w+
j +

∑
j

w−j + C
∑l

i=1
ξ(yi(w

+ −w−)Txi)

subject to w+
j ≥ 0, w−j ≥ 0, ∀j.

Roughly speaking, the projected gradient indicates
whether we can update wj by a gradient descent step
or not. For example, if

(2.7) (wk)j = 0 and ∇jL(wk) + 1 < 0,

then

(wk)j − α(∇jL(wk) + 1) > 0,∀α > 0

remain in the orthant of wj ≥ 0 (or w+
j ≥ 0,w−j = 0).

On this face f is differentiable with respect to wj and

(2.8) ∇jf(wk) = ∇jL(wk) + 1

exists. Therefore, if we update wj along the direction of
−∇jf(wk) with a small enough step size, the objective
value will decrease. Hence if (2.7) holds, the projected
gradient is defined to be the value in (2.8).

From the above explanation, the projected gradient
roughly splits all variables to two sets: an active one
containing elements that might still be modified, and a
non-active one including elements that should remain
the same. By defining the following active set

(2.9) A ≡ {j | ∇P
j f(wk) 6= 0},

OWLQN simulates LBFGS on the face characterized by
the set A, and proposes the following modifications.
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1. Because ∇f(wk) does not exist, the direction d is
obtained by using the projected gradient

(2.10) d = −Bk∇Pf(wk).

They apply the same procedure of O(m) vector oper-
ations (Algorithm II in the supplementary materials)
to get d, but uk−1 is replaced by

uk−1 ≡ ∇L(wk)−∇L(wk−1).

Namely, now Bk is an approximation of ∇2L(wk)−1

but not ∇2f(wk)−1.
2. The search direction is aligned with −∇Pf(wk):

(2.11) dj ← 0 if − dj∇P
j f(wk) ≤ 0.

3. In line search, they ensure that the new value stays
at the same orthant as the original one.
(2.12)

wj ←



max(0, wj + αdj) if wj > 0 or

wj = 0,∇jL(w) + 1 < 0

min(0, wj + αdj) if wj < 0 or

wj = 0,∇jL(w)− 1 > 0

0 otherwise

2.3 Complexity. In one iteration, the following op-
erations are conducted.

1. From (2.13), the evaluation of ∇L(wk) takes
O(#nnz), where #nnz is the number of non-zeros
in the training data.

(2.13) ∇L(wk) = C
∑l

i=1
(σ(yiw

T
k xi)− 1)yixi.

2. At each step of line search, calculating wT
k xi,∀i

needs O(#nnz).
3. For obtaining the direction in (2.10), the 2m inner

products take O(mn).

Therefore, the cost per OWLQN iteration is

(2.14) (1 + #line-search steps)×O(#nnz) +O(mn).

For L2-regularized problems, a trick can be applied
to significantly reduce the line-search cost. However,
this trick is not applicable for L1-regularized problems
because of the max and min operations in (2.12);
see more details in Section IV of the supplementary
materials. Therefore, ensuring a small number of line-
search steps is very essential.

2.4 Issues of OWLQN. Although efficient in prac-
tice, OWLQN still possesses several issues in differ-
ent aspects, as we describe below. First, it is known

that this method lacks convergence guarantee, though
a slightly modified algorithm with asymptotic conver-
gence is proposed recently [5]. Second, under an active
set A, we would like to get a good direction by minimiz-
ing the following second-order approximation.

(2.15) min
dA

1

2
dTA∇2

AAL(wk)dA +∇P
Af(wk)TdA,

where L(wk) is defined in (2.3). Thus a quasi-Newton
setting should approximate

∇2
AAL(wk)−1 rather than (∇2L(wk)−1)AA,

but the latter is closer to what OWLQN uses. We see
that the mapping to A by an alignment with −∇Pf(wk)
in (2.11) is conducted after the direction finding in
(2.10). Indeed we observe that using a larger m in
OWLQN does not help improve the convergence in
terms of number of iterations, while it does for LBFGS
on smooth problems, indicating that direction finding
in OWLQN is not ideal.

3 Our Limited-memory Common-directions
Algorithm for L1-regularized Classification

We extend the limited-memory common-directions
method for L2-regularized problems [12, 6] to L1-
regularized classification.

3.1 Past Developments for L2-regularized
Problems. To solve (2.2), the method [12] considers
an orthonormal basis Pk of all past gradients (called
common directions) and obtains the direction d = Pkt
by solving the following second-order sub-problem.

