
Field-aware Factorization Machines for CTR Prediction

Yuchin Juan
Criteo Research∗

Palo Alto, CA
yc.juan@criteo.com

Yong Zhuang
Dept. of ECE∗

Carnegie Mellon Univ., USA
yong.zhuang22@gmail.com

Wei-Sheng Chin
Dept. of Computer Science

National Taiwan Univ., Taiwan
d01944006@csie.ntu.edu.tw

Chih-Jen Lin
Dept. of Computer Science

National Taiwan Univ., Taiwan
cjlin@csie.ntu.edu.tw

ABSTRACT
Click-through rate (CTR) prediction plays an important role
in computational advertising. Models based on degree-2
polynomial mappings and factorization machines (FMs) are
widely used for this task. Recently, a variant of FMs, field-
aware factorization machines (FFMs), outperforms existing
models in some world-wide CTR-prediction competitions.
Based on our experiences in winning two of them, in this
paper we establish FFMs as an effective method for clas-
sifying large sparse data including those from CTR predic-
tion. First, we propose efficient implementations for training
FFMs. Then we comprehensively analyze FFMs and com-
pare this approach with competing models. Experiments
show that FFMs are very useful for certain classification
problems. Finally, we have released a package of FFMs for
public use.

Keywords
Machine learning; Click-through rate prediction; Computa-
tional advertising; Factorization machines

1. INTRODUCTION
Click-through rate (CTR) prediction plays an important

role in advertising industry [1, 2, 3]. Logistic regression is
probably the most widely used model for this task [3]. Given
a data set with m instances (yi,xi), i = 1, . . . ,m, where yi
is the label and xi is an n-dimensional feature vector, the
model w is obtained by solving the following optimization
problem.

min
w

λ

2
‖w‖22 +

m∑
i=1

log(1 + exp(−yiφLM(w,xi))). (1)

∗Part of the work was done when these authors were in
National Taiwan University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys ’16, September 15-19, 2016, Boston , MA, USA
c© 2016 ACM. ISBN 978-1-4503-4035-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2959100.2959134

Publisher Advertiser
+80 −20 ESPN Nike
+10 −90 ESPN Gucci
+0 −1 ESPN Adidas

+15 −85 Vogue Nike
+90 −10 Vogue Gucci
+10 −90 Vogue Adidas
+85 −15 NBC Nike
+0 −0 NBC Gucci

+90 −10 NBC Adidas

Table 1: An artificial CTR data set, where + (−) represents
the number of clicked (unclicked) impressions.

In problem (1), λ is the regularization parameter, and in the
loss function we consider the linear model:

φLM(w,x) = w · x.

Learning the effect of feature conjunctions seems to be
crucial for CTR prediction; see, for example, [1]. Here, we
consider an artificial data set in Table 1 to have a better
understanding of feature conjunctions. An ad from Gucci
has a particularly high CTR on Vogue. This information
is however difficult for linear models to learn because they
learn the two weights Gucci and Vogue separately. To ad-
dress this problem, two models have been used to learn the
effect of feature conjunction. The first model, degree-2 poly-
nomial mappings (Poly2) [4, 5], learns a dedicate weight for
each feature conjunction. The second model, factorization
machines (FMs) [6], learns the effect of feature conjunction
by factorizing it into a product of two latent vectors. We
will discuss details about Poly2 and FMs in Section 2.

A variant of FM called pairwise interaction tensor factor-
ization (PITF) [7] was proposed for personalized tag recom-
mendation. In KDD Cup 2012, a generalization of PITF
called “factor model” was proposed by “Team Opera Solu-
tions” [8]. Because this term is too general and may easily
be confused with factorization machines, we refer to it as
“field-aware factorization machines” (FFMs) in this paper.
The difference between PITF and FFM is that PITF con-
siders three special fields including “user,”“item,” and “tag,”
while FFM is more general. Because [8] is about the over-
all solution for the competition, its discussion of FFM is
limited. We can conclude the following results in [8]:

http://dx.doi.org/10.1145/2959100.2959134

1. They use stochastic gradient method (SG) to solve the
optimization problem. To avoid over-fitting, they only
train with one epoch.

2. FFM performs the best among six models they tried.

In this paper, we aim to concretely establish FFM as an
effective approach for CTR prediction. Our major results
are as follows.

• Though FFM is shown to be effective in [8], this work
may be the only published study of applying FFMs on
CTR prediction problems. To further demonstrate the
effectiveness of FFMs on CTR prediction, we present the
use of FFM as our major model to win two world-wide
CTR competitions hosted by Criteo and Avazu.
• We compare FFMs with two related models, Poly2 and

FMs. We first discuss conceptually why FFMs might be
better than them, and conduct experiments to see the
difference in terms of accuracy and training time.
• We present techniques for training FFMs. They include

an effective parallel optimization algorithm for FFMs and
the use of early-stopping to avoid over-fitting.
• To make FFMs available for public use, we release an open

source software.

This paper is organized as follows. Before we present
FFMs and its implementation in Section 3, we discuss the
two existing models Poly2 and FMs in Section 2. Experi-
ments comparing FFMs with other models are in Section 4.
Finally, conclusions and future directions are in Section 5.

