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To date, factorization machines (FM) have emerged as a powerful model in many applications. In this work,
we study the training of FM with the logistic loss for binary classification, which is a non-linear extension of
the linear model with the logistic loss (i.e., logistic regression). For the training of large-scale logistic regres-
sion, Newton methods have been shown to be an effective approach, but it is difficult to apply such methods
to FM because of the non-convexity. We consider a modification of FM that is multi-block convex and propose
an alternating minimization algorithm based on Newton methods. Some novel optimization techniques are
introduced to reduce the running time. Our experiments demonstrate that the proposed algorithm is more
efficient than stochastic gradient algorithms and coordinate descent methods. The parallelism of our method
is also investigated for the acceleration in multi-threading environments.
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1. INTRODUCTION
Binary classification has been an important technique for many practical applications.
Assume that the observations and the scalar result of an event are respectively de-
scribed by an n-dimensional feature vector x and a label y ∈ {−1, 1}. The model is an
output function from the feature space to a real number, ŷ : Rn → R, where the output
label is the sign of the output value. Among many existing models, we are interested in
factorization machines (FM), which have been shown to be useful for high dimensional
and sparse data sets [Rendle 2010]. Assume that we have l training events,

(y1,x1), . . . , (yl,xl),
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where yi and xi are the label and the feature vector of the ith training instance, re-
spectively. For an instance (y,x), the output value of FM is defined by

ŷ(x) = wTx +

n∑
j=1

n∑
j′=j+1

uTj uj′xjxj′ , (1)

where w ∈ Rn and U = [u1, . . . ,un] ∈ Rd×n are the parameters of FM. The jth col-
umn of U , uj , can be viewed as the jth feature’s representation in an latent space with
the dimensionality d specified by the user. In (1), the variable w describes the linear
relation between the input features and the output label, while the second term of
(1) includes all feature conjunctions that capture the information carried by feature
co-occurrences (also called feature interactions or feature conjunctions). Moreover, the
coefficient of the conjunction between xj and xj′ is determined by the inner product of
uj and uj′ . To determine FM’s parameters, we solve the following optimization prob-
lem.

min
w,U

λ

2
‖w‖2 +

λ′

2
‖U‖2F +

l∑
i=1

ξ(ŷ(xi); yi). (2)

With regularization parameters λ and λ′, FM’s objective function consists of the
squared sum of all model parameters for preventing over-fitting and the sum of l loss
values. The loss function ξ(·) encourages the consistency between ŷ(x) and the actual
label y. For practical classification problems, one can use, for example, the logistic loss
or the squared loss:

ξlog(ŷ; y) = log
(
1 + e−yŷ

)
(3)

ξsq(ŷ; y) =
1

2
(ŷ − y)2. (4)

Note that the regression-oriented loss (4) can be adopted here for classification because
it panellizes the distance between the predicted value and the true label. Furthermore,
if U is not considered, using any of (3) and (4) leads to logistic regression (or LR for
short) and linear regression, respectively.

By following the concept of computing the conjunction coefficient of a feature pair
from their latent representations, some FM variants have been proposed. For example,
Blondel et al. [2016] proposed modifying the output function by introducing some new
variables, v1, . . . ,vn, and change output value in (1) to

ŷ(x) = wTx +
1

2

n∑
j=1

n∑
j′=1

uTj vj′xjxj′

= wTx +
1

2
(Ux)T (V x)

=xTUTV x

,

(5)

where V = [v1, . . . ,vn] ∈ Rd×n encodes the feature representations in another latent
space. They replace UTV with 1

2 (UTV + V TU) in (5), but both of the output value
and the optimization problem remain unchanged. In addition to the appearance of an-
other latent space associated with V , (5) differs from (1) in the following aspects. First,
the multiplications xjxj′ and xj′xj are treated as different feature conjunctions, so
they are characterized by different coefficients uTj vj′ and uTj′vj , respectively. Second,
a feature index can occur twice in one conjunction; that is, self-interaction is allowed.
Resulting from these two changes, the summation in (5) must iterate through all in-
dexes in {(j, j′) | j, j′ = 1, . . . , n}. Besides, Blondel et al. [2016] do not consider the
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Table I: FM solvers which have been studied.

Solver
Loss FM type Squared loss Logistic loss

SG (2) [Rendle 2010] [Rendle 2010; Ta 2015;
Juan et al. 2016]

(6) [Blondel et al. 2016]
MCMC (2) [Rendle 2012]

CD (2) [Rendle 2012] [Blondel et al. 2016]
(6) [Blondel et al. 2016]

L-BFGS (2), (6) [Blondel et al. 2016]

1/2 coefficient of the non-linear term in (5). We added it because the new formulation
nearly doubles the number of feature conjunctions in (1). Finally, the new optimization
problem associated with (5) is clearly formed by three blocks of variables w, U , and V :

min
w,U,V

F (w, U, V ), (6)

where

F (w, U, V ) =
λ

2
‖w‖2 +

λ′

2
‖U‖2F +

λ′′

2
‖V ‖2F +

l∑
i=1

ξ

(
yi

(
wTxi +

1

2
(Uxi)

T (V xi)

))
. (7)

In this paper, we consider (5) because some of its properties are useful in developing
our method. While general convex losses are included in the discussion we focus more
on the logistic loss (3), which is commonly used for classification applications such as
CTR (click-through rate) predictions.

Problems (2) and (5) are not easy to solve because of their non-convex objective func-
tions. When the squared loss (4) is used, stochastic gradient methods (SG) and coordi-
nate descent methods (CD) are two of the most effective techniques to train a model
[Rendle 2012; Blondel et al. 2016]. If the logistic loss is applied, most existing FM
packages use stochastic methods. For example, a Markov Chain Monte Carlo method
(MCMC) and a classical stochastic gradient method are implemented in LIBFM [Ren-
dle 2012] while LIBFFM [Juan et al. 2016] considers ADAGRAD, an advanced SG by
Duchi et al. [2011]. Ta [2015] also reported the effectiveness of a variant of ADAGRAD.
On the other hand, in designing a CD method for FM problem (6) with the squared loss,
Blondel et al. [2016] mentioned that with some minor modifications, their method can
solve FM problems with the logistic loss. Unfortunately no experimental result was
provided. We give a summary in Table I for existing FM algorithms and the loss func-
tions they have been implemented for. One original motivation of this study was to
compare the two state-of-the-art algorithms CD and SG. However, in applying CD to
solve FM with the logistic loss, we realize that CD suffers from a relatively large num-
ber of exponential/logarithmic operations. The CD procedure may not be competitive
because each exponential/logarithmic operation costs much more than a basic opera-
tion like addition or multiplication. This issue has been well studied in the training
of logistic regression [Yuan et al. 2012a]. They show that CD’s ratio of exp / log opera-
tions to standard arithmetic operations is O (1) for logistic regression. We point out in
Section 2 that CD for FM has an equally high ratio. Yuan et al. [2012a] also show that
Newton-type methods require a relatively small number of exponential/logarithmic op-
erations. Therefore we decide to explore the use of Newton’s methods in training FM.
Our main results are summarized below:
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— Because (7) is multi-block convex, we point out that if all but one block of variables
are fixed, the optimization problem is reduced to be an LR-like sub-problem. We then
develop an efficient Newton’s method to solve the sub-problem.

— We explore in detail the use of Newton methods in solving each sub-problem of one
block of variables. Some techniques are proposed to significantly reduce the running
time.

— The parallelism of our method is investigated for the acceleration in multi-threading
environments.

— We empirically demonstrate the extraordinary efficiency of the proposed algorithm
against stochastic gradient methods and coordinate descent methods, targeting (6)
with the logistic loss.

In addition to Newton methods, L-BFGS is a quasi Newton method that has been pop-
ular in training logistic regression. It has been used in Blondel et al. [2016] for training
(6) with the squared loss. However, they directly apply L-BFGS to solve the non-convex
problem (6) rather than convex sub-problems. Hence their scenario is different from
ours. In their experiments. L-BFGS is inferior to CD and SG. Because for logistic re-
gression Lin et al. [2008] have shown that Newton is competitive with L-BFGS, in this
study we do not consider L-BFGS for solving our sub-problems.

The paper is organized as follows. Section 2 reviews existing state of the art FM
solvers. We develop an efficient algorithm based on Newton methods in Section 3.
Section 4 discusses some algorithmic issues and implementation techniques for our
method. Then, we study its parallelization in Section 5. The experimental results in
Section 6 confirm the effectiveness of the proposed method. Finally, Section 7 concludes
our work.

2. STATE OF THE ART METHODS FOR TRAINING FACTORIZATION MACHINES
In this section, we review two state of the art FM solvers in detail, CD and SG. We
focus on the FM problem (6) with the loss functions defined in (3) and (4). The reason
of not considering (2) is that some of (6)’s nice properties are required in developing
our method.

2.1. Stochastic Gradient Methods
It is mentioned in Section 1 that stochastic gradient methods are popular in training
FM. Among existing SG approaches we describe one using ADAGRAD because its su-
periority over standard SG implemented in LIBFM has been established in [Juan et al.
2016].