(3.16) min
t
∇f(wk)TPkt +

1

2
tTPTk ∇2f(wk)Pkt,

or equivalently, the following linear system:

(3.17) PTk ∇2f(wk)Pkt = −PTk ∇f(wk).

Therefore, in contrast to (2.4) for obtaining a Newton
direction, here the direction is restricted to be a linear
combination of Pk’s columns. For (2.2), we can derive

(3.18) ∇2f(wk) = I + CXTDwk
X,

where Dwk
with (Dwk

)ii = ξ′′(yiw
T
k xi) is a diagonal

matrix and X = [x1, . . . ,xl]
T ∈ Rl×n includes all

training instances. Then we get

(3.19) PTk ∇2f(wk)Pk = PTk Pk+C(XPk)TDwk
(XPk).

Note that PTk Pk = I from the orthonormality of Pk. In
[12], they devise a technique to cheaply maintain XPk.
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Then (3.17) is a linear system of k variables and can be
easily solved if the number of iterations is not large.

To further save the cost, following the idea of
LBFGS in Section 2.1, [6] proposes using only informa-
tion from the past m iterations. They checked several
choices of common directions, but for simplicity we con-
sider the most effective one of using past m gradients,
past m steps, and the current gradient.

Pk = [∇f(wk−m), sk−m, . . . ,∇f(wk−1), sk−1,∇f(wk)]

∈ Rn×(2m+1).(3.20)

Because Pk no longer contains orthonormal
columns, PTk Pk 6= I. Similar to [2], [6] developed an
O(mn) technique to easily update PTk−1Pk−1 to PTk Pk.
The cost is about the same as the 2m vector operations
in LBFGS for obtaining the update direction. (See Al-
gorithm II in the supplementary materials.) After solv-
ing (3.16) and finding a direction Pkt, they conduct a
line search procedure to find a suitable step size. Exper-
iments in [6] show their method is superior to LBFGS.

To maintain XPk, we need two new vectors

Xsk−1 and X∇f(wk),

each of which expensively costs O(#nnz). If we main-
tainXwk−1 from the function evaluation of the previous
iteration, then

Xsk−1 = Xwk −Xwk−1

can be done more cheaply in O(l). Thus X∇f(wk)
is the only expensive operation for maintaining XPk.
Therefore, in comparison with LBFGS, at each iteration
extra costs include
• O(#nnz) for X∇f(wk) in the matrix XPk,
• O(lm2) for (XPk)TDwk

(XPk),
• O(mn) for the right-hand side −PTk ∇f(wk) of the

linear system (3.17),
• O(m3) for solving (3.17), and
• O(mn) for computing d = Pkt after obtaining t.

3.2 Modification for L1-regularized Problems.
We propose the following simple modifications.

1. In the sub-problem (3.16), ∇f(wk) or ∇2f(wk) may
not exist, so instead we use ∇Pf(wk) and ∇2L(wk),
respectively. Thus (3.16) becomes

(3.21) min
t
∇Pf(wk)TPkt +

1

2
tTPTk ∇2L(wk)Pkt.

2. In the matrix Pk of common directions, we use past
projected gradients

∇Pf(wk−m), . . . ,∇Pf(wk)

rather than gradients.

3. Similar to the setting in OWLQN, the search direc-
tion is aligned with ∇Pf(wk); see (2.11). Further-
more, during line search, the new point stays at the
same orthant as the original one; see (2.12).

In Section 4 we will argue that the resulting Algo-
rithm III (in supplementary materials) is more reason-
able than OWLQN.

3.3 Complexity. In Sections 3.1-3.2, we have dis-
cussed operations related to using the common direc-
tions. Besides them, function/gradient evaluations are
needed. Therefore, the cost per iteration is

(2 + #line-search steps)×O(#nnz)+

O(lm2) +O(mn) +O(m3).(3.22)

With m � l and m � n, among the last three terms,
O(lm2) is the dominant one. In some situations, it may
even be the most expensive term in (3.22). For example,
if line search terminates in one or two steps and the data
set is highly sparse such that

#nnz ≈ lm, then lm2 ≈ m×#nnz

becomes the bottleneck. Fortunately, the O(lm2) term
comes from dense matrix-matrix products for construct-
ing the linear system in (3.17). They can be efficiently
conducted by using optimized BLAS. Therefore, in gen-
eral the first term in (3.22) for function/gradient evalu-
ations and X∇Pf(wk) is still the main bottleneck.