Code used for experiments in this paper and the package
LIBFFM are respectively available at:

http://www.csie.ntu.edu.tw/˜cjlin/ffm/exps
http://www.csie.ntu.edu.tw/˜cjlin/libffm

2. POLY2 AND FM
Chang et. al [4] have shown that a degree-2 polynomial

mapping can often effectively capture the information of fea-
ture conjunctions. Further, they show that by applying a
linear model on the explicit form of degree-2 mappings, the
training and test time can be much faster than using ker-
nel methods. This approach, referred to as Poly2, learns a
weight for each feature pair:

φPoly2(w,x) =

n∑
j1=1

n∑
j2=j1+1

wh(j1,j2)xj1xj2 , (2)

where h(j1, j2) is a function encoding j1 and j2 into a natural
number. The complexity of computing (2) is O(n̄2), where
n̄ is the average number of non-zero elements per instance.

FMs proposed in [6] implicitly learn a latent vector for
each feature. Each latent vector contains k latent factors,
where k is a user-specified parameter. Then, the effect of
feature conjunction is modelled by the inner product of two
latent vectors:

φFM(w,x) =

n∑
j1=1

n∑
j2=j1+1

(wj1 ·wj2)xj1xj2 . (3)

The number of variables is n× k, so directly computing (3)
costs O(n̄2k) time. Following [6], by re-writing (3) to

φFM(w,x) =
1

2

n∑
j=1

(s−wjxj) ·wjxj ,

where

s =

n∑
j′=1

wj′xj′ ,

the complexity is reduced to O(n̄k).
Rendle [6] explains why FMs can be better than Poly2

when the data set is sparse. Here we give a similar illus-
tration using the data set in Table 1. For example, there
is only one negative training data for the pair (ESPN, Adi-
das). For Poly2, a very negative weight wESPN,Adidas might
be learned for this pair. For FMs, because the prediction of
(ESPN, Adidas) is determined by wESPN ·wAdidas, and be-
cause wESPN and wAdidas are also learned from other pairs
(e.g., (ESPN, Nike), (NBC, Adidas)), the prediction may be
more accurate. Another example is that there is no training
data for the pair (NBC, Gucci). For Poly2, the prediction on
this pair is trivial, but for FMs, because wNBC and wGucci

can be learned from other pairs, it is still possible to do
meaningful prediction.

Note that in Poly2, the naive way to implement h(j1, j2)
is to consider every pair of features as a new feature [4].1

This approach requires the model as large as O(n2), which is
usually impractical for CTR prediction because of very large
n. Vowpal Wabbit (VW) [9], a widely used machine learning
package, solves this problem by hashing j1 and j2.2 Our
implementation is similar to VW’s approach. Specifically,

h(j1, j2) = (
1

2
(j1 + j2)(j1 + j2 + 1) + j2) mod B,

where the model size B is a user-specified parameter.
In this paper, for the simplicity of formulations, we do not

include linear terms and bias term. However, in Section 4,
we include them for some experiments.

3. FFM
The idea of FFM originates from PITF [7] proposed for

recommender systems with personalized tags. In PITF, they
assume three available fields including User, Item, and Tag,
and factorize (User, Item), (User, Tag), and (Item, Tag) in
separate latent spaces. In [8], they generalize PITF for more
fields (e.g., AdID, AdvertiserID, UserID, QueryID) and ef-
fectively apply it on CTR prediction. Because [7] aims at
recommender systems and is limited to three specific fields
(User, Item, and Tag), and [8] lacks detailed discussion on
FFM, in this section we provide a more comprehensive study
of FFMs on CTR prediction. For most CTR data sets like
that in Table 1, “features” can be grouped into “fields.” In
our example, three features ESPN, Vogue, and NBC, belong
to the field Publisher, and the other three features Nike,
Gucci, and Adidas, belong to the field Advertiser. FFM is
a variant of FM that utilizes this information. To explain
how FFM works, we consider the following new example:

Clicked Publisher (P) Advertiser (A) Gender (G)
Yes ESPN Nike Male

Recall that for FMs, φFM(w,x) is

wESPN ·wNike + wESPN ·wMale + wNike ·wMale.
1More precisely, [4] includes the original features as well,
though we do not consider such a setting until the experi-
ments.
2See http://github.com/JohnLangford/vowpal wabbit/
wiki/Feature-interactions for details.

http://www.csie.ntu.edu.tw/~cjlin/ffm/exps
http://www.csie.ntu.edu.tw/~cjlin/libffm
http://github.com/JohnLangford/vowpal_wabbit/wiki/Feature-interactions
http://github.com/JohnLangford/vowpal_wabbit/wiki/Feature-interactions

#variables complexity
LM n O(n̄)
Poly2 B O(n̄2)
FM nk O(n̄k)
FFM nfk O(n̄2k)

Table 2: Comparison of the number of variables and the
complexity for prediction among LM, Poly2, FM, and FFM.