Consider the aforementioned l training instances (yi,xi), i = 1, . . . , l again. ADA-
GRAD solves optimization problems in the following form.

min
w̃∈Rñ

l∑
i=1

f(w̃; yi,xi), (8)

where w̃ is the collection of all variables. At the kth iteration, an instance (yi,xi)

is sampled from the l training instances to calculate the stochastic gradient, g̃k =
∇f(w̃k; yi,xi). Then, the current solution is updated via

w̃k+1 ← w̃k − η0G̃
− 1

2 g̃k,

where η0 > 0 is a pre-specified constant and G̃ is a diagonal matrix defined by

G̃ =

k∑
k′=1

diag
(
g̃k

′
)2

.
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The complete procedure that ADAGRAD solves (8) is shown in Algorithm 1.

Algorithm 1 ADAGRAD.

1: Given initial solution w̃0, number of iterations k̄, and η0 > 0.
2: Initialize G̃ with zeros.
3: for k ← 1, . . . , k̄ do
4: Draw an index i ∈ {1, . . . , l}
5: g̃ ← ∇f(w̃k; yi,xi)

6: G̃← G̃+ diag (g̃)
2

7: w̃k+1 ← w̃k − η0G̃
−1/2g̃

8: end for

To apply ADAGRAD to learn the considered FM, we begin with rewriting (6) into a
form of (8). Let

w̃ =
[
wT ,uT1 , . . . ,u

T
n ,v

T
1 , . . . ,v

T
n

]T ∈ Rn+2dn. (9)

We argue that if

f(w̃; yi,xi) =
∑
j∈Ni

(
λ

2|Ωj |
w2
j +

λ′

2|Ωj |
‖uj‖2 +

λ′′

2|Ωj |
‖vj‖2

)
+ ξ(ŷ(xi); yi), (10)

then (8) is equivalent to (6), where Ni is the index set of the ith instance’s non-zero
features, Ωj is the indexes set of the instances whose jth features are not zero, and | · |
returns the size when the input is a set. Because the summation of the loss terms in
(10) over i = 1, . . . , l is obviously the loss term in (7), we only check if the regularization
terms in (10) lead to the same regularization terms in (7). First, for w’s regularization,
we have

l∑
i=1

∑
j∈Ni

λ

2|Ωj |
w2
j =

λ

2

n∑
j=1

∑
i∈Ωj

1

|Ωj |
w2
j =

λ

2

n∑
j=1

w2
j =

λ

2
‖w‖2.

By an analogous derivation, inversely scaling ‖uj‖2 and ‖vj‖2 by |Ωj | produces the
desired regularization in (7). The equivalence between (10) and (7) is therefore verified.

From (10) and the definition of w̃ in (9), we deduce the stochastic gradient with
respect to the model parameters in each iteration. For w, we have

∂f(w̃; yi,xi)

∂wj
=

{
λ
|Ωj |wj + ξ′(ŷ(xi); yi)xij if j ∈ Ni,
0 otherwise,

(11)

where ξ′(ŷ; y) is the derivative of the selected loss function with respect to ŷ. Note that

ξ′log(ŷ; y) =
−y

1 + eyŷ

ξ′sq(ŷ; y) = ŷ − y.
(12)

To simplify subsequent notations, we define pi = Uxi and qi = V xi. Taking the
partial derivative of (10) with respect to uj and vj yields the derivatives along other
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coordinates.

∂f(w̃; yi,xi)

∂uj
=

{
λ′

|Ωj |uj + 1
2ξ
′(ŷ(xi); yi)qixij if j ∈ Ni,

0d×1 otherwise.

∂f(w̃; yi,xi)

∂vj
=

{
λ′′

|Ωj |vj + 1
2ξ
′(ŷ(xi); yi)pixij if j ∈ Ni,

0d×1 otherwise.

(13)

Substituting (11) and (13) into the step that calculates the stochastic gradient in Algo-
rithm 1, we get the procedure to solve (6) by ADAGRAD.

Next, we analyze required computational complexity in one for-loop iteration in Al-
gorithm 1. Taking a closer look at (12), one may quickly realize that computing the
derivative of (3) is much more slower than calculating the other components. The chief
reason is that exponential and logarithmic function evaluations are much more expen-
sive than standard arithmetic operations. In contrast, (4)’s evaluation is not especially
high-priced. Therefore, the amounts of loss-related function calls and other operations
are separately discussed. If the instance (yi,xi) is drawn, we first spend O (|Ni|d) op-
erations to calculate and store pi, qi and then the output value ŷi via

(5) = wTxi +
1

2
pTi qi. (14)

The following step is substituting ŷi into ξ′(ŷi; y) and caching its output. Next, we use
(11)-(13) to compute the (|Ni|+2|Ni|d) non-zero values of g̃. Then, the diagonal elements
of G̃ corresponding to the non-zero coordinates in g̃ are updated. Finally, new values
are computed and assigned to the coordinates of w̃ linked to the non-zero coordinates
in g̃. The total arithmetic complexity in one iteration is therefore O (|Ni|d) with only
one call to the loss function’s derivative. Let (# nnz) denote the total number of non-
zeros in X. To process one epoch (i.e., l instances), we expect O (d× (# nnz)) operations
and l loss-related function calls.

From a practical perspective, selecting proper storage formats for the used variables
is important in obtaining an efficient implementation. A well-known principle is to use
one leading to shorter physical distance between two consecutively-accessed variables.
In Algorithm 1, the major matrices are U , V , and

X = [x1,x2, . . . ,xl]
T ∈ Rl×n.

For each of them, we can use row-major or column-major formats. Since ADAGRAD
accesses X instance-by-instance, it should be stored in a row-major format (e.g., com-
pressed row format because X is usually sparse in large-scale problems). Because the
coordinates in uj , j ∈ Ni are sequentially accessed when computing (13), a column-
major format is suggested for U . Similarly, V is stored in a column-major format. It
follows that the matrices of accumulated gradients are also in column-major.

2.2. Coordinate Descent Methods
Coordinate descent methods, a family of iterative procedures, have gained great suc-
cesses in solving large-scale minimization problems. At each iteration, only one vari-
able is updated by solving an associated sub-problem while other variables are fixed.
For the update sequence, here we choose a cyclic one by following [Blondel et al. 2016].
That is, we cyclically go through

w1, . . . , wn, U11, U12, . . . , U1n

the 1st row of U

, V11, V12, . . . , V1n

the 1st row of V

, . . . , Ud1, Ud2, . . . , Udn
the dth row of U

, Vd1, Vd2, . . . , Vdn
the dth row of V

.

(15)
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For forming a sub-problem and obtaining its solution, we leverage the concept in state
of the art methods developed for LR and support vector machine [Chang et al. 2008;
Huang et al. 2010]. The situations for updating the coordinates of w, U , and V are
quite similar. Let us first outline the update of Ucj , the value at the cth row and the
jth column of U , and then extend the result to other cases. By fixing all variables but
Ucj in (6), we obtain Ucj ’s sub-problem,

min
Ucj∈R

FUcj (Ucj), (16)

where

FUcj (Ucj) =
λ′

2
U2
cj +

∑
i∈Ωj

ξ(yi; ŷi).

For solving (16), a single-variable Newton method is employed; that is, if the current
solution is Ucj , the update direction would be

s = −g/h, (17)

where

g =
∂FUcj
∂Ucj

= λ′Ucj +
1

2

∑
i∈Ωj

ξ′(ŷi; yi)(qi)c(xi)j

h =
∂2FUcj
∂2Ucj

= λ′ +
1

4

∑
i∈Ωj

ξ′′(ŷi; yi)(qi)
2
c(xi)

2
j .

(18)

For the second-order derivatives, we note

ξ′′log(ŷ; y) =
eyŷ

(1 + eyŷ)2

ξ′′sq(ŷ; y) = 1.

(19)

If
P = [p1,p2, . . . ,pl] ∈ Rd×l

Q = [q1, q2, . . . , ql] ∈ Rd×l

are available, O (|Ωj |) arithmetic and loss-related operations are involved in the eval-
uation of (18). Then, to guarantee a sufficient objective function reduction and hence
the convergence, a back-tracking line search is lunched to find the largest step size
θ ∈ {1, β, β2, . . . } satisfying Armijo rule,

FUcj (Ucj + θs)− FUcj (Ucj) ≤ θνgs, (20)

where ν ∈ (0, 1) and β ∈ (0, 1) are pre-specified constants. If ŷi, i ∈ Ωj are available,
computing the left-hand side in (20) can be finished within O (|Ωj |) arithmetic opera-
tions and loss-related function calls. Precisely,

FUcj (Ucj + θs)− FUcj (Ucj) =
λ′

2

(
2θUcjs+ θ2s2

)
+
∑
i∈Ωj

ξ(ŷi + θ∆i; yi)

−
∑
i∈Ωj

ξ(ŷi; yi),
(21)
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Algorithm 2 CD for solving (16).

