Supplementary Materials for "A Study on Conjugate Gradient Stopping Criteria in Truncated Newton Methods for Linear Classification"

For experiments we use two-class classification shown in Table I. Except for yahookr and yahoojp, others are available from LIBSVM Data Sets (2007). Table I shows the statistics of each data set used in our experiments.

Data sets	#instances	#features	density	$\log_2($ LR	(C_{best}) L2
HIGGS	11,000,000	28	92.1057%	-6	-12
w8a	49,749	300	3.8834%	8	2
rcv1	$20,\!242$	47,236	0.1568%	6	0
real-sim	$72,\!309$	20,958	0.2448%	3	-1
news20	$19,\!996$	$1,\!355,\!191$	0.0336%	9	3
url	$2,\!396,\!130$	3,231,962	0.0036%	-7	-10
yahoojp	$176,\!203$	832,026	0.0160%	3	-1
yahookr	$460,\!554$	$3,\!052,\!939$	0.0111%	6	1
webspam	$350,\!000$	$16,\!609,\!143$	0.0220%	2	-3
kdda	$8,\!407,\!752$	20,216,831	0.0001%	-3	-5
kddb	$19,\!264,\!097$	29,890,095	0.0001%	-1	-4
criteo	$45,\!840,\!617$	1,000,000	0.0039%	-15	-12
kdd12	149,639,105	54,686,452	0.00002%	-4	-11

Table I: Data statistics. The density is the average number of non-zeros per instance. C_{best} is the regularization parameter selected by cross validation.

I. Additional Experimental Results

In this section we present complete results for linear classification problems with either

- LR-loss or
- L2-loss.

References

```
LIBSVM Data Sets, 2007. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets.
```


Figure i: A comparison of different constant thresholds in the inner stopping condition. We show the convergence of a truncated Newton method for logistic regression. The x-axis shows the cumulative number of CG iterations. Loss=LR and $C = C_{\text{best}}$ in each sub-figure.

Figure ii: A comparison of different constant thresholds in the inner stopping condition. We show the convergence of a truncated Newton method for logistic regression. The x-axis shows the cumulative number of CG iterations. Loss=LR and $C = 100C_{\text{best}}$ in each sub-figure.

Figure iii: A comparison between adaptive and constant forcing sequences. We show the convergence of a truncated Newton method for logistic regression. The x-axis shows the cumulative number of CG iterations. Loss=LR and $C = C_{\text{best}}$ in each sub-figure.

Figure iv: A comparison between adaptive and constant forcing sequences. We show the convergence of a truncated Newton method for logistic regression. The x-axis shows the cumulative number of CG iterations. Loss=LR and $C = 100C_{\text{best}}$ in each sub-figure.

Figure v: An investigation on the robustness of adaptive rules and a comparison with the trust region approach. We show the convergence of a truncated Newton method for logistic regression. The x-axis shows the cumulative number of CG iterations. Loss=LR and $C = C_{\text{best}}$ in each sub-figure.

Figure vi: An investigation on the robustness of adaptive rules and a comparison with the trust region approach. We show the convergence of a truncated Newton method for logistic regression. The x-axis shows the cumulative number of CG iterations. Loss=LR and $C = 100C_{\text{best}}$ in each sub-figure.

Figure vii: Cosines between the anti-gradient $-\nabla f(\boldsymbol{w}_k)$ and the resulting direction \boldsymbol{s}_k , using different truncation rules. Iterations in which the cosine is below the 0.1 threshold are marked with a *****. The x-axis shows the cumulative number of CG iterations. Loss=LR and $C = C_{\text{best}}$ in each sub-figure.

Figure viii: Cosines between the anti-gradient $-\nabla f(\boldsymbol{w}_k)$ and the resulting direction \boldsymbol{s}_k , using different truncation rules. Iterations in which the cosine is below the 0.1 threshold are marked with a \boldsymbol{x} . The x-axis shows the cumulative number of CG iterations. Loss=LR and $C = 100C_{\text{best}}$ in each sub-figure.

Figure ix: A comparison between adaptive and constant forcing sequences. We show the convergence of a truncated Newton method for linear SVM. The x-axis shows the cumulative number of CG iterations. Loss=L2 and $C = C_{\text{best}}$ in each sub-figure.

Figure x: A comparison between adaptive and constant forcing sequences. We show the convergence of a truncated Newton method for linear SVM. The x-axis shows the cumulative number of CG iterations. Loss=L2 and $C = 100C_{\text{best}}$ in each sub-figure.