In FMs, every feature has only one latent vector to learn
the latent effect with any other features. Take ESPN as
an example, wESPN is used to learn the latent effect with
Nike (wESPN ·wNike) and Male (wESPN ·wMale). However,
because Nike and Male belong to different fields, the latent
effects of (EPSN, Nike) and (EPSN, Male) may be different.

In FFMs, each feature has several latent vectors. Depend-
ing on the field of other features, one of them is used to do
the inner product. In our example, φFFM(w,x) is

wESPN,A ·wNike,P + wESPN,G ·wMale,P + wNike,G ·wMale,A.

We see that to learn the latent effect of (ESPN, NIKE),
wESPN,A is used because Nike belongs to the field Adver-
tiser, and wNike,P is used because ESPN belongs to the field
Publisher. Again, to learn the latent effect of (EPSN, Male),
wESPN,G is used because Male belongs to the field Gender,
and wMale,P is used because ESPN belongs to the field Pub-
lisher. Mathematically,

φFFM(w,x) =

n∑
j1=1

n∑
j2=j1+1

(wj1,f2 ·wj2,f1)xj1xj2 , (4)

where f1 and f2 are respectively the fields of j1 and j2. If
f is the number of fields, then the number of variables of
FFMs is nfk, and the complexity to compute (4) is O(n̄2k).
It is worth noting that in FFMs because each latent vector
only needs to learn the effect with a specific field, usually

kFFM � kFM.

Table 2 compares the number of variables and the com-
putational complexity of different models.

3.1 Solving the Optimization Problem
The optimization problem is the same as (1) except that

φLM(w,x) is replaced by φFFM(w,x). Following [7, 8], we
use stochastic gradient methods (SG). Recently, some adap-
tive learning-rate schedules such as [10, 11] have been pro-
posed to boost the training process of SG. We use AdaGrad
[10] because [12] has shown its effectiveness on matrix fac-
torization, which is a special case of FFMs.

At each step of SG a data point (y,x) is sampled for
updating wj1,f2 and wj2,f1 in (4). Note that because x is
highly sparse in our application, we only update dimensions
with non-zero values. First, the sub-gradients are

gj1,f2
≡ ∇wj1,f2

f(w) = λ ·wj1,f2 + κ ·wj2,f1xj1xj2 , (5)

gj2,f1
≡ ∇wj2,f1

f(w) = λ ·wj2,f1 + κ ·wj1,f2xj1xj2 , (6)

where

κ =
∂log(1 + exp(−yφFFM(w,x)))

∂φFFM(w,x)
=

−y
1 + exp(yφFFM(w,x))

.

Algorithm 1 Training FFM using SG

1: Let G ∈ Rn×f×k be a tensor of all ones
2: Run the following loop for t epochs
3: for i ∈ {1, · · · ,m} do
4: Sample a data point (y,x)
5: caclulate κ
6: for j1 ∈ non-zero terms in {1, · · · , n} do
7: for j2 ∈ non-zero terms in {j1 + 1, · · · , n} do
8: calculate sub-gradient by (5) and (6)
9: for d ∈ {1, · · · , k} do

10: Update the gradient sum by (7) and (8)
11: Update model by (9) and (10)

Second, for each coordinate d = 1, . . . , k, the sum of squared
gradient is accumulated:

(Gj1,f2)d ← (Gj1,f2)d + (gj1,f2)2d (7)

(Gj2,f1)d ← (Gj2,f1)d + (gj2,f1)2d (8)

Finally, (wj1,f2)d and (wj2,f1)d are updated by:

(wj1,f2)d ← (wj1,f2)d −
η√

(Gj1,f2)d
(gj1,f2)d (9)

(wj2,f1)d ← (wj2,f1)d −
η√

(Gj2,f1)d
(gj2,f1)d, (10)

where η is a user-specified learning rate. The initial values
of w are randomly sampled from a uniform distribution be-
tween [0, 1/

√
k]. The initial values of G are set to one in

order to prevent a large value of (Gj1,f2)
− 1

2
d . The overall

procedure is presented in Algorithm 1.
Empirically, we find that normalizing each instance to

have the unit length makes the test accuracy slightly better
and insensitive to parameters.

3.2 Parallelization on Shared-memory Systems
Modern computers are widely equipped with multi-core

CPUs. If these cores are fully utilized, the training time can
be significantly reduced. Many parallelization approaches
for SG have been proposed. In this paper, we apply Hog-
wild! [13], which allows each thread to run independently
without any locking. Specifically, the for loop at line 3 of
Algorithm 1 is parallelized.

In Section 4.4 we run extensive experiments to investigate
the effectiveness of parallelization.

3.3 Adding Field Information
Consider the widely used LIBSVM data format:

label feat1:val1 feat2:val2 · · · ,

where each (feat, val) pair indicates feature index and value.
For FFMs, we extend the above format to

label field1:feat1:val1 field2:feat2:val2 · · ·

That is, we must assign the corresponding field to each fea-
ture. The assignment is easy on some kinds of features, but
may not be possible for some others. We discuss this issue
on three typical classes of features.

Categorical Features
For linear models, a categorical feature is commonly trans-
formed to several binary features. For a data instance

Yes P:ESPN A:Nike G:Male,

we generate the following LIBSVM format.