1: Given iteration number k̄inner, λ′ > 0, 0 < ν < 1, 0 < β < 1, the current Ucj , ŷi, (pi)c,
and (qi)c, i = 1, . . . , l.

2: for k ← {1, . . . , k̄inner} do
3: Evaluate (17) to obtain s
4: ∆i ← s(qi)c(xi)j/2, ∀i ∈ Ωj
5: for θ ← {1, β, β2, . . . } do
6: if (21) ≤ θνgs then
7: Ucj ← Ucj + θs
8: Maintain variables via (22), ∀i ∈ Ωj .
9: break

10: end if
11: end for
12: end for
13: Output Ucj as the solution of (16).

where ∆i = 0.5× s(qi)c(xi)j because in (5),

(Ux)T (V x) = qTUx =

d∑
c=1

n∑
j=1

qcUcjxj

and only Ucj is being adjusted along s. In addition, ∆i, i ∈ Ωj can be pre-computed
in the beginning and reused in checking every θ. Once θ is found, the variable Ucj is
adjusted via

Ucj ← Ucj + θs.

It is known that for an efficient CD implementation, pi, qi, and ŷi, ∀i should be cached
and carefully maintained through iterations to save computation [Blondel et al. 2016].
The update of Ucj causes that the cth coordinate at pi and ŷi, i ∈ Ωj are changed.
Recomputing pi and ŷi for each i ∈ Ωj may need O (|Ni|d) operations, but all necessary
changes can be done via an O (|Ωj |) rule below.

(pi)c ← (pi)c + θs(xi)j

ŷi ← ŷi + θ∆i
, ∀i ∈ Ωj . (22)

Algorithm 2 sketches our CD procedure of solving (16). Besides, if ξ(ŷ; y) is µ-smooth,
letting

h = λ′ +
µ

4

∑
i∈Ωj

(qi)
2
c(xi)

2
j (23)

can guarantee the monotonic decrease of the objective function with θ = 1. It leads to
the CD procedure without line search in [Blondel et al. 2016]. Nevertheless, replacing
the calculation of h in (18) with (23) does not change the algorithm’s computation com-
plexity, so we use (18) for more accurate second-order information following a state of
the art LR solver [Huang et al. 2010]. All iterative algorithms need a stopping condi-
tion. For Algorithm 2, a fixed number of iterations k̄inner is set. Concerning (18), (21),
and (22), Algorithm 2 yields a computational cost at

O
(
k̄inner × (# of line search iterations + 2)× |Ωj |

)
, (24)
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Algorithm 3 Solving (6) via CD.

1: Given an initial solution (w, U, V ) and number of outer iterations k̄outer.
2: Calculate and cache pi, qi, and ŷi = wTxi + 1

2p
T
i qi, i = 1, . . . , l.

3: for k ← {1, . . . , k̄outer} do
4: for j ← {1, . . . , n} do
5: Update wj via Algorithm 2 by replacing (λ′, Ucj , (qi)c) with (λ,wj , 2) and dis-

carding the first rule in (22).
6: end for
7: for c← {1, . . . , d} do
8: for j ← {1, . . . , n} do
9: Update Ucj via Algorithm 2.

10: end for
11: for j ← {1, . . . , n} do
12: Update Vcj via Algorithm 2 by replacing (λ′, Ucj , (pi)c) with

(λ′′, Vcj , (qi)c).
13: end for
14: end for
15: end for

where the coefficient “2” accounts for the evaluation of (18) and (22). If all coordinates
of U are updated once, the induced complexity is

O
(
dk̄inner × (# of expected line search iterations + 2)× (# nnz)

)
. (25)

As none of loss-related operations is present in (22), the total number of loss-related
function calls in Algorithm 2 and in the process of updating U once can be simply
obtained by changing the coefficient “2” in (24) and (25) to “1,” respectively.

With some minor changes, Algorithm 2 can be used to update the other coordinates.
For Vcj , we just need to replace (λ′, Ucj , (pi)c, (qi)c) with (λ′′, Vcj , (qi)c, (pi)c). For wj ,
the strategy is to replace (λ′, Ucj , (pi)c, (qi)c) with (λ,wj , 2, 2) and disable the adjust-
ment of (pi)c in (22). All combined, Algorithm 3 demonstrates the final two-layer CD
framework for solving (6). Because the adjustment of U and V costs more than the
update of w, the complexity of updating all coordinates once (called an outer iteration)
is (25) with loss-related function calls at the same level. Besides, in Algorithm 3, the
initialization step requires O (d× (# nnz)) extra operations to prepare pi, qi, and ŷi,
i = 1, . . . , l.

Finally, we discuss which of row- and column-major orders should be obeyed when
storing the elements in X, U , V , P , and Q. Recall the three major steps in Algorithm
2: (18), the line search procedure (including the preparation of ∆i, ∀i ∈ Ωj), and (22).
For each step, we observe that aligning elements in Q in row-major order may increase
memory continuity when accessing (qi)c, resulting from its summations over the in-
stance indexes in Ωj . This argument also holds for P when updating V . Thus, both of
P and Q should be stored in row-major format. Because we are always looping through
(xi)j , i ∈ Ωj , X should be in column-major format. From the update sequence specified
by (15), row-major format is recommended for both of U and V .

3. ALTERNATING NEWTON METHODS FOR LEARNING FACTORIZATION MACHINES
From Sections 2.1-2.2, we know that CD’s and SG’s ratios of loss-related function calls
to standard arithmetic operations are O (1) and O

(
l

d×# nnz

)
, respectively. It implies

that when the loss function is composed of some expensive operations, the running
time of CD can be heavily prolonged. For Newton-type methods, solving the direction-

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 0.



0:10 W.-S. Chin, B.-W. Yuan, M.-Y. Yang, and C.-J. Lin

Algorithm 4 Solving the modified FM problem (6) via alternating minimization.
1: Given an initial solution (w, U, V )
2: while stopping condition is not satisfied do
3: w ← arg minw F (w, U, V )
4: U ← arg minU F (w, U, V )
5: V ← arg minV F (w, U, V )
6: end while

finding sub-problem is usually the heaviest step in each iteration and, fortunately,
costs no loss-related operation. Thus, it may be a more suitable method than CD for
tackling the logistic loss. For logistic regression, the superiority of Newton over CD has
been confirmed in Yuan et al. [2012a]. However, the non-convexity of (2) and (6) brings
some difficulties in developing a Newton-type FM solver. The Hessian matrix (the
second-order derivative) is not always positive definite, so a direct application of the
Newton method can fail to find a descent direction. We may consider a positive-definite
approximation of the Hessian matrix such as the Gauss-Newton matrix [Schraudolph
2002] used in deep learning [Martens 2010], but such an approach is generally less
effective than Newton methods for convex optimization problems. On the other hand,
for problems related to matrix factorization, the objective function is multi-block con-
vex, so alternating Newton methods have been widely applied. That is, sequentially
a convex sub-problem of one block of variables is solved by the Newton method while
other variables are fixed. In fact, if the squared loss is used, then the alternating New-
ton method is reduced to the alternating least square method (e.g., [Zhou et al. 2008])
because the Newton method solves a quadratic problem in one iteration.

Unfortunately, the original FM problem (2) is not in a multi-block convex form so
that each block contains many variables. The reason is that every uTj uj′ in (1) is a
non-convex term with respect to uj and uj′ . Then, we can only get a small convex
sub-problem by fixing all but one uj . On the other hand, it has been mentioned in
[Blondel et al. 2016] that (7) is a multi-block convex function of w, U , and V . That
is, (7) becomes a convex sub-problem if two of w, U , and V are fixed. Then the idea
of alternating minimization by using any convex optimization algorithm to solve each
sub-problem can be applied. In the rest of this paper we consider the optimization
problem (6) of using the new model in (5) rather than the original FM optimization
problem.

For the update sequence of the block minimization, it is possible to have a dynamic
scheme, but for the sake of simplicity we focus on the cyclic one. Iteratively the follow-
ing three optimization sub-problems are solved.

min
w

F (w, U, V ), (26)

min
U

F (w, U, V ), (27)

min
V

F (w, U, V ). (28)

The overall procedure to minimize (6) is summarized in Algorithm 4. In the rest of
this section, we discuss how to apply Newton-type methods to solve the sub-problems.
The resulting procedure is called ANT (alternating Newton method). We begin with
showing that each sub-problem is in a form similar to a linear classification problem.

We emphasize that our method is especially designed to alleviate CD’s weakness in-
duced by using the logistic loss, though the discussion is applicable to computationally
cheaper losses such as the squared loss.
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3.1. Relation Between (6)’s Sub-problems and Linear Classification
Although (26)-(28) are different optimization problems, we show that they are all linear
classification problems by the change of variables. Given l training instances, a linear
classification problem can be written as

min
w̃∈Rñ

f̃(w̃), (29)

where

f̃(w̃) =
λ̃

2
‖w̃‖2 +

l∑
i=1

ξ(ỹi; yi),

ỹi = w̃T x̃i + c̃i, (30)

x̃i is the feature vector of the ith instance, and c̃i is a constant.1
From (14), it is straightforward to see that (26) is in a form of (29) when

λ̃ = λ, w̃ = w, x̃i = xi, and c̃i =
1

2
pTi qi.