A comparison between (3.22) and OWLQN’s com-
plexity in (2.14) shows that at every iteration, we
need one more O(#nnz) operation for calculating
X∇Pf(wk). Therefore, if line search takes only one
step per iteration (i.e. #line-search steps = 1; see more
details in Section 3.4), then we have the following dif-
ference between OWLQN and our proposed method:

(3.23) 2×O(#nnz) versus 3×O(#nnz).

This seems to indicate that each iteration of our method
is 50% more expensive than that of OWLQN. However,
the three O(#nnz) operations include

one XT × (a vector) and two X × (a vector).

In Section 5 we show that in a distributed environment,
the communication cost of XT × (a vector) is much
higher. Thus ours and OWLQN have similar commu-
nication cost per iteration. Then the higher compu-
tational cost may pay off if the number of iterations
becomes smaller.

3.4 Reducing the Number of Line-Search
Steps. We have shown in Section 3.3 that each line-
search step needs O(#nnz) cost for calculating the func-
tion value. Because a search starting from α = 1 may
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Algorithm 1 An optimization framework for L1-
regularized problems.

1: while true do
2: Compute projected gradient ∇Pf(w) by (2.6)
3: Find the set A in (2.9)
4: Get a direction d with dj = 0,∀j /∈ A
5: Align the direction d with −∇Pf(w); see (2.11)
6: Line search (and update model parameters)

result in many steps, we propose using α of the previous
iteration as the initial step size. However, to avoid slow
convergence of taking too small step sizes, once in sev-
eral iterations we double the α of the previous iteration
as the initial step size.

4 A Unified Interpretation of Methods for
L1-regularized Classification

We give a unified interpretation of methods for L1-
regularized classification. It helps to explain first why
our proposed method is superior to OWLQN, and
second, why OWLQN has been popularly used so far.

In Section 2.2 we explain that the L1-regularized
problem is equivalent to a bound-constrained problem.
Most existing methods for bound-constrained optimiza-
tion conduct the following two steps at each iteration.
• Identify a face to be used for getting a direction.
• Under a given face, obtain a search direction by

unconstrained optimization techniques.
The idea is that if we are at the same (or a similar) face
of an optimal point, unconstrained optimization tech-
niques can be effectively applied there. In general the
identified face is related to non-zero elements of the pro-
jected gradient ∇Pf(w). For an easy discussion, here
we do not touch past developments on face selection; in-
stead, following OWLQN, we consider the set A in (2.9)
that consists of all non-zero elements in ∇Pf(w). We
then focus on obtaining a suitable direction on A. A
framework under this setting is in Algorithm 1. Two
commonly used search directions are
1. Negative projected gradient direction −∇P

Af(w).
2. Newton direction by minimizing (2.15)

−∇2
AAL(w)−1∇P

Af(w).

Note that a convex loss implies only that ∇2L(w) is
positive semi-definite. For simplicity, we assume it is
positive definite and therefore invertible.
For the Newton direction, because ∇2

AAL(w) may
be too large to be stored, in linear classification, com-
monly the special structure in (3.18) (without the iden-
tity term) is considered so that a conjugate gradient
(CG) procedure is used to solve the linear system

(4.24) ∇2
AAL(w)dA = −∇P

Af(w).

timed
is
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n

ce
to

op
ti

m
u

m

bound-constrainedunconstrained

longer slow-convergence phase because
of face selection

enter the fast
convergence
phase

Figure 1: An illustration of Newton methods for uncon-
strained and bound-constrained optimization.

timed
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n
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ti
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a better algorithm

projected
gradient

Newton

Figure 2: An illustration of optimization methods for
L1 problems. The two horizontal lines indicate suitable
range to stop for machine learning applications.

CG involves a sequence of matrix-vector products and
each is performed by

(4.25) (X:,A)T (Dw(X:,Av)),

where Dw with (Dw)ii = ξ′′(yiw
Txi) is a diagonal

matrix and v is some vector involved in CG procedure.
We compare the costs of using the above two di-

rections by assuming that line search terminates in one
step. Their complexities per iteration are respectively

2×O(#nnz) and (2 + #CG)×O(#nnz).

The above cost comes from one function and one
gradient evaluation, and for the Newton method, each
matrix-vector product in (4.25) requires O(#nnz). One
may argue that (4.25) costs O(#nnz × |A|/l) because
only |A| columns of X are used. We consider O(#nnz)
because, firstly, the analysis is simpler, and secondly,
if X is stored in an instance-wise manner, O(#nnz) is
needed. Clearly the cost of using a Newton direction is
much higher. Unfortunately, the higher cost may not
pay off because of the following reasons.
1. The second-order approximation is accurate only

near a solution, so a Newton direction in the early
stage may not be better than the negative gradient
direction.

