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In this supplementary material we will first discuss
a numerical issue on which we may come across to
satisfy the angle condition below (1.2). In the second
section we will focus on the local convergence analysis of
the truncated Newton method obtained by employing
different termination criteria for the inner conjugate
method.

1 Angle condition

We recall here the definition of the Hessian and of the
gradient of the objective function f

(1.1)
ggg := ∇f(www) = www + C

∑l

i=1
ξ′(yiwww

ᵀxxxi)yixxxi,

H := ∇2f(www) = I + CXᵀDX,

where I is the identity matrix, X = [xxx1, . . . ,xxxl]
ᵀ is the

data matrix and D is a diagonal matrix with Dii =
ξ′′(yiwww

ᵀxxxi). We also recall the angle condition

(1.2) −gggᵀksssk ≥ c‖gggk‖‖sssk‖

that is always satisfied by the truncated Newton method
defined in Section 2 of the original paper. Note in
fact that global convergence is always obtained: the
following discussion is only pointing out an undesired
issue that might come out in practice. In the end, we
recall the definition of the cosine between −gggk and sssk

(1.3) cos(−gggk, sssk) =
−gggᵀksssk
‖gggk‖‖sssk‖

.

When the Hessian of the objective function is positive
definite and we approximate sssk ≈ Hk

−1gggk we have that

gggᵀksssk ≈ −ggg
ᵀ
kHk

−1gggk ≤ −
‖gggk‖2

λM (gggk)

‖sssk‖ ≈ ‖H−1gggk‖ ≤
‖gggk‖

λm(Hk)
,

where λm(·), λM (·) respectively compute the minimum
and the maximum eigenvalue of a matrix. If now we
have that there exist two positive constants, M and m,
such that M ≥ λM (∇2f(wwwk)) ≥ λm(∇2f(wwwk)) ≥ m,
from the inequalities above we also get that

(1.4) −gggᵀksssk ≥
m

M
‖gggk‖‖sssk‖.

For the linear classification problem, from (1.1) we have

1 ≤ λm(Hk) ≤ λM (Hk) ≤ 1 + CλM (XᵀDX).

This means that when the regularization parameter C
is large (e.g., C = 100Cbest), (1.4) shows that the lower
bound of the cosine value in (1.3) we can derive is
smaller. Thus the angel condition (1.2) is harder to be
satisfied. Note that equation (1.2) is a property needed
in the convergence proof, which requires the existence
of a constant c. in fact, there is no control on the
right-hand-side of (1.2), while what we hope is that the
left-hand-side of (1.2) is large so that it can be easily
satisfied. Unfortunately (1.4) shows that for large C,
the left-hand-side of (1.2) tends to be not that large.

In conclusion, even if theoretically convergence is
not an issue, the above discussion still gives us a hint
on what might actually happen when C is large.

2 Local Convergence

In this section we will derive local convergence prop-
erties for all the combination of ratios and forcing se-
quences presented in the original paper. We first recall
all the ratios:
• residual:

(2.5) ratio =
‖gggk +Hksss

j
k‖

‖gggk‖
.

• residuall1:

(2.6) ratio =
‖gggk +Hksss

j
k‖1

‖gggk‖1
.

• quadratic:

(2.7)

Q(sss) := sssᵀgggk +
1

2
sssTHksss,

ratio =
(Qj −Qj−1)

Qj/j
,

where Qj := Q(sssjk) and Qj−1 := Q(sssj−1k ).
Now we recall all the forcing sequences:
• adaptive:

(2.8) ηk = min{c1; c2‖gggk‖c3},
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ratio
ηk (2.8) (2.9) (2.10)

(2.5) SL (1 + c3) SL (1 + c3) L
(2.6) SL (1 + c3) SL (1 + c3) L
(2.7) SL (1 + c3

2 ) SL (1 + c3
2 ) L

Table 1: In this table we distinguish between the
termination criteria that are able to obtain q-Super-
Linear (SL) convergence from those that only achieve
q-Linear (L) convergence. In addition, we specify which
order a SL convergence is able to obtain.