Yes P-ESPN:1 A-Nike:1 G-Male:1

Note that according to the number of possible values in a
categorical feature, the same number of binary features are
generated and every time only one of them has the value 1.
In the LIBSVM format, features with zero values are not
stored. We apply the same setting to all models, so in this
paper, every categorical feature is transformed to several
binary ones. To add the field information, we can consider
each category as a field. Then the above instance becomes

Yes P:P-ESPN:1 A:A-Nike:1 G:G-Male:1.

Numerical Features
Consider the following example to predict if a paper will be
accepted by a conference. We use three numerical features
“accept rate of the conference (AR),”“h-index of the author
(Hidx),” and “number of citations of the author (Cite):”

Accepted AR Hidx Cite
Yes 45.73 2 3
No 1.04 100 50,000

There are two possible ways to assign fields. A naive way
is to treat each feature as a dummy field, so the generated
data is:

Yes AR:AR:45.73 Hidx:Hidx:2 Cite:Cite:3

However, the dummy fields may not be informative because
they are merely duplicates of features.

Another possible way is to discretize each numerical fea-
ture to a categorical one. Then, we can use the same setting
for categorical features to add field information. The gener-
ated data looks like:

Yes AR:45:1 Hidx:2:1 Cite:3:1,

where the AR feature is rounded to an integer. The main
drawback is that usually it is not easy to determine the best
discretization setting. For example, we may transform 45.73
to “45.7,” “45,” “40,” or even “int(log(45.73)).” In addition,
we may lose some information after discretization.

Single-field Features
On some data sets, all features belong to a single field and
hence it is meaningless to assign fields to features. Typically
this situation happens on NLP data sets. Consider the fol-
lowing example of predicting if a sentence expresses a good
mood or not:

good mood sentence
Yes Hooray! Our paper is accepted!

No Well, our paper is rejected..

In this example the only field is “sentence.” If we assign this
field to all words, then FFMs is reduced to FMs. Readers
may ask about assigning dummy fields as we do for numeri-
cal features. Recall that the model size of FFMs is O(nfk).
The use of dummy fields is impractical because f = n and
n is often huge.

4. EXPERIMENTS
In this section, we first provide the details about the ex-

perimental setting in Section 4.1. Then, we investigate the
impact of parameters. We find that unlike LM or Poly2,
FFM is sensitive to the number of epochs. Therefore, in
Section 4.3, we discuss this issue in detail before proposing
an early stopping trick. The speedup of parallelization is
studied in Section 4.4.

After checking various properties of FFMs, in Sections 4.5-
4.6, we compare FFMs with other models including Poly2
and FMs. They are all implemented by the same SG method,
so besides accuracy we can fairly compare their training
time. Further in the comparison we include state-of-the-
art packages LIBLINEAR [14] and LIBFM [15] for training
LM/Poly2 and FMs, respectively.

4.1 Experiment Settings

Data Sets

We mainly consider two CTR sets Criteo and Avazu from
Kaggle competitions,3 though in Section 4.6 more sets are
considered. For feature engineering, we mainly apply our
winning solution but remove complicated components.4 For
example, our winning solution for Avazu includes the ensem-
ble of 20 models, but here we only use the simplest one. For
other details please check our experimental code. A hashing
trick is applied to generate 106 features. The statistics of
the two data sets are:

Data Set # instances # features # fields

Criteo 45,840,617 107 39
Avazu 40,428,967 107 33

For both data sets, the labels in the test sets are not pub-
licly available, so we split the available data to two sets for
training and validation. The data split follows from how
test sets are obtained: For Criteo, the last 6,040,618 lines
are used as the validation set; for Avazu, we select the last
4,218,938 lines. We use the following terms to represent
different sets of a problem.

• Va: The validation set mentioned above.
• Tr: The new training set after excluding the validation

set from the original training data.
• TrVa: The original training set.
• Te: The original test set. The labels are not released, so

we must submit our prediction to the original evaluation
systems to get the score. To avoid over-fitting the test
set, the competition organizers divide this data set to two
subsets “public set” on which the score is visible during
the competition and “private set” on which the score is
available after the end of competition. The final rank is
determined by the private set.

For example, CriteoVa means the validation set from Criteo.

3Criteo Display Advertising Challenge: http://www.
kaggle.com/c/criteo-display-ad-challenge. Avazu Click-
Through Rate Prediction: http://www.kaggle.com/c/
avazu-ctr-prediction.
4The code and documents of our winning solution to
the two competitions can be found in http://github.
com/guestwalk/kaggle-2014-criteo and http://github.com/
guestwalk/kaggle-avazu

http://www.kaggle.com/c/criteo-display-ad-challenge
http://www.kaggle.com/c/criteo-display-ad-challenge
http://www.kaggle.com/c/avazu-ctr-prediction
http://www.kaggle.com/c/avazu-ctr-prediction
http://github.com/guestwalk/kaggle-2014-criteo
http://github.com/guestwalk/kaggle-2014-criteo
http://github.com/guestwalk/kaggle-avazu
http://github.com/guestwalk/kaggle-avazu

Platform

All experiments are conducted on a Linux workstation with
12 physical cores on two Intel Xeon E5-2620 2.0GHz proces-
sors and 128 GB memory.