2. The face A is still very different from that of the
convergent point, so a good direction obtained on an
unsuitable face is not useful.
The first issue has occurred in unconstrained opti-

mization: a Newton method has fast final convergence,
but the early convergence is slow. The second issue, spe-
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cific to bound-constrained optimization, makes the de-
cision of using an expensive direction or not even more
difficult. We give an illustration of Newton methods
for unconstrained and bound-constrained optimization
in Figure 1. For the method of using projected gradi-
ent, it not only inherits the slow convergence of gra-
dient descent methods for unconstrained optimization,
but also has the issue of face identification. Therefore,
the two methods behave like the curves shown in Fig-
ure 2. Neither is satisfactory in practice. What we hope
is something in between: the direction should be better
than negative projected gradient, but not as expensive
as the Newton direction. The dashed curve in Figure 2
is such an example. It is slower than Newton at the final
stage, but for machine learning applications, often the
optimization procedure can stop earlier, for example, at
the region between the two horizontal lines in Figure 2.
Then the new method is the fastest. To have a method
in between, we can either
1. improve the projected gradient direction, or
2. reduce the cost of obtaining a Newton direction.
OWLQN is an example. Its quasi-Newton direction
needs O(mn) additional cost, but should be better
than the projected gradient. Results of OWLQN with
similar trends shown in Figure 2 have been confirmed
empirically in [13]. Thus our analysis illustrates why
OWLQN has been a popular method for L1 problems.

From the above discussion, many algorithms can be
proposed. For example, to reduce the cost of obtaining
the Newton direction, we can take fewer CG steps to
loosely solve the linear system (4.24). For example, if
#CG = m, then the cost per iteration is reduced to

(2 +m)×O(#nnz).

Next we derive the proposed limited-memory
common-directions method from the viewpoint of re-
ducing the cost of obtaining a Newton direction. By
restricting the direction to be a linear combination of
some vectors (i.e., columns in P ), (2.15) becomes

min
t
∇P
Af(wk)T (P t)A +

1

2
((P t)A)T∇2

AAL(wk)(P t)A.

From (3.19), the quadratic term is

(4.26)
((P t)A)T∇2

AAL(wk)(P t)A

= CtT (X:,APA,:)
TDwk

(X:,APA,:)t

If P has m columns, obtaining X:,APA,:, requires m
matrix-vector products, each of which costs O(#nnz).
We then solve a linear system of m variables. The
setting is similar to that in Section 3. Therefore, the
cost per iteration is

(2 +m)×O(#nnz) +O(nm) +O(lm2) +O(m3).

Table 1: A summary of complexity per iteration for all
methods, sorted from cheapest to most expensive. We
assume #line-search steps = 1. Only leading terms are
presented by assuming m� l and m� n.

Method Cost per iteration
Projected gradient 2×O(#nnz)
OWLQN 2×O(#nnz) +O(mn)
L-Comm 3×O(#nnz) +O(lm2)
L-Comm-Face (2 +m)×O(#nnz) +O(lm2)
Newton + m CG (2 +m)×O(#nnz)

We refer to this approach as “L-Comm-Face.” Unfortu-
nately, the cost may be too high. It is as expensive as
the Newton method of running m CG steps. We there-
fore propose an approximation of X:,APA,: that eventu-
ally leads to the proposed method in Section 3. If the
past m projected gradients have similar active sets to
the current ∇Pf(wk), then all m past steps have similar
non-zero entries. Therefore,

Pj,: ≈ [0, . . . , 0] ∀j /∈ A
implies that
(4.27)

X:,APA,: ≈ XP and (4.26) ≈ tTPT∇2L(wk)P t.

Thus the method becomes that in Section 3 by solving
(3.21). The complexity is in (3.22), or if #line-search
steps = 1, the complexity becomes

3×O(#nnz) +O(lm2) +O(mn) +O(m3).

We refer to the method in Section 3 as “L-Comm,”
which is an approximation of “L-Comm-Face” by (4.27).
The cost is now close to that of OWLQN. In Section 2,
we showed some issues of OWLQN in approximating
the Newton direction. In contrast, our method is more
principled. In Table 1, we summarize the complexity
per iteration of each discussed method.