• adaptivel1:

(2.9) ηk = min{c1; c2‖gggk‖c31 },

• constant:

(2.10) ηk = c0 with c0 ∈ (0, 1).

In Table 1 we present all the local convergence results
and in the following we will show how to obtain them.
The basic convergence results are given by Theorem 2.2
and 3.3 from [1]. We recall the statement here, see [1]
for the proof.

Theorem 2.1. If www0 is sufficiently close to www∗, the
ratio employed is (2.5) and 0 ≤ ηk < ηmax < 1, then
{wwwk} converges q-linearly to www∗. If limk→∞ ηk = 0 then
the convergence is q-superlinear. If ηk = O(‖gggk‖c3) with
0 < c3 ≤ 1, then the convergence is of order at least
(1 + c3).

From this result we can fill two cells of Table 1, in
particular those in which ratio is (2.5) and ηk are (2.8)
and (2.10). Now thanks to the fact that ‖vvv‖1 ≤

√
n‖vvv‖2,

for any vector vvv of dimension n, if we employ (2.9)
in ηk we still have that ηk = O(‖gggk‖r). Thus, if the
ratio is (2.5) and ηk is (2.9) we still obtain superlinear
convergence of order (1 + c3).

If we now employ (2.6) we also need the other
side of the norm equivalence. In particular, thanks to
‖vvv‖2 ≤ ‖vvv‖1 ≤

√
n‖vvv‖2 we get that

(2.11)

‖Hksss
j
k + gggk‖2 ≤ ‖Hksss

j
k + gggk‖1

≤ ηk‖gggk‖1
≤
√
nηk‖gggk‖2.

Thus, employing (2.6) as the ratio, thanks to (2.11), it
is possible to obtain same local convergence results as
the one achieved by using (2.5).

To fill the last row of Table 1, we need some
additional results. The following derivation is based
on the results that can be found in Section 4.3 from

[3]. Assume that iteration k of the truncated Newton
method computes a step sssk that satisfies

(2.12)
(Qj −Qj−1)

Qj/j
≤ ηk

for a specified value of ηk. Thus from now on, ratio
is (2.7) and ηk is unspecified. Thanks to CG method
properties, we have that Qj is monotonically decreasing
and

Q1 = −1

2

gggTk gggk
gggTkHkgggk

< 0.

Thus, we have that (Qj − Qj−1) < 0 and Qj < 0 for
every j ≥ 1. For this reason (2.12) is equivalent to

(2.13) Qj−1 −Qj ≤ ηk ·
−Qj
j

.

From now on, for vectors and matrices ‖ · ‖ indicate the
l2-norm.

Lemma 2.1. If G is symmetric and positive-definite
then

(2.14) yTG2y ≤ ‖G‖yTGy.

Proof. We have

yTG2y = (G
1
2 y)TG(G

1
2 y)

≤ λmax(G
1
2 y)T (G

1
2 y)

= ‖G‖yTGy,

where λmax is the highest eigenvalue of G.

Lemma 2.2. Let sss∗ be the point that minimizes Q(sss).
Then, for any sss we have

(2.15) ‖Hksss+ gggk‖2 ≤ 2‖Hk‖ · (Q(sss)−Q(sss∗))

Proof. From Lemma 2.1 we have

‖Hksss+ gggk‖2 = (Hksss+ gggk)T (Hksss+ gggk)

= (Hksss−Hksss
∗)T (Hksss−Hksss

∗)

= (sss− sss∗)TH2
k(sss− sss∗)

≤ ‖Hk‖(sssTHksss− 2sss∗THksss+ sss∗THksss
∗)

= ‖Hk‖
(

(sssTHksss+ 2sssTgggk)

− (sss∗THksss
∗ + 2sss∗Tgggk)

)
= 2‖Hk‖(Q(sss)−Q(sss∗)),

where second and fourth equalities follow from gggk =
−Hksss

∗.
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Lemma 2.3. If we employ (2.12) as the inner stopping
criterion of the CG procedure, we get

(2.16) ‖Hksss
j
k + gggk‖ ≤ L

√
ηk‖gggk‖,

where L =

√
K‖Hk‖·‖H−1

k ‖
1−K .