Evaluation

Depending on the model, we change φ(w,x) in (1) to φLM(w,x),
φPoly2(w,x), φFM(w,x), or φFFM(w,x) introduced in Sec-
tions 1-3. For the evaluation criterion, we consider the lo-
gistic loss defined as

logloss =
1

m

m∑
i=1

log(1 + exp(−yiφ(w,xi))),

where m is the number of test instances.

Implementation

We implement LMs, Poly2, FMs, and FFMs all in C++.
For FMs and FFMs, we use SSE instructions to boost the
efficiency of inner products. The parallelization discussed in
Section 3.2 is implemented by OpenMP [16]. Our implemen-
tations include linear terms and bias term as they improve
performance in some data sets. These terms should be used
in general as we seldom see them to be harmful.

Note that for code extensibility the field information is
stored regardless of the model used. For non-FFM models,
the implementation may become slightly faster by a simpler
data structure without field information, but our conclusions
from experiments should remain the same.

4.2 Impact of Parameters
We conduct experiments to investigate the impact of k, λ,

and η. The results can be found in Figure 1. Regarding the
parameter k, results in Figure 1a show that it does not affect
the logloss much. In Figure 1b, we present the relationship
between λ and logloss. If λ is too large, the model is not
able to achieve a good performance. On the contrary, with
a small λ, the model gets better results, but it easily over-
fits the data. We observe that the training logloss keeps
decreasing. For the parameter η, Figure 1c shows that if
we apply a small η, FFMs will obtain its best performance
slowly. However, with a large η, FFMs are able to quickly
reduce the logloss, but then over-fitting occurs. From the
results in Figures 1b and 1c, there is a need of early-stopping
that will be discussed in Section 4.3.

4.3 Early Stopping
Early stopping, which terminates the training process be-

fore reaching the best result on training data, can be used to
avoid over-fitting for many machine learning problems [17,
18, 19]. For FFM, the strategy we use is:

1. Split the data set into a training set and a validation set.
2. At the end of each epoch, use the validation set to calcu-

late the loss.
3. If the loss goes up, record the number of epochs. Stop or

go to step 4.
4. If needed, use the full data set to re-train a model with

the number of epochs obtained in step 3.

A difficulty in applying early stopping is that the logloss
is sensitive to the number of epochs. Then the best epoch
on the validation set may not be the best one on the test
set. We have tried other approaches to avoid the overfitting

k time logloss
1 27.236 0.45773
2 26.384 0.45715
4 27.875 0.45696
8 40.331 0.45690

16 70.164 0.45725

(a) The average running time (in seconds) per epoch and the best
logloss with different values of k. Because we use SSE instructions,
the running time of k = 1, 2, 4 is roughly the same.

Epochs
20 40 60 80 100 120 140

L
o
g
lo
ss

0.44

0.45

0.46

0.47

0.48

0.49

0.5
λ = 1e− 6

λ = 1e− 5

λ = 1e− 4

λ = 1e− 3

(b) The impact of λ

Epochs
1 5 9 13 17 21 25

L
o
g
lo
ss

0.45

0.46

0.47

0.48

0.49

0.5
η = 0.01

η = 0.02

η = 0.05

η = 0.1

η = 0.2

η = 0.5

(c) The impact of η

Figure 1: The impact of λ, η, and k on FFMs. To make
experiments faster, we randomly select 10% instances from
CriteoTr and CriteoVa as the training and the test sets,
respectively.

such as lazy update5 and ALS-based optimization methods.
However, results are not as successful as that by early stop-
ping of using a validation set.

4.4 Speedup
Because the parallelization of SG may cause a different

convergence behavior, we experiment with different numbers
of threads in Figure 2. Results show that our parallelization
still leads to similar convergence behavior. With this prop-
erty we can define the speedup as:

Running time of one epoch with a single thread

Running time of one epoch with multiple threads
.

The result in Figure 3 shows a good speedup when the num-
ber of threads is small. However, if many threads are used,
the speedup does not improve much. An explanation is that
if two or more threads attempt to access the same memory
address, one must wait for its term. This kind of conflicts
can happen more often when more threads are used.

5http://blog.smola.org/post/943941371/
lazy-updates-for-generic-regularization-in-sgd

http://blog.smola.org/post/943941371/lazy-updates-for-generic-regularization-in-sgd
http://blog.smola.org/post/943941371/lazy-updates-for-generic-regularization-in-sgd

Epochs
1 3 5 7 9 11 13

L
o
g
lo
ss

0.455

0.46

0.465

0.47
1 thread

2 threads

4 threads

6 threads

8 threads

10 threads

12 threads

Figure 2: The convergence of using different number of
threads.

threads
1 2 4 6 8 10 12

S
p
ee
d
u
p

1

1.5

2

2.5

3

3.5

4

Figure 3: The speedup of using multi-threading. We respec-
tively use CriteoTr and CriteoVa as the training and the
test sets.