5 Distributed Implementation

We show that the proposed method is very useful in dis-
tributed environments. To discuss the communication
cost, we make the following assumptions.
1. The data set X is split across K nodes in an instance-

wise manner: Jr, r = 1, . . . ,K form a partition of
{1, . . . , l}, and the r-th node stores (yi,xi) for i ∈ Jr.
In addition, XP is split and stored in the same way
as X.

2. The matrix P ∈ Rn×2m in (2.5) for OWLQN and
P ∈ Rn×(2m+1) in (3.20) for the common-directions
method are stored in the same K nodes in a row-
wise manner. Thus {1, . . . , n} are partitioned to
J̄1, . . . , J̄K .

3. The model vector w and the projected gradient
∇Pf(w) are made available to all K nodes.
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Communication cost occurs in the following places.
1. Compute

∇L(w) = C
⊕K

r=1
(XJr,:)

T

[ ...
ξ′(yiw

Txi)

...

]
i∈Jr

,

where
⊕

is the allreduce operation that sums up
values from nodes and broadcasts the result back.
The communication cost is O(n).1

2. After obtaining dJ̄r at node r, we need an allgather
operation to make the whole direction d available at
every node. The communication cost is O(n/K).

3. At each line-search step, to get the new function
value, we need an allreduce operation.

f(w) = ‖w‖1 + C
⊕K

r=1

∑
i∈Jr

ξ(yiw
Txi).

At each node, the sum of local losses is the only value
to be communicated, so the cost is O(1).

4. (OWLQN only) Because each node now possesses
only a sub-matrix of P , in the procedure of obtaining
the search direction d, 2m+1 distributed inner prod-
ucts are needed. Details are left to the supplemen-
tary materials. For each distributed inner product,
the communication cost is O(1).

5. (L-Comm only) To construct the linear system in
(3.17), we need the following allreduce operations.
The communication cost is O(m2).

(XP )TDw(XP ) =
⊕K

r=1
(XJr,:P )T (Dw)Jr,Jr (XJr,:P )

PT∇Pf(w) =
⊕K

r=1
(PJ̄r,:)

T∇P
J̄r
f(w).

A rough estimate of the communication cost is

OWLQN: O(n) +O(n/K) +O(1) + (2m+ 1)×O(1),

L-Comm: O(n) +O(n/K) +O(1) +O(m2).

For large and sparse data, n� m2. The dominant term
isO(n), so the two methods have similar communication
costs. This situation is different from that of computa-
tional complexity. In (3.23), we state that our method
may be 50% more expensive than OWLQN for comput-
ingX∇Pf(w). However, this operation does not involve
any communication because a local node simply calcu-
lates XJr,:∇Pf(w) to update the local XJr,:P . Thus
our method is useful in a distributed setting. Its higher
cost per iteration becomes a less serious concern because

1The communication cost depends on the implementation of
the allreduce operation. Here for easy analysis we use the length

of a vector at a local node to be transferred to others as the
communication cost.

Table 2: Data statistics.

Data set #instances #features #nonzeros
rcv1 test 677,399 47,226 49,556,258
news20 19,996 1,355,191 9,097,916
yahoojp 176,203 832,026 23,506,415
url 2,396,130 3,231,961 277,058,644
yahookr 460,554 3,052,939 156,436,656
KDD2010-b 19,264,097 29,890,096 566,345,888
criteo 45,840,617 1,000,000 1,787,773,969
kdd2012 149,639,105 54,686,452 1,646,030,155

the computation is parallelized and the communication
may take a significant portion of the total time. Algo-
rithm VI in the supplementary materials gives details
of a distributed version of L-Comm.

6 Experiments

We consider binary classification data sets listed in Ta-
ble 2.2 We implement all methods under the framework
of LIBLINEAR [3] (for Section 6.1) or Distributed LI-
BLINEAR (for Section 6.2). OpenBLAS3 is used for
dense vector/matrix operations.

We check the convergence of optimization methods
by showing the number of iterations or running time
versus the relative difference to the optimal function
value

(f(wk)− f∗)/f∗,
where f∗ is an approximate optimal objective value
by accurately solving the optimization problem. For
the regularization parameter C, we select CBest that
achieves the best cross validation accuracy. More details
and results of using other C values are in supplementary
materials.