Note that constants such as ‖U‖2F and ‖V ‖2F are not considered when updating w.
To write (27) in a form of (29), we note that when w and V are fixed, (14) can be
reformulated as an affine function of U ,

ỹi =
1

2
(Uxi)

Tqi + wTxi = vec(U)T (
1

2
(xi ⊗ qi)) + wTxi,

where the vectorization operator outputs a column vector by stacking the input ma-
trix’s columns and “⊗” denotes the Kronecker product. With ‖ vec(U)‖2 = ‖U‖2F , (27) is
in the form of (29) by

λ̃ = λ′, w̃ = vec(U), x̃i =
1

2
(xi ⊗ qi), and c̃i = wTxi. (31)

Similarly, (29) becomes (28) if

λ̃ = λ′′, w̃ = vec(V ), x̃i =
1

2
(xi ⊗ pi), and c̃i = wTxi. (32)

We can conclude that (29) can be used to represent all sub-problems in Algorithm 4, so
the same optimization algorithm can be used to solve them. We give the gradient and
the Hessian-matrix of (29) below for applying optimization algorithms.

∇f̃(w̃) = λ̃w̃ + X̃T b (33)

∇2f̃(w̃) = λ̃I + X̃TDX̃, (34)

where X̃ = [x̃1, . . . , x̃l]
T ∈ Rl×ñ is the data matrix, b = [ξ′(ỹ1; y1), . . . , ξ′(ỹl; yl)]

T ∈ Rl,
and D is a diagonal matrix whose ith diagonal element is ξ′′(ỹi; yi). See (12) and (19)
for ξ′(ỹ; y)’s and ξ′′(ỹ; y)’s definitions. With λ̃ > 0, it is clear that (34) is positive definite,
so the optimal solution of (29) is unique.

1In standard linear classification problems, c̃i = 0. Note that we do not consider a bias term in the output
function.
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3.2. Truncated Newton Methods for Solving (29)
We discuss a truncated Newton method to solve (29). At the kth iteration, Newton
method obtains an update direction by minimizing the second-order Taylor expansion
at f̃(w̃k).

min
s̃∈Rñ

g̃T s̃ +
1

2
s̃T H̃ s̃, (35)

where w̃k is the solution to be improved, H̃ = ∇2f̃(w̃k), and g̃ = ∇f̃(w̃k). Because H̃ is
positive definite, (35) is equivalent to a linear system,

H̃ s̃ = −g̃. (36)
In practice, (36) may not need to be exactly solved, especially in early iterations. There-
fore, truncated Newton methods have been introduced to approximately solve (36)
while maintain the convergence [Nash 2000]. Iterative methods such as conjugate gra-
dient method (CG) are often used for approximately solving (36), so at each iteration
an inner iterative process is involved. Another difficulty to solve (36) is that storing the
Hessian matrix H̃ in O

(
ñ2
)

space is not possible if ñ is large. To overcome the mem-
ory issue, Komarek and Moore [2005] and Keerthi and DeCoste [2005] showed that
for problems like (29), the conjugate gradient method that mainly requires a sequence
of Hessian-vector products can be performed without explicitly forming the Hessian
matrix:

H̃ s̃ = λs̃ + X̃T (D(X̃s̃)), (37)
where s̃ is the iterate in the CG procedure. In [Lin et al. 2008], this idea is further
incorporated into a truncated Newton framework.

Like coordinate descent methods and many other optimization algorithms, after a
direction is found in our Newton method, we must decide the step size taken along
that direction. Here we consider the back-tracking line-search procedure mentioned
in Section 2.2 and discuss a trick sharing the same spirit with (21) for efficient com-
putation. Concerning (29) and the ñ-dimensional search direction, the line search’s
stopping condition specified in (20) becomes

f̃(w̃k + θs̃)− f̃(w̃k) ≤ θνg̃T s̃. (38)

Recalculating the function value at each w̃k + θs̃ is expensive, where the main cost is
on calculating (w̃ + θs̃)T x̃i, ∀i. However, for linear models, the following trick in [Yuan
et al. 2010] can be employed. Assume that

ỹi = (w̃k)T x̃i + c̃i and ∆̃i = s̃T x̃i, i = 1, . . . , l (39)
are available. At an arbitrary θ, we can calculate(

w̃k + θs̃
)T

x̃i + c̃i = ỹi + θ∆̃i (40)

to get the new output value. By further maintaining

(w̃k)T s̃, ‖s̃‖2, and g̃T s̃, (41)
the total cost of checking the condition of (38) is merely O (l) because

f̃(w̃k + θs̃)− f̃(w̃k) =
λ̃

2

(
2θ(w̃k)T s̃ + θ2‖s̃‖2

)
+

l∑
i=1

ξ(ỹi + θ∆i; yi)

−
l∑
i=1

ξ(ỹi; yi).

(42)
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Algorithm 5 A CG-based truncated Newton method with line search for solving (29).

1: Given initial value of w̃0 and 0 < ε̃ < 1.
2: Compute and cache ỹi, ∀i.
3: f0 ← f̃(w̃0)
4: for k ← {0, 1, . . . } do
5: Calculate and store bi (and eyiỹi if (3) is the loss) using (12), ∀i.
6: g̃ ← λ̃w̃ + X̃T b
7: if k = 0 then
8: ‖g̃0‖ ← ‖g̃‖
9: end if

10: if ‖g̃‖ ≤ ε̃‖g̃0‖ then
11: Output w̃k as the solution.
12: break
13: end if
14: Compute Dii via (19), ∀i.
15: Solve (36) approximately via CG to get an update direction s̃.
16: Calculate variables listed in (41) and ∆̃i, ∀i.
17: for θ ← {1, β, β2, . . . } do
18: Compute δ = f(w̃k + θs̃)− fk via (42).
19: if δ ≤ νθg̃T s̃ then
20: w̃k+1 ← w̃k + θs̃
21: fk+1 ← fk + δ
22: Let the last value calculated in (40) be the next ỹi, ∀i
23: break
24: end if
25: end for
26: end for

In the end of the line-search procedure, the model is updated by

w̃k+1 ← w̃k + θs̃,

and the last value obtained in (40) can be can be used as the new ỹi in the next itera-
tion; see (39). When ỹi, ∀i are available, we immediately obtain the elements in b and
D according to (12) and (19), respectively. Notice that if the logistic loss is considered,
a temporal variable eyiỹi which participates in the computation of bi can be cached and
reused in the computation of Dii to save some exponential operations.

Algorithm 5 summarizes the above procedure. The computational complexity of one
iteration in Algorithm 5 can be estimated by

(cost of f̃ and g̃)+(# of CG iterations)×(cost of H̃ s̃)+(# of line search iterations)×O (l) .
(43)

Note that the above line-search procedure is also responsible for calculating the next
function value, so in (43), except the O (l) cost for calculating (40) at each line-search
step, we consider all initialization tasks such as calculating ∆̃i, ∀i in (39) and (41) as
the cost of evaluating the objective function. The complexity of evaluating the objective
function also absorbs the cost of calculating bi and Dii, i = 1, . . . , l. Since there are O (l)
at each of Lines 5, 14, and 18, the number of total loss-related function calls in one
iteration is

O ((# of line search iterations + 2)× l) . (44)
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Although we do not exactly solve (36), Algorithm 5 asymptotically converges to the
optimal point if s̃ satisfies

‖H̃ s̃ + g̃‖ ≤ η‖g̃‖,
where 0 < η < 1 can be either a pre-specified constant or a number controlled by a
dynamic strategy [Eisenstat and Walker 1994; Nash and Sofer 1996].

Based on our discussion, Algorithm 5 is able to solve the three sub-problems because
they are all in the form of (29). However, without taking their problem structures into
account, the implementation may be inefficient. In particular, (27) and (28) signifi-
cantly differ from traditional linear classification problems because they are matrix-
variable problems. In Section 3.3, we will discuss some techniques for an efficient im-
plementation of the truncated Newton method.

3.3. An Efficient Implementation of Algorithm 5 for Solving Sub-problems (27)-(28)
Among the three sub-problems, (26) is very close to standard linear classification prob-
lem, so the implementation is similar to past works. However, (27) and (28) are more
different because their variables are matrices. Here, we only discuss details of solving
(27) because the situation for (28) is similar.