4.5 Comparison with LMs, Poly2, and FMs
on Two CTR Competition Data Sets

To have a fair comparison, we implement the same SG
method for LMs, Poly2, FMs, and FFMs. Further, we com-
pare with two state-of-the-art packages:

• LIBLINEAR: a widely used package for linear models. For
L2-regularized logistic regression, it implements two opti-
mization methods: Newton method to solve the primal
problem, and coordinate descent (CD) method to solve
the dual problem. We used both for checking how opti-
mization methods affect the performance; see the discus-
sion in the end of this sub-section. Further, the exist-
ing Poly2 extension of LIBLINEAR does not support the
hashing trick,6 so we conduct suitable modifications and
denote it as LIBLINEAR-Hash in this paper.
• LIBFM: As a widely used library for factorization ma-

chines, it supports three optimization approaches includ-
ing stochastic gradient method (SG), alternating least squares
(ALS), and Markov Chain Monte Carlo (MCMC). We
tried all of them and found that ALS is significantly bet-
ter than the other two in terms of logloss. Therefore, we
consider ALS in our experiments.

For the parameters in all models, from a grid of points we
select those that lead to the best performance on the vali-
dation sets. Every optimization algorithm needs a stopping
condition; we use the default setting for Newton method and

6https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/#fast
training testing for polynomial mappings of data

coordinate descent (CD) method by LIBLINEAR. For each
of the other models, we need a validation set to check which
iteration leads to the best validation score. After we obtain
the best number of iterations, we re-train the model up to
that iteration. Results on Criteo and Avazu with the list
of parameters used can be found in Table 3. Clearly, FFMs
outperform other models in terms of logloss, but it also re-
quires longer training time than LMs and FMs. On the other
end, though the logloss of LMs is worse than other models,
it is significantly faster. These results show a clear trade-off
between logloss and speed. Poly2 is the slowest among all
models. The reason might be the expensive computation of
(2). FM is a good balance between logloss and speed.

For LIBFM, it performs closely to our implementation of
FMs in terms of logloss on Criteo.7 However, we see that
our implementation is significantly faster. We provide three
possible reasons:

• The ALS algorithm used by LIBFM is more complicated
than the SG algorithm we use.
• We use an adaptive learning rate strategy in SG.
• We use SSE instructions to boost inner product opera-

tions.

Because logistic regression is a convex problem, ideally,
for either LM or Poly2, the three optimization methods (SG,
Newton, and CD) should generate exactly the same model if
they converge to the global optimum. However, practically
results are slightly different. In particular, LM by SG is
better than the two LIBLINEAR-based models on Avazu.
In our implementation, LM via SG only loosely solves the
optimization problem. Our experiments therefore indicate
that the stopping condition of optimization methods can
affect the performance of the resulting model even if the
problem is convex.

4.6 Comparison on More Data Sets
In the previous section we focus on two competition data

sets, but it is important to see how FFMs perform on other
data sets. To answer this question, we consider more data
sets for the comparison, where most of them are not CTR
data. Note that following the discussion in Section 3.3, we
do not consider data sets with single-field features. The
reason is that depending on how we assign fields, FFMs
either become equivalent to FMs, or generate a huge model.

Here we briefly introduce the data sets used.

• KDD2010-bridge:8 This data set includes both numerical
and categorical features.
• KDD2012:9 This set contains both numerical and categor-

ical features. Because our evaluation is logloss, we trans-
form the original target value “number of clicks” to a bi-
nary value “clicked or not.”
• cod-rna:10 This set contains only numerical features.
• ijcnn:10 This set contains only numerical features.

7The performance of LIBFM on AvazuVa is as good as the
FM we have implemented, but the performance on AvazuTe
is poor. It is not entirely clear what happened, so further
investigation is needed.
8http://pslcdatashop.web.cmu.edu/KDDCup/downloads.
jsp
9http://www.kddcup2012.org/c/kddcup2012-track2/data

10http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
binary.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#fast_training_testing_for_polynomial_mappings_of_data
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#fast_training_testing_for_polynomial_mappings_of_data
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://www.kddcup2012.org/c/kddcup2012-track2/data
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Model and implementation parameters
training time public set private set

(seconds) logloss rank logloss rank
LM-SG η = 0.2, λ = 0, t = 13 527 0.46262 93 0.46224 91
LM-LIBLINEAR-CD s = 7, c = 2 1,417 0.46239 91 0.46201 89
LM-LIBLINEAR-Newton s = 0, c = 2 7,164 0.46602 225 0.46581 222

Poly2-SG η = 0.2, λ = 0, B = 107, t = 10 12,064 0.44973 14 0.44956 14
Poly2-LIBLINEAR-Hash-CD s = 7, c = 2 24,771 0.44893 13 0.44873 13

FM η = 0.05, λ = 2× 10−5, k = 40, t = 8 2,022 0.44930 14 0.44922 14
FM η = 0.05, λ = 2× 10−5, k = 100, t = 9 4,020 0.44867 11 0.44847 11
LIBFM λ = 40, k = 40, t = 20 23,700 0.45012 14 0.45000 15
LIBFM λ = 40, k = 40, t = 50 131,000 0.44904 14 0.44887 14
LIBFM λ = 40, k = 100, t = 20 54,320 0.44853 11 0.44834 11
LIBFM λ = 40, k = 100, t = 50 398,800 0.44794 9 0.44778 8