6.1 Comparisons on Number of Iterations.
From Section 4, both OWLQN and L-Comm are de-
signed to approximate the Newton direction because
conceptually better directions should lead to a smaller
number of iterations. Without considering the cost per
iteration, we begin with checking this result by compar-
ing the following methods discussed in Section 4.
• OWLQN [1]: We consider m = 10.
• L-COMM-FACE: We use information from the past 10

iterations to have common directions.
• L-COMM: The proposed method in Section 3, which

according to the discussion in Section 4 is an approx-
imation of L-COMM-FACE.

• NEWTON: We run 50 CG steps at each iteration.
This setting simulates the situation where the full
Newton direction on the face is obtained.

2All data sets except yahoojp and yahookr are from http:

//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
3http://www.openblas.net/
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(a) rcv1 test (b) news20 (c) yahoojp (d) url

Figure 3: Iteration versus the difference to the optimal value. The horizontal lines indicate when OWLQN meets

the stopping condition ‖∇Pf(w)‖ ≤ εmin(#positive,#negative)
l ‖∇Pf(0)‖, with ε = 10−2, 10−3, and 10−4.

(a) yahookr (b) KDD2010-b (c) criteo (d) kdd2012

Figure 4: Comparison of different algorithms by using 32 nodes. Upper: iterations. Lower: running time in
seconds. Other settings are the same as Figure 3.

All these methods find a direction on the face decided
by the project gradient and conduct line search to find
a suitable step size.4 Comparison results are in Figure 3
and in supplementary materials. We make the following
observations.
• NEWTON is generally among the best, but not always

(e.g., news20). A possible explanation is that these
methods are not compared under a fixed face. In-
stead, each method goes through a different sequence
of faces. Thus a method of using a better direction
locally may not be the best globally. Nevertheless,
the overall good performance of NEWTON indicates
that one should consider a better direction under any
given face if possible. Further, the shape of NEW-
TON’s curve is close to the illustration in Figure 1
for smaller C (see supplementary materials), but for
larger C, it is not that close. An explanation is that

4A backtracking line search with initial step size = 1 is used.

for larger C, the problem is more difficult and NEW-
TON is still under the stage of finding a suitable face.

• The convergence of L-COMM-FACE is generally very
good, indicating its use of common directions to
approximate the Newton direction is very effective.

• L-COMM is an excellent approximation of L-COMM-
FACE. Its convergence is similar or slightly inferior to
that of L-COMM-FACE.

• In general, OWLQN has the worst convergence speed
in terms of iterations.

Overall results are consistent with the analysis in Sec-
tion 4. If we also consider the cost per iteration, NEW-
TON and L-COMM-FACE are not practical. From Ta-
ble 1 each their iteration is O(m) times more than that
of OWLQN and L-COMM, and their saving on iterations
is not enough to compensate the higher cost per itera-
tion.

We expect L-COMM to be the best in terms of run-
ning time because it needs fewer iterations than OWLQN
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and requires only comparable cost per iteration. This
will be confirmed in Section 6.2.

6.2 Timing Comparison of Distributed Imple-
mentations. We consider a distributed implementa-
tion of OWLQN and L-COMM using OpenMPI [4]. We
use 32 m4.2xlarge nodes on AWS with 1Gbps network
bandwidth. The strategy in Section 3.4 is applied to
possibly reduce the number of line-search steps. Since
the focus is on comparing distributed implementations,
we do not parallelize computation at each local node.

Results in Figure 4 show that L-COMM always
converges faster than OWLQN in terms of iterations,
which is consistent with the results in Section 6.1. Next
we present running time also in Figure 4. In Sections 3-
4 we have indicated that L-COMM is slightly more
expensive than OWLQN per iteration, so the smaller
number of iterations may not lead to shorter total time.
However, the analysis in Section 5 shows that both
methods have similar communication cost per iteration.
Because in a distributed setting the communication
may take a large portion of the total running time, we
observe that figures for timing comparisons are very
close to those for iterations. An exception is criteo,
which has a relatively smaller number of features. Thus,
for this set the communication cost is insignificant
among the total cost. Overall, this experiment shows
that the proposed L-COMM method is more efficient
than OWLQN in a distributed environment.

7 Conclusions

In this work we present a limited-memory common-
directions method for L1-regularized classification. The
method costs slightly more than OWLQN per iteration,
but may need much fewer iterations. Because both
methods’ communication is proportional to the number
of iterations, our method is shown to be faster than
OWLQN in distributed environments. In addition,
we give a unified interpretation of methods for L1-
regularized classification. From that we see our method
is a more principled approach than OWLQN.
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