To begin, we check the function evaluation, in which the main task is on calculating
ỹi, ∀i. From (30) and (31),

ỹi = vec(U)T x̃i + c̃i

=
1

2
vec(U)T (xi ⊗ qi) + c̃i

=
1

2
qTi Uxi + c̃i, i = 1, . . . , l,

or equivalently

ỹ =

ỹ1

...
ỹl

 = X̃ vec(U) + c̃

=
1

2

(
QT ·∗

(
XUT

))
1d×1 + c̃,

(45)

where Q = [q1, . . . , ql] ∈ Rd×l, “·∗” stands for the element-wise product of two matrices,
and 1d×1 is the vector of ones. For (45), we can calculate and store XUT as a dense
matrix regardless of whether X is sparse or not; the cost is O (d× (# nnz)). Similar to
(45), ∆̃ used in line search can be computed via

∆̃i =
1

2
qTi Sxi, ∀i or equivalently ∆̃ = X̃s̃ =

1

2

(
QT ·∗

(
XST

))
1d×1, (46)

where s̃ = vec(S) with S ∈ Rd×n is the search direction.
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Then, we investigate how to compute the gradient of (27). By some reformulations,
we have

∇f̃(vec(U)) = λ′ vec(U) + X̃T b

= λ′ vec(U) +
1

2

l∑
i=1

(bixi ⊗ qi)

= λ′ vec(U) +
1

2

l∑
i=1

vec(biqix
T
i )

= λ′ vec(U) +
1

2
vec

(
l∑
i=1

(qibix
T
i )

)

= λ′ vec(U) +
1

2
vec(Qdiag(b)X),

(47)

where diag(b) is a diagonal matrix in which the ith diagonal element is bi. Depending
on the size of Q and X, or whether X is sparse, we can decide to calculate Qdiag(b)
or diag(b)X first. Then, the main operation for gradient evaluation is a matrix-matrix
product that costs O (d× (# nnz)).

Next we discuss Hessian-vector products in CG. From (31), (37), and s̃ = vec(S),

H̃ s̃ = λ′ vec(S) + X̃T (D(X̃ vec(S))) (48)

= λ′ vec(S) + X̃T (Dz)

= λ′ vec(S) +

l∑
i=1

(Dz)ix̃i

= λ′ vec(S) +

l∑
i=1

(Dz)i(xi ⊗ qi)

= λ′ vec(S) +
1

2

l∑
i=1

vec(qi(Dz)ix
T
i ) (49)

= λ′ vec(S) +
1

2
vec(Qdiag(Dz)X), (50)

where

zi = x̃Ti s̃ =
1

2
(xTi ⊗ qTi ) vec(S) =

1

2
qTi Sxi, i = 1, . . . , l (51)

or equivalently

z = X̃ vec(S) =
1

2

(
QT ·∗

(
XST

))
1d×1 (52)

by following the same calculation in (46). Note that Dz is the product between a di-
agonal matrix D and a vector z. We investigate the complexity of the Hessian-vector
product. The first term in (48) is a standard vector scaling that costs O (nd). For the
second term in (48), we separately consider two major steps:

(1) The computation of z = X̃ vec(S).
(2) The product between X̃T and a dense vector Dz.

In (52), we have seen that the first step can be done by the same way to compute (46).
For the second step, we can refer to the calculation of X̃T b in (47). Therefore, following
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earlier discussion, the cost of one Hessian-vector product is

O (d× (# nnz)) . (53)

A disadvantage of the above setting is that the data matrix X is accessed twice in the
two different steps. From (49) and (51), the Hessian-vector product can be represented
as

λ′ vec(S) +
1

4

l∑
i=1

vec
(
qiDii(q

T
i Sxi)x

T
i

)
. (54)

From this instance-wise representation, the second term can be computed by a single
loop over x1, . . . ,xl. While xi is still used twice: Sxi and qizix

T
i , between them no

other xj , j 6= i are accessed and therefore xi tends to remain at a higher layer of the
memory hierarchy. Such a setting of getting better data locality has been considered
for training LR [Zhuang et al. 2015]. However, because of the instance-wise setting, we
can not benefit from optimized dense matrix operations (e.g., optimized BLAS) when
computing, for example, SXT in (52). Therefore, the decision of using (54) or not may
hinge on whether X is a sparse matrix.

In line search, besides the calculation of ∆̃ in (46), from (41) we also need

〈U, S〉, ‖S‖2F , and 〈G,S〉, (55)

where G is the matrix form of (27)’s gradient and 〈·, ·〉 is the inner product of two
matrices.

Algorithm 6 summarizes the details in our Newton procedure for solving (27). Matrix
representations are used, so we never have to reshape S to vec(S) or U to vec(U). The
latest U in ANT is used as the initial point, so we can continue to improve upon the
current solution. In Algorithm 6, the computational complexity per Newton iteration
is

(# of CG iterations + 2)×O (d× (# nnz)) + (# of line search iterations)×O (l) , (56)

in which the term 2 × O (d× (# nnz)) is from the costs of (46) and (47) for function
and gradient evaluation. Note that the O (nd) cost for the quantities in (55) and other
places is not listed here because it is no more than O (d× (# nnz)). Let

n̄ =
# nnz
l

denote the average non-zero features per instance. By (44) and (56), there are around
(# of CG iteration + 2)×O (dn̄) + (# of line search iterations)

(# of line search iterations + 2)

standard read, write, or arithmetic operations per loss-related function call. Because
the number of line-search iterations is usually small, the ratio of loss-related opera-
tions to other standard operations in ANT is O (1). Thus the major drawback in CD is
alleviated considerably.

3.4. Convergence Guarantee and Stopping Conditions
Algorithm 4 is under the framework of block coordinate descent method (BCD), which
sequentially update one block of variables while keeping all remaining blocks un-
changed. BCD is a generalization of CD, in which each block contains only a single vari-
able. See [Bertsekas 1999] for a comprehensive introduction about BCD. It is known
that if each sub-problem of a block has a unique optimal solution and is exactly solved,
then the procedure converges to a stationary point [Bertsekas 1999, Proposition 2.7.1].
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Algorithm 6 An implementation of Algorithm 5 for solving (27) by operations on ma-
trix veriables without vectorizing them.

1: Given 0 < ε̃ < 1 and the current (w, U, V ).
2: Q← V XT

3: Compute and cache ỹ = 1
2

(
QT ·∗

(
XUT

))
1d×1 +Xw.

4: f ← λ′

2 ‖U‖
2
F +

∑l
i=1 ξ(ỹi; yi).

5: for k ← {0, 1, . . . } do
6: Calculate and store ỹi (and eyiỹi if (3) is used) and then obtain bi by (12), ∀i.
7: G← λ′U + 1

2Qdiag(b)X
8: if k = 0 then
9: ‖G0‖F ← ‖G‖F

10: end if
11: if ‖G‖F ≤ ε̃‖G0‖F then
12: Output U as the solution of (27).
13: break
14: end if
15: Compute Dii via (19), ∀i.
16: Solve (36) approximately via CG to get an update direction S.
17: Parpare variables listed in (55) and ∆̃ = 1

2

(
QT ·∗

(
XST

))
1d×1

18: for θ ← {1, β, β2, . . . } do
19: δ ← λ′

2

(
2θ 〈U, S〉+ θ2‖S‖2F

)
+
∑l
i=1 ξ(ỹi + θ∆̃i; yi)−

∑l
i=1 ξ(ỹi; yi)

20: if δ ≤ θν 〈G,S〉 then
21: U ← U + θS
22: f ← f + δ
23: ỹ ← ỹ + θ∆̃
24: break
25: end if
26: end for
27: end for

Each of our sub-problems (26)-(28) possesses a unique optimal solution because of the
strongly convex regularization term. Therefore, if we exactly solve every sub-problem,
then our method is guaranteed to converge to a stationary point of (6).

In practice, any optimization method needs a stopping condition. Here, we consider
a relative setting

‖∇F (w, U, V )‖ ≤ ε‖∇F (winit, Uinit, Vinit)‖, (57)
where 0 < ε < 1 is a small stopping tolerance and (winit, Uinit, Vinit) indicates the initial
point of the model. The use of this type of criteria includes, for example, [Lin 2007] for
non-negative matrix factorization.

Each sub-problem in the alternating minimization procedure requires a stopping
condition as well. A careful design is needed as otherwise the global stopping condition
in (57) may never be reached. In Section 3.2, we consider a relative stopping condition,

‖∇f̃ (w̃) ‖ ≤ ε̃‖∇f̃
(
w̃0
)
‖, (58)

where w̃0 is the initial point in solving the sub-problem. Take the sub-problem of U
as an example. The gradient norm of (6) with respect to U is identical to the gradient
norm of U ’s sub-problem:

‖∇Uf(w, U, V )‖F = ‖∇f̃(vec(U))‖.
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If ‖∇Uf(w, U, V )‖F > 0, Algorithm 6 conducts at least one Newton step and the func-
tion value of F (w, U, V ) must be decreased. The reason is that (58) is violated if we
do not change U . In other words, any block with a non-vanished gradient would be
adjusted. Therefore, unless

‖∇wf(w, U, V )‖ = ‖∇Uf(w, U, V )‖F = ‖∇V f(w, U, V )‖F = 0,

one of the three blocks must be updated. That is, if the condition in (57) is not satisfied
yet, our alternating minimization procedure must continue to update (w, U, V ) rather
than stay at the same point.