Proof. From (6.18) of [2] we get that

K(Q(sssjk)−Q(sss∗k)) ≥ Q(sssj+1
k )−Q(sss∗k),

where K =
(
λmax−λmin

λmax+λmin

)2
, λmax and λmin are respec-

tively the highest and lowest eigenvalues. Thus, moving
KQ(sss∗k) on the right side and subtracting KQ(sssj+1

k )
from both sides of the above inequality we get

KQ(sssjk)−KQ(sssj+1
k ) ≥

−KQ(sssj+1
k ) +KQ(sss∗k) +Q(sssj+1

k )−Q(sss∗k) =

(1−K)
(
Q(sssj+1

k )−Q(sss∗k)
)
,

which means that

(2.17) Q(sssj+1
k )−Q(sss∗k) ≤ K

1−K

(
Q(sssjk)−Q(sssj+1

k )
)
.

Now since Q(sssjk) is monotonically decreasing as j
increases we get that

(2.18) −Q(sss∗k) ≥ −Q(sssjk) ∀j.

At the solution sss∗k, from sss∗k = −H−1k gggk, we have

Q(sss∗k) = sss∗k
Tgggk +

1

2
sss∗k
THksss

∗
k = −1

2
gggk
TH−1k gggk.

Thus, together with (2.18), we get

(2.19) −Q(sssjk) ≤ −Q(sss∗k) ≤ 1

2
‖H−1k ‖ · ‖gggk‖

2.

Finally from Lemma 2.2, (2.17), (2.13), (2.19) we get

‖Hksss
j
k + gggk‖2 ≤ 2‖Hk‖ · (Q(sssjk)−Q(sss∗k))

≤ 2K‖Hk‖
1−K

(
Q(sssj−1k )−Q(sssjk)

)
≤ ηk ·

2K‖Hk‖
1−K

·
−Q(sssjk)

j

≤ ηk ·
K‖Hk‖ · ‖H−1k ‖

1−K
· ‖gggk‖2

= ηk · L2 · ‖gggk‖2,

where L2 =
K‖Hk‖·‖H−1

k ‖
1−K and the last inequality follows

from the fact that j ≥ 1.

Now thanks to (2.16) we can extend Theorem 2.1
to obtain Theorem 2.2. In fact, if in (2.16) we define
η̄k := L

√
ηk we obtain again (2.5)

‖Hksss
j
k + gggk‖ ≤ η̄k‖gggk‖,

where this time the forcing sequence used in the original
termination criteria is under the sign of a root. Thus,
we can apply Theorem 2.1 to prove the following.

Theorem 2.2. If www0 is sufficiently close to www∗, the ra-
tio employed is (2.7) and 0 ≤ ηk < ηmax < 1, then {wwwk}
converges q-linearly to www∗. If limk→∞ ηk = 0 then the
convergence is q-superlinear. If ηk = O(‖∇f(wwwk)‖c3)
with 0 < c3 ≤ 2, then the convergence is of order at
least (1 + c3

2 ).

Note that the only difference with Theorem 2.1 is the
fact that in the new bound that correlates the norm
of the residual to the norm of the gradient (2.16), the
forcing sequence is under the sign of a root. For this
reason when we use (2.7), to obtain the same order
of local convergence we now need to use an exponent
c3 which is the double of the one that we would have
needed by using (2.5). For the rest, the last row of Table
1 can be filled in the same way as (2.5).

3 Complete Experimental Results

See https://www.csie.ntu.edu.tw/~cjlin/papers/

inner_stopping.
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