FFM η = 0.2, λ = 2× 10−5, k = 4, t = 9 6,587 0.44612 3 0.44603 3

(a) Criteo

Model and implementation parameters
training time public set private set

(seconds) logloss rank logloss rank
LM-SG η = 0.2, λ = 0, t = 10 164 0.39018 57 0.38833 64
LM-LIBLINEAR-CD s = 7, c = 1 417 0.39131 115 0.38944 119
LM-LIBLINEAR-Newton s = 0, c = 1 650 0.39269 182 0.39079 183

Poly2-SG η = 0.2, λ = 0, B = 107, t = 10 911 0.38554 10 0.38347 10
Poly2-LIBLINEAR-Hash-CD s = 7, c = 1 1,756 0.38516 10 0.38303 9
Poly2-LIBLINEAR-Hash-Newton s = 0, c = 1 27,292 0.38598 11 0.38393 11

FM η = 0.05, λ = 2× 10−5, k = 40, t = 8 574 0.38621 11 0.38407 11
FM η = 0.05, λ = 2× 10−5, k = 100, t = 9 1,277 0.38740 17 0.38531 15
LIBFM λ = 40, k = 40, t = 20 18,712 0.39137 122 0.38963 127
LIBFM λ = 40, k = 40, t = 50 41,720 0.39786 935 0.39635 943
LIBFM λ = 40, k = 100, t = 20 39,719 0.39644 747 0.39470 755
LIBFM λ = 40, k = 100, t = 50 91,210 0.40740 1,129 0.40585 1,126

FFM η = 0.2, λ = 2× 10−5, k = 4, t = 4 340 0.38411 6 0.38223 6

(b) Avazu

Table 3: Comparison among models and implementations on data sets Criteo and Avazu. The training sets used here are
CriteoTrVa and AvazuTrVa, and the test sets used here are CriteoTe and AvazuTe. For all experiments, a single thread is
used. The public set is around 20% of the test data, while the private set contains the rest. For Criteo, we do not list the
result of Poly2-LIBLINEAR-Hash-Newton, because the experiment does not finish after more than 10 days. Note that the we
use different stopping conditions for different algorithms, so the training time is only for reference.

• phishing:11 This set contains only categorical features.
• adult:12 This data set includes both numerical and cate-

gorical features.

For KDD2010-bridge, KDD2012, and adult, we simply dis-
cretize all numerical features into 29, 13, and 94 bins re-
spectively. For cod-rna and ijcnn, where features are all
numerical, we try both approaches mentioned in Section 3.3
to obtain field information: applying dummy fields and dis-
cretization.

For the parameter selection, we follow the same procedure
in Section 4.5. We split each set into training, validation,
and test sets; then for predicting the test set, we use the
model trained with parameters that achieve the best logloss
on the validation set.

The statistics and experimental results of each data set
are described in Table 4. FFMs significantly outperform
other models on KDD2010-bridge and KDD2012. The com-
mon characteristic among these data sets are:

• Most features are categorical.
11http://archive.ics.uci.edu/ml/datasets/Phishing+
Websites

12http://archive.ics.uci.edu/ml/datasets/Adult

• The resulting set is highly sparse after transforming cate-
gorical features into many binary features.

However, on phishing and adult, FFM is not significantly
better. For phishing, the reason might be that the data is
not sparse so FFM, FM, and Poly2 have close performance;
for adult, it seems feature conjunction is not useful because
all models perform similarly to the linear model.

When a data set contains only numerical features, FFMs
may not have an obvious advantage. If we use dummy fields,
then FFMs do not out-perform FMs, a result indicating that
the field information is not helpful. On the other hand, if
we discretize numerical features, though FFMs is the best
among all models, the performance is much worse than that
of using dummy fields. We summarize a guideline of apply-
ing FFMs on different kinds of data sets:

• FFMs should be effective for data sets that contain cate-
gorical features and are transformed to binary features.
• If the transformed set is not sparse enough, FFMs seem

to bring less benefit.
• It is more difficult to apply FFMs on numerical data sets.

5. CONCLUSIONS AND FUTURE WORKS

http://archive.ics.uci.edu/ml/datasets/Phishing+Websites
http://archive.ics.uci.edu/ml/datasets/Phishing+Websites
http://archive.ics.uci.edu/ml/datasets/Adult

statistics logloss
Data set # instances # features # fields LM Poly2 FM FFM
KDD2010-bridge 20,012,499 651,166 9 0.27947 0.2622 0.26372 0.25639
KDD2012 149,639,105 54,686,452 11 0.15069 0.15099 0.15004 0.14906
phishing 11,055 100 30 0.14211 0.11512 0.09229 0.1065
adult 48,842 308 14 0.3097 0.30655 0.30763 0.30565
cod-rna (dummy fields) 331,152 8 8 0.13829 0.12874 0.12580 0.12914
cod-rna (discretization) 331,152 2,296 8 0.16455 0.17576 0.16570 0.14993
ijcnn (dummy fields) 141,691 22 22 0.20093 0.08981 0.07087 0.0692
ijcnn (discretization) 141,691 69,867 22 0.21588 0.24578 0.20223 0.18608

Table 4: Comparison between LM, Poly2, FM, and FFMs. The best logloss is underlined.