4. TECHNIQUES TO ACCELERATE TRUNCATED NEWTON METHODS FOR SOLVING THE
SUB-PROBLEMS

From (56), the computational bottleneck in our truncated Newton method is the CG
procedure, so we consider two popular techniques, preconditioning and sub-sampled
Hessian, for its acceleration.

4.1. Preconditioned Conjugate Gradient Methods
The first technique aims to reduce the number of CG iterations for solving (36) by
considering an equivalent but better conditioned linear system. Precisely, we consider
a preconditioner M̃ to approximately factorize H̃ such that H̃ ≈ M̃M̃T , and then use
CG to solve

Ĥ ŝ = ĝ, (59)

where Ĥ = M̃−1H̃M̃−T and ĝ = M̃−1g̃. Once ŝ is found, the solution of (36) can be
recovered by s̃ = M̃−T ŝ. If H̃ is perfectly factorized (i.e., H̃ = M̃M̃T ), (59) can be
solved in no time because Ĥ is an identity matrix.

Many preconditioners have been proposed, e.g., diagonal preconditioner, incomplete
Cholesky factorization, and polynomial preconditioners [Golub and Van Loan 2012].
However, finding a suitable preconditioner is not easy because first each CG iteration
becomes more expensive and second the decrease of the number of CG iterations is
not theoretically guaranteed. For a CG-based truncated Newton method for LR in [Lin
et al. 2008], the use of preconditioned conjugate gradient methods (PCG) has been
studied. They point out that the implicit use of H̃ further increases the difficulty to im-
plement a preconditioner and finally choose the simple diagonal preconditioner for the
following two reasons. First, the diagonal elements of H̃ can be constructed cheaply.
Second, the extra computation introduced by the diagonal preconditioner in each CG
iteration is relatively small. Experiments in [Lin et al. 2008] show that for LR, using
diagonal preconditioners may not be always effective in decreasing the total number of
CG iterations and the running time. Nevertheless, we think it is worth trying precon-
ditioned CG here because of some differences between their settings and ours. In the
alternating minimization procedure, we solve a sequence of optimization sub-problems
of (6) rather than a single linear classification problem in [Lin et al. 2008]. In the early
stage of the ANT, we only loosely solve the sub-problems and the effect of PCG may
vary depending on the strictness of the stopping condition.

To see the details of using PCG in ANT, we consider the following diagonal precon-
ditioner for solving (36) as an example.

M̃ = M̃T = diag(h̃), (60)
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where

h̃ =

√√√√λ̃1ñ×1 +

l∑
i=1

Dii (x̃i ·∗ x̃i).

Note that “
√
·” element-wisely performs the square-root operation if the input argu-

ment is a vector or a matrix. With M̃ = M̃T , the Hessian-vector product in CG to solve
the diagonally-preconditiond linear system is

Ĥ ŝ = M̃−1(H̃(M̃−T ŝ)) = M̃−1(H̃(M̃−1ŝ)). (61)

To illustrate the computational details of PCG, we consider (27)’s Newton linear system
as an example. First, we discuss the construction of the preconditioner. Consider the
sub-problem (27) as an example. From

x̃i =
1

2
(xi ⊗ qi) =

1

2
vec(qix

T
i ),

we have
l∑
i=1

Dii (x̃i ·∗ x̃i)

=
1

4

l∑
i=1

Dii vec
(

(qi ·∗ qi) (xi ·∗xi)
T
)

=
1

4

l∑
i=1

vec
(

(qi ·∗ qi)Dii (xi ·∗xi)
T
)

=
1

4
vec ((Q ·∗Q)D (X ·∗X)) .

(62)

Thus, the preconditioner of U ’s sub-problem can be obtained via

M̃ = M̃T = diag

(√
λ′1nd×1 +

1

4
vec ((Q ·∗Q)D (X ·∗X))

)
or without vectorization

M =

√√√√√√λ′

1 . . . 1
...

. . .
...

1 . . . 1

+
1

4
(Q ·∗Q)D (X ·∗X) ∈ Rd×n. (63)

We point out that the cost to obtain (63) is O (d× (# nnz)).
Next, we look into the computation of (61). Let Ŝ ∈ Rd×n be the matrix form of

the vector ŝ such that ŝ = vec(Ŝ). It is possible to present (61) in terms of Ŝ to avoid
vectorizations. First, the matrix form of M̃−1ŝ is Ŝ ·/M , where “·/” denotes the element-
wise division. By substituting S = Ŝ ·/M into (50) and then element-wisely dividing the
resulting matrix by M again, (61) can be written as(

λ′
(
Ŝ ·/M

)
+

1

2
Qdiag (Dẑ)X

)
·/M, (64)
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Algorithm 7 A preconditioned conjugate gradient method for solving (36) by opera-
tions on matrix variables. Linear systems in the sub-problem of U are considered.

1: Given 0 < η < 1 and G, the gradient matrix of the sub-problem (i.e., the matrix
form of (47)). Let Ŝ = 0d×n.

2: Compute M via (63).
3: Calculate R = −G ·/M , D̂ = R, and γ0 = γ = ‖R‖2F .
4: while √γ > η

√
γ0 do

5: D̂h ← D̂ ·/M

6: ẑ ←
(
QT ·∗

(
XD̂T

h

))
1d×1

7: D̂h ←
(
λ′D̂h +Qdiag (Dẑ)X

)
·/M

8: α← γ/
〈
D̂, D̂h

〉
9: Ŝ ← Ŝ + αD̂

10: R← R− αD̂h

11: γnew ← ‖R‖2F
12: β ← γnew/γ

13: D̂ ← R+ βD̂
14: γ ← γnew

15: end while
16: Output S = Ŝ ·/M as the solution.

where

ẑ =
1

2

(
QT ·∗

(
X
(
Ŝ ·/M

)T))
1d×1.

For the computational complexity, besides O (d× (# nnz)) from what we discussed in
(50), the newly introduced divisions associated with M require O (nd) operations. Un-
less the data matrix is very sparse, from n ≤ # nnz, each PCG iteration does not cost
significantly more than that without preconditioning. Note that we only compute M
once in the beginning of PCG and then reuse it in each Hessian-vector product. See
Algorithm 7 for a PCG procedure of using matrix variables and operations for solving
the Newton system of U ’s sub-problem.

4.2. Sub-sampled Hessian Matrix
Some recent works have demonstrated that we can use sub-sampled Hessian to ac-
celerate the Hessian-vector product in truncated Newton methods for empirical risk
minimization [Byrd et al. 2011; Byrd et al. 2012; Wang et al. 2015]. From a statistical
perspective, the training instances are drawn from an underlying distribution Pr(y, x̃).
Then, (34) can be interpreted as an empirical estimation of

λ̃I + lE
[
ξ′′(ỹ; y)x̃x̃T

]
.

If L is a set of |L| instances randomly drawn from {1, . . . , l}, then the sub-sampled
Hessian matrix,

H̃sub = λ̃I +
l

|L|
∑
i∈L

Diix̃ix̃
T
i ,

= λ̃I +
l

|L|
X̃T
L,:DL,LX̃L,:,

(65)
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is an unbiased estimation of the original Hessian matrix. Note that the rows of X̃L,: ∈
R|L|×ñ are the sampled feature vectors and DL,L ∈ R|L|×|L| is the corresponding sub-
matrix of D. After replacing H̃ with H̃sub, the linear system solved by CG becomes

H̃subs̃ = −g̃. (66)
Consider the sub-problem (27) as an example. From (50) and (54), if a subset of the
rows in the data matrix X can be easily extracted, then the Hessian-vector product (in
matrix form) for solving (66) can be conducted by

λ′S +
l

2|L|
Q:,L diag(DL,LzL)XL,:,

where Q:,L ∈ Rd×|L| is a sub-matrix of Q containing qi, i ∈ L and

zL =
1

2

(
QT:,L ·∗

(
XL,:S

T
))

1d×1. (67)

Therefore, a row-wise format should be used in storing X. In comparison with using
all training instances, the cost of each CG iteration can be reduced to

O
(
|L|d
l
× (# nnz)

)
,

when, for example, the sub-problem of U is considered. Although a small L can largely
speed up the Hessian-vector product, the information loss caused by dropping in-
stances can have a negative impact on the update direction found by solving (66). In
the extreme case that L is an empty set, our truncated Newton method is reduced to
a gradient descent method, which needs much more iterations. It may not be easy to
decide the size of the subset L, but in Section 6.4 we will examine the running time
under different choices.

5. PARALLELIZATION OF TRUNCATED NEWTON METHODS FOR SOLVING THE
SUB-PROBLEMS

When solving each sub-problem, we should parallelize the main computational bottle-
neck: the calculations of the objective function, the gradient, and the Hessian-vector
product. Because we have shown in Section 3.1 that each sub-problem is equivalent
to a linear classification problem, our approach follows past developments of parallel
Newton methods for regularized empirical risk minimization (e.g., [Zhuang et al. 2015]
for distributed environments and [Lee et al. 2015] for multi-core environments). Here
we focus on an implementation for multi-core machines by assuming that X can be
instance-wisely accessed by multiple threads. To illustrate the details, we consider the
sub-problem of U as an example. For easy description, we assume that all x1, . . . ,xl are
used without the sub-sampling technique in Section 4.2. If there are s threads avail-
able, we divide {1, . . . , l} into s disjoint subsets, L1, . . . , Ls, for our task distribution.
Recall the sub-matrix notations of X, Q, D, and z in Section 4.2. From (45) and (47),
the parallelized forms of the output values and the gradient respectively are

ỹ =


1
2

(
QT:,L1 ·∗

(
XL1,:U

T
))

1d×1 +XL1,:w
...

