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In the following content, we assume that the loss
function ξ(w;x, y) can be represented as a function of
wTx when y is fixed. That is,

ξ(w;x, y) = ξ̄(wTx; y).

Note that the three loss functions in Section 2 satisfy
the above property.

I Parameter r Is not Needed for Degree-2
Expansions

From the definition of φ, we have

φγ,r(x) = γφ1, rγ
(x).

By Theorem 4.1, the optimal solution for (C, γ, r) and
(γ2C, 1, r/γ) are w/γ and w, respectively. Therefore
the two decision functions are the same:

(
w

γ
)Tφγ,r(x) = wTφ1, rγ

(x).

Thus, if C is chosen properly, γ is not needed.

II Proof of Theorem 3.1

We prove the result by contradiction. Assume there
exists w′ such that

l∑
i=1

ξ(w′; x̄i, yi) <

l∑
i=1

ξ(D−1w∗; x̄i, yi).

Then from (3.8) we have

l∑
i=1

ξ̄((Dw′)Txi; yi) <

l∑
i=1

ξ̄((DD−1w∗)Txi; yi).

Thus,

l∑
i=1

ξ(Dw′;xi, yi) <

l∑
i=1

ξ(w∗;xi, yi),

which contradicts the assumption that w∗ is an optimal
solution for (3.9). Thus D−1w∗ is an optimal solution
for (3.10).
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III Proof of Theorem 4.1

It can be clearly seen that the following two optimiza-
tion problems are equivalent

(III.1) min
w

1

2
wTw + C

l∑
i=1

ξ(w; yi,xi)

and

(III.2) min
w

1

2
(
w

∆
)T (

w

∆
) +

C

∆2

l∑
i=1

ξ(
w

∆
; yi,∆xi).

Problem (III.2) can be written as

(III.3) min
w̄

1

2
w̄T w̄ +

C

∆2

l∑
i=1

ξ(w̄; yi,∆xi),

which trains ∆xi,∀i under the regularization parameter
C/∆2. Therefore, if w is optimal for (III.1), then w/∆
is optimal for (III.3).

IV Details of Experimental Settings

All experiments run on a 4GHz Intel Core i7 (I7-
4790K) with 16G RAM. We transform some problems
from multi-class to binary. For news20, we consider
classes 2, . . . ,7 and 12, . . . ,15 as positive, while others as
negative. For the digit-recognition problem mnistOvE,
we consider odd numbers as positive and even numbers
as negative. For poker, class 0 forms the positive class,
and the rest forms the negative class.

For the reference linear classifier and all linear
classifiers built within our kernel-check methods, we
consider the primal-based Newton method for L2-loss
SVM in LIBLINEAR. For the reference Gaussian kernel
model, we use LIBSVM, which implements L1-loss
SVM. We do not consider L1-loss SVM in LIBLINEAR
because the automatic parameter-selection procedure
is available only for logistic and L2 hinge losses. We
take this chance to see if our kernel-check methods are
sensitive to the choices of loss functions. All default
settings of LIBSVM and LIBLINEAR are used except
that the stopping tolerance of LIBLINEAR is reduced
to 10−4.

We conduct feature-wise scaling such that each
instance xi becomes Dxi, where D is a diagonal matrix



with

Djj =
1

maxt |(xt)j |
, j = 1, . . . , n.

The resulting feature values are in [−1, 1]. Although the
ranges of features may be slightly different, this scaling
ensures that the sparsity of the data is kept.

V Experiments on Data Scaling

We compare the performance (CV accuracy) of original,
feature-wisely scaled and instance-wisely scaled data
under different C in Figure (I). In addition to data
sets considered in the paper, we include more sets from
LIBSVM data sets without modifications.1 For a few
problems, curves with/without scaling are the same.
Problem a9a has 0/1 values, so the set remains the same
after feature-wise scaling. For gisette, the original data
is already feature-wisely scaled. For rcv1, real-sim and
webspam, the original data is already instance-wisely
scaled. We consider the primal-based Newton method in
LIBLINEAR for L2-loss SVM. The stopping tolerance
is set to be 10−4, except 10−6 for breast cancer and 10−2

for yahoo-japan.
From Figure (I), we make the following observa-

tions.

1. The best CV accuracy is about the same for all
three settings, except that instance-wise normaliza-
tion gives significantly lower CV accuracy for aus-
tralian.

2. The curve for instance-wise scaling is all to the right
of the original data, and for many data sets the
shape of the curve is also very similar.

The above observations are consistent with our analysis
in Section 4.

VI MultiLinear SVM using Different Settings

Experiments of MultiLinear SVM using different clus-
tering algorithms and numbers of clusters are given at
Figures (II) and (III) for all 15 data sets.

1One exception is yahoo-japan, which is not publicly available.



(a) mnistOvE (b) madelon (c) heart (d) cod-rna

(e) news20 (f) yahoo-japan (g) a9a (h) covtype

(i) ijcnn1 (j) svmguide1 (k) german.numer (l) fourclass

(m) gisette (n) webspam (o) rcv1 (p) real-sim

(q) australian (r) breast cancer

Figure (I): Performance of linear classifiers using different scaling methods.



(a) fourclass (AC) (b) fourclass (Time) (c) mnistOvE (AC) (d) mnistOvE (Time)

(e) webspam (AC) (f) webspam (Time) (g) madelon (AC) (h) madelon (Time)

(i) a9a (AC) (j) a9a (Time) (k) gisette (AC) (l) gisette (Time)

(m) news20 (AC) (n) news20 (Time) (o) cod-rna (AC) (p) cod-rna (Time)

(q) german.numer (AC) (r) german.numer (Time) (s) ijcnn1 (AC) (t) ijcnn1 (Time)

Figure (II): Performance of MultiLinear SVM under different settings



(a) rcv1 (AC) (b) rcv1 (Time) (c) real-sim (AC) (d) real-sim (Time)

(e) covtype (AC) (f) covtype (Time) (g) poker (AC) (h) poker (Time)

(i) svmguide1 (AC) (j) svmguide1 (Time)

Figure (III): Performance of MultiLinear SVM under different settings (Continued)
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