In this paper we discuss efficient implementations of FFMs.
We demonstrate that for certain kinds of data sets, FFMs
outperform three well-known models, LM, Poly2, and FM,
in terms of logloss, with a cost of longer training time.

For the future work, the over-fitting problem discussed in
Section 4.3 is an issue that we plan to investigate. Besides,
for the ease of implementation we use SG as the optimiza-
tion method. It is interesting to see how other optimization
methods (e.g., Newton method) work on FFMs.

Acknowledgements
This work was supported in part by MOST via grants 104-
2221-E-002-047-MY3 and 104-2622-E-002-012-CC2 and MOE
of Taiwan via grant 105R7872.

6. REFERENCES
[1] O. Chapelle, E. Manavoglu, and R. Rosales, “Simple

and scalable response prediction for display
advertising,” ACM Transactions on Intelligent Systems
and Technology, vol. 5, no. 4, pp. 61:1–61:34, 2015.

[2] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg,
A. M. Hrafnkelsson, T. Boulos, and J. Kubica, “Ad
click prediction: a view from the trenches,” in
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), 2013.

[3] M. Richardson, E. Dominowska, and R. Ragno,
“Predicting clicks: estimating the click-through rate
for new ADs,” in Proceedings of the 16th international
conference on World Wide Web, 2007.

[4] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang,
M. Ringgaard, and C.-J. Lin, “Training and testing
low-degree polynomial data mappings via linear
SVM,” Journal of Machine Learning Research, vol. 11,
pp. 1471–1490, 2010.

[5] T. Kudo and Y. Matsumoto, “Fast methods for
kernel-based text analysis,” in Proceedings of the 41st
Annual Meeting of the Association of Computational
Linguistics (ACL), 2003.

[6] S. Rendle, “Factorization machines,” in Proceedings of
IEEE International Conference on Data Mining
(ICDM), pp. 995–1000, 2010.

[7] S. Rendle and L. Schmidt-Thieme, “Pairwise
interaction tensor factorization for personalized tag
recommendation,” in Proceedings of the 3rd ACM

International Conference on Web Search and Data
Mining (WSDM), pp. 81–90, 2010.

[8] M. Jahrer, A. Töscher, J.-Y. Lee, J. Deng, H. Zhang,
and J. Spoelstra, “Ensemble of collaborative filtering
and feature engineered model for click through rate
prediction,” in KDD Cup 2012 Workshop, ACM, 2012.

[9] J. Langford, L. Li, and A. Strehl, “Vowpal Wabbit,”
2007. https:
//github.com/JohnLangford/vowpal wabbit/wiki.

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive
subgradient methods for online learning and stochastic
optimization,” Journal of Machine Learning Research,
vol. 12, pp. 2121–2159, 2011.

[11] H. B. McMahan, “Follow-the-regularized-leader and
mirror descent: Equivalence theorems and l1
regularization,” in Proceedings of the 14th
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2011.

[12] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin, “A
learning-rate schedule for stochastic gradient methods
to matrix factorization,” in Proceedings of the
Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), 2015.

[13] F. Niu, B. Recht, C. Ré, and S. J. Wright,
“HOGWILD!: a lock-free approach to parallelizing
stochastic gradient descent,” in Advances in Neural
Information Processing Systems 24 (J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,
eds.), pp. 693–701, 2011.

[14] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin, “LIBLINEAR: a library for large linear
classification,” Journal of Machine Learning Research,
vol. 9, pp. 1871–1874, 2008.

[15] S. Rendle, “Factorization machines with libFM,” ACM
Transactions on Intelligent Systems and Technology
(TIST), vol. 3, no. 3, p. 57, 2012.

[16] L. Dagum and R. Menon, “OpenMP: an industry
standard API for shared-memory programming,”
IEEE Computational Science and Engineering, vol. 5,
pp. 46–55, 1998.

[17] C. M. Bishop, Pattern Recognition and Machine
Learning. Springer-Verlag New York, Inc., 2006.

[18] G. Raskutti, M. J. Wainwright, and B. Yu, “Early
stopping and non-parametric regression: An optimal
data-dependent stopping rule,” Journal of Machine
Learning Research, vol. 15, pp. 335–366, 2014.

[19] T. Zhang and B. Yu, “Boosting with early stopping:
convergence and consistency,” The Annals of
Statistics, vol. 33, no. 4, pp. 1538–1579, 2005.

https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki

	Introduction
	Poly2 and FM
	FFM
	Solving the Optimization Problem
	Parallelization on Shared-memory Systems
	Adding Field Information

	Experiments
	Experiment Settings
	Impact of Parameters
	Early Stopping
	Speedup
	Comparison with LMs, Poly2, and FMs on Two CTR Competition Data Sets
	Comparison on More Data Sets

	Conclusions and Future Works
	References