1
2

(
QT:,Ls ·∗

(
XLs,:U

T
))

1d×1 +XLs,:w

 (68)

∇f̃(U) = λ′U +
1

2

s∑
r=1

(Q:,Lr
diag(bLr

)XLr,:), (69)

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 0.



0:22 W.-S. Chin, B.-W. Yuan, M.-Y. Yang, and C.-J. Lin

where tasks indexed by Lr is assigned to the rth thread. Form (50), parallel Hessian-
vector product can be done by considering

λ′S +
1

4

s∑
r=1

(Q:,Lr diag(DLrzLr )XLr,:) . (70)

For PCG, the diagonal preconditioner can be obtained via

M =

√√√√√√λ′

1 . . . 1
...

. . .
...

1 . . . 1

+
1

4

s∑
r=1

(Q:,Lr ·∗Q:,Lr
)DLr

(XLr,: ·∗XLr,:) ∈ Rd×n. (71)

Besides (68), for completing any of (69), (70), and (71), we must collect the results
from the used threads by a series of d-by-n matrix additions (called a dn-dimensional
reduction) after the parallelized sections are finished. For example, if two threads are
used together to compute (70), we can compute

B1 = Q:,L1
diag(DL1

zL1
)XL1,: and B2 = Q:,L2

diag(DL2
zL2

)XL2,:,

in parallel, and sum up the two matrices to obtain the second term of (70). Notice that
from (51) and (70), the rth worker only maintains Q:,Lr

and z:,Lr
instead of the whole

Q and z.
The parallelization of solving V ’s sub-problem is very similar.

6. EXPERIMENTS
In some previous studies on linear regression and classification, coordinate descent
methods beat Newton-type methods when the loss-related evaluations are not expen-
sive [Chang et al. 2008; Ho and Lin 2012]. Because our sub-problems are similar to
logistic regression problems, ANT may not be the best strategy if losses like (4) are
used. Thus, we concentrate on the logistic loss in the subsequent discussion and rec-
ommend using CD (or SG) otherwise.

To examine the effectiveness of ANT, we conduct a series of experiments on some
real-world data sets. Section 6.1 gives the data statistics and discusses our experi-
mental settings including the parameter selection. The environment for our experi-
ments is described in Section 6.2. Sections 6.3-6.4 demonstrate the usefulness of the
two techniques discussed in Section 4. The running time comparison on ANT against
ADAGRAD and CD is presented in Section 6.5.

6.1. Data Sets and Parameters
We select several real-world data sets listed in Table II. All data sets can be down-
loaded at LIBSVM data sets page.2 For webspam we consider the uni-gram version. For
kddb, we choose the raw version of “bridge to algebra” track in KDD-Cup 2010 fol-
lowing [Juan et al. 2016]. To select proper parameters and calculate a test score, we
need training, validation, and test sets for each problem. If a test set is available from
the source, we directly use it.3 Otherwise, we randomly select 20% instances from the
whole data set for testing. Then, the training and validation sets are created by a 80-20
split of instances not used for testing. Note that we swap rcv1’s training and test sets
on LIBSVM page to make the training set bigger.

2LIBSVM data sets are available at www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets.
3The labels in the test sets of avazu-app, avazu-site, and criteo are not meaningful, so they are treated as
if they do not have test sets.
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Table II: Data statistics and parameters used in experiments.

Data set l n nnz λ λ′ λ′′

a9a 26,049 122 451,592 64 1 1
webspam 280,000 246 23,817,071 0.25 0.0625 0.0625
kddb 9,464,836 651,166 173,376,873 1 16 16
news20 16,009 1,355,191 7,303,887 0.0625 0.0625 0.0625
rcv1 677,399 47,236 39,627,321 0.0625 1 1
url 1,916,904 3,231,961 2,216,68,617 16 1 1
avazu-app 14,596,137 1,000,000 189,632,716 4 4 4
avazu-site 25,832,830 1,000,000 353,517,436 1 4 4
criteo 45,840,617 1,000,000 1,552,191,209 0.25 16 16

In problem (6), four parameters must be tuned. To avoid the expensive cost of search-
ing the best setting, we fix d = 20 and λ′ = λ′′ throughout our experiments. For the
regularization coefficients of each data set, we consider {0.0625, 0.25, 1, 4, 16, 64} as the
search range of each regularization parameter and check all the combinations. Values
leading to the lowest logistic loss on the validation set are used. Table II gives the pa-
rameters identified by the process. Furthermore, we set winit = 0 and randomly choose
every element of Uinit and Vinit uniformly from [−1/

√
d, 1/
√
d]. For any comparison be-

tween different settings or algorithms, we ensure that they start with the same initial
point. For the stopping condition of PCG, we set η = 0.3 so Algorithm 7 terminates once

‖Ĥ ŝ + ĝ‖ ≤ η‖ĝ‖.

Moreover, the two parameters of line search are β = 0.5 and ν = 0.01.

6.2. Environment and Implementation
The experiments in Sections 6.3-6.4 are conducted on a Linux machine with one Intel
Core i7-6700 CPU 3.40GHz and 32 GB memory. For the experiments on multi-core
implementations in Section 6.5, we migrate to another Linux machine with two Intel
Xeon E5-2620 2.0GHz processors (12 physical cores in total) and 128 GB memory.

All the algorithms are implemented in C++ for a fair comparison. For the types of
the variables, we use double-precision floating point for all real numbers and unsigned
long integer for all indexes. We use parallel-for in OpenMP to implement all parallel
computations discussed in Section 5. If the result generated by the threads is a scalar,
the built-in scalar reduction can be used to automatically aggregate the results from
different threads. For vector results, we manually merge them by sequential vector
additions. This strategy has been confirmed to be effective in the parallelization of a
truncated Newton method in [Lee et al. 2015]. For the parallelization of ADAGRAD,
our implementation follows [Niu et al. 2011] to implement the for-loop in Algorithm
1 via parallel-for without the synchronization between them. The parallelization of
CD is more difficult and beyond the scope of this work. Thus, we only implement a
single-thread version.

6.3. Stopping Tolerance of Sub-problems and the Effect of Preconditioning
To see the effect of different stopping tolerances in Algorithm 5, we consider ε̃ = 0.01,
0.1, and 0.8, and examine the convergence speed of ANT. We also provide the results
of ANT with PCG (denoted as ANT-P) to check the effectiveness of preconditioning.
We present in Figure 1 the relation of running time to log-scaled distance between the
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current solution and a local optimal function value.
F (w, U, V )− F ∗

F ∗
, (72)

where F ∗ is the lowest function value reached among all settings.
We begin with analyzing the results without preconditioning. From Figure 1, a

larger inner stopping tolerance ε̃ leads to shorter overall training time. This result
indicates that in the early stage of the alternating minimization procedure there is no
need to waste time for accurately solving the sub-problems. For example, if neither V
nor w is close to the optimum, in the sub-problem of U , getting an accurate solution
is not very useful. Some earlier alternating minimization procedures have had similar
observations and made the inner stopping condition from a loose one in the beginning
to a tight one in the end; see, for example, [Lin 2007, Section 6]. Our relative stopping
condition in (58) automatically achieves that; although ε̃ is fixed in the entire proce-
dure, (58) is a strict condition in the final stage of the optimization process because of
a small ‖∇f̃ (w̃) ‖.

By comparing the ANT and ANT-P at different stopping conditions in Figure 1, we
see that preconditioning is almost useless when the tolerance is tight (e.g., ε̃ = 0.01),
but ANT-P converges faster than or at least comparable to ANT in the cases with
a larger tolerance. To get more details, we investigate the convergence of the New-
ton method with/without preconditioning in solving sub-problems. We run ANT with
ε̃ = 0.8 and extract the three convex sub-problems (26)-(28) at a specific iteration. Then
for each sub-problem we run Newton methods with/without preconditioning (denoted
as Newton-PCG and Newton-CG, respectively), and present in Figure 2 the relation
between the function-value reduction (of the sub-problem) and the number of CG iter-
ations used. We have the following observations. First, in the beginning of solving each
sub-problem, Newton-PCG performs as good as or even better than Newton-CG. Sec-
ond, as the number of CG iterations increases, the performance gap between Newton-
CG and Newton-PCG gradually shrinks and preconditioning may even be harmful.
Consequently, because we always terminate our truncated Newton method by a loose
stopping of using ε̃ = 0.8, preconditioning is helpful or at least not harmful in ANT.
A note that conducts more detailed analysis on the results in [Lin et al. 2008] has a
similar conclusion.4

6.4. Effects of the Use of Sub-sampled Hessian Matrix
In Section 4, we have learned that sub-sampled Hessian can save some operations in
Hessian-vector products. However, the overall convergence may not be faster because
of less accurate directions. To have a good understanding, we compare the results us-
ing the full Hessian matrix, a 10% sub-sampled Hessian matrix, and a 1% sub-sampled
one by using the best setting in Section 6.3 (i.e., ANT-P with ε̃ = 0.8). In Figure 3, for
each sampling ratio, we show the change of objective values versus time. Comparing
to using the full set, we observe that using 10% instances generally leads to similar or
shorter training time. The difference is significant for data sets a9a, kddb, avazu-app,
avazu-site, and criteo. These sets satisfy l � n, so some instances may carry re-
dundant information and can be dropped. However, when only 1% instances are used,
ANT often spends more time to achieve a specified objective value than that of using
the full set.

We conclude that by selecting a suitable amount of instances, the approach of using
sub-sampled Hessian is useful for ANT. However, it is important to avoid choosing a
too small subset.

4www.csie.ntu.edu.tw/∼cjlin/papers/logistic/pcgnote.pdf
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Fig. 1: Effects of the stopping condition and preconditioning for solving the sub-
problems. The number after ANT(-P) indicates the used ε̃. Time is in seconds. The
y-axis is the log-scaled distance to a local optimal objective value; see (72). We termi-
nate the training process if it does not produce any point within eight hours, so for
larger data sets like criteo, some settings may have no line.

6.5. A Comparison on ANT and Other State of the Art Methods
We compare the running time of ANT-P against ADAGRAD and CD described in Sec-
tion 2 under both single-thread and multi-thread settings. The parameters of ANT-P is
determined by our discussion in Sections 6.3 and 6.4; we choose ε̃ = 0.8 as the stopping
condition of solving sub-problems and use 10% of data for constructing the sub-Hessian
matrix. For the parameter η0 in the stochastic gradient method detailed in Algorithm
1, we use 0.1. For CD’s number of inner iterations, we set k̄inner = 1. Following the
format of Figure 1, we draw these methods’ running performance at different num-
bers of threads in Figure 4. To provide a clearer view of Figure 4, we also explicitly
list those solvers’ running time required to reach a fixed objective value (largest of
all approaches’ final values) in Table IV. Note that the parallelization of CD is not
easy, so we only implement a single-thread version. From Figure 4, we see that CD
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(c) Solving (28) of kddb@5.
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Fig. 2: Analysis of Newton methods with/without preconditioning in solving the three
sub-problems in an ANT iteration indicated by the integer after @. The y-axis is the
log-scaled distance to the global optimal function value of the sub-problem. The hori-
zontal line indicates the first time that (58) with ε = 0.8 is satisfied during the opti-
mization process. That is, in ANT (or ANT-P) the sub-problem is approximately solved
until reaching the horizontal line.

Table III: Portion of time spent on exp / log operations.

Solver
Data set

a9a news20

ADAGRAD 0.64% 0.06%
CD 81.50% 65.05%
ANT 3.52% 0.07%

is largely outperformed by ADAGRAD and ANT-P. From Sections 2.1, 2.2, and 3.3,
a possible reason is that CD costs much more expensive loss-related operations (i.e.,
exp / log evaluations) than its counterparts. To support our argument, Table III gives
the time portion of executing exp/log functions in the first ANT-P iteration, the first
epoch of ADAGRAD, and the first outer iteration of CD on a9a and news20. Results on
ANT-P and CD are consistent with those in an earlier study [Yuan et al. 2010], an ob-
servation explaining the slowness of CD. When comparing ANT-P and ADAGRAD, the
time spent on exp and log can be ignored because most of the training time (typically
more than 96%) are spent on standard arithmetic operations. Notice that in contrast
to ANT and CD, ADAGRAD is not a descent method, so it may increase the objec-
tive value during the training procedure; for example, see the data set url’s curves in
Figure 4.

Furthermore, we observe in Figure 4 that the parallelization of ANT-P and ADA-
GRAD is effective. Their training time decreases as the number of threads increases.
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Fig. 3: Effects of ANT-P with different rates of using sub-sampled Hessian. Time is
in seconds. The y-axis is the log-scaled distance to a local optimal objective value; see
(72).

On the other hand, in either single- and multi-thread settings, ANT-P always produces
significantly smaller objective values in comparison with ADAGRAD and CD. Two pos-
sible reasons are given. One is that ADAGRAD may eventually reach the same values
but its convergence is very slow. The other one is that the FM problem is not convex,
so ADAGRAD and ANT may reach different solutions.

6.6. Comparison on Test Performance with Other Formulations
From a practical perspective, it is important to examine if the modified FM problem
(6) can perform as well as the original FM problem (2). To this end, we consider two
evaluation criteria, the accuracy and the log loss defined as

Log loss =
1

l

l∑
i=1

log(1 + exp(−yiŷi))
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Fig. 4: A comparison between ANT-P, CD, and ADAGRAD. The number in the legend
indicates the number of threads. Time is in seconds. The y-axis is the log-scaled dis-
tance to a local optimal objective value; see (72). We terminate the training process if
it does not produce any point within three hundred thousand seconds. Thus for some
data sets there is no curve for CD. For each data set, the horizontal line indicates the
lowest object value that can be reached by all our settings.

For each data set, we compare their test accuracies and log losses in Table V. To see
how FM improves over a linear model, we include results of LR. For a fair comparison,
we use d = 40 for (2) and d = 20 for (6) so that they have the same number of model
parameters. For the solvers, we consider the truncated Newton method in Algorithm
5 for LR, the stochastic gradient method in Section 2.1 for (2) and (6), and CD and
ANT-P for (6).

As shown in Table V, the performance gap between problems (2) and (6) is not signif-
icant, so the modified FM formulation in (6) seems to give similar learning capability.
Regarding the comparison between FM and LR, FM gives a much higher test score
than LR on webspam. This data set has less features than its instances, so feature con-
junction seems to be useful. For other data sets, the performance gap is smaller. For
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# of threads 1 2 4 8 1 2 4 8 1

Data set
Solver ANT-P ADAGRAD CD

a9a 3.3 1.9 1.2 0.7 73.7 59.9 39.9 24.9 87.4
webspam 113.1 40.4 19.3 15.7 3581.6 3168.8 1836.3 1270.8 NA
news20 438.6 406.7 328.3 357.0 741.0 403.6 214.2 115.4 1345.1
rcv1 640.9 350.4 158.1 110.4 6821.1 3974.8 2073.0 1127.7 6299.7
url 28500.4 12533.6 8971.3 7610.1 13861.0 8718.2 4793.3 2277.8 NA
kddb 6844.9 3757.6 2216.5 1887.8 12801.4 7915.2 4700.8 3336.6 NA
avazu-app 905.5 509.7 277.2 183.5 12582.4 8236.6 4655.0 2851.0 NA
avazu-site 2171.4 1197.3 631.6 384.9 22892.4 15614.3 9006.8 5557.5 NA
criteo 11400.8 6022.1 2830.3 1502.0 100963.0 60580.1 29531.9 16594.7 NA

Table IV: A comparison on training time in seconds between ANT-P, CD and ADA-
GRAD. For each data set and each approach, we list the time needed to reach the
horizontal line in Figure 4. The symbol “NA” indicates that the CD does not finish an
outer iteration within three hundred thousand seconds.

a9a, it is known that even highly non-linear Gaussian-kernel SVM gives only similar
accuracy to a linear classifier [Huang and Lin 2016]. For the seven sparse data sets,
three of them are document data, and generally linear classifiers are powerful enough
[Yuan et al. 2012b]. However, overall we still see that FM slightly boosts the test accu-
racy and the log loss.

7. CONCLUSIONS
In this paper, we propose an effective alternating Newton method for solving a multi-
block convex reformulation of factorization machines. A sequence of convex sub-
problems are solved, where we show that each sub-problem can be written in a form
equivalent to regularized logistic/linear regression depending on the chosen loss func-
tion. Because variables in a sub-problem may be a matrix rather than a vector, we
carefully design a truncated Newton method that employs fast matrix operations. Fur-
ther, some advanced techniques such as preconditioned conjugate gradient methods
and sub-sampled Hessian technique are incorporated into our framework. Through
experiments in this paper, we establish the superiority over existing stochastic gradi-
ent algorithms and coordinate descent methods when the logistic loss is considered.
We also show the effectiveness of the parallelization of our algorithm.

In summary, we have successfully developed a useful algorithm and implementation
for training factorization machines. A MATLAB package of the proposed method and
programs used for experiments are available at

http://www.csie.ntu.edu.tw/∼cjlin/papers/fm.

With the built-in matrix operations, our MATLAB package is as efficient as our C++
implementation but the MATLAB training and prediction modules only need around
150 lines of code. It means that our algorithm can be easily ported into any existing
service as long as a good matrix library is available.
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