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I List of Symbols

Notation Description
yi The label vector of the ith training instance.
xi The feature vector of the ith training instance.
l The number of training instances.
K The number of classes.
θ The model vector (weights and biases) of the neural network.
ξ The loss function.
ξi The training loss of the ith instance.
f The objective function.
C The regularization parameter.
L The number of layers of the neural network.
nm The number of neurons in the mth layer.
n0 The number of input neurons (the dimension of the feature vector).
nL The number of output neurons (the number of classes, except for binary

classification one may use nL = 1).
Wm The weight matrix in the mth layer (with dimension <nm−1×nm).
wmtj The weight between neuron t in the (m − 1)th layer and neuron j in the

mth layer.
wm The vector obtained by concatenating the columns of Wm.
bm The bias vector in the mth layer.
sm,i The affine function (Wm)Tzm−1,i+bm in themth layer for the ith instance.
zm,i The output vector (element-wise application of the activation function on

sm,i) in the mth layer for the ith instance.
σ The activation function.
n The total number of weights and biases.
J i The Jacobian matrix of zL,i with respect to θ.
J ip The local component of the J i in the partition p.
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Notation Description
Bi The Hessian matrix of the loss function of the ith instance with respect to

zL,i (the matrix element is Bi
ts = ∂2ξ(zL,i;yi)

∂zL,i
t ∂zL,i

s
).

θk The model vector θ at the kth iteration.
Hk The Hessian matrix∇2f(θk) at the kth iteration.
G The Gauss-Newton matrix of f(θ).
Gk The Gauss-Newton matrix of f(θk) at the kth iteration.
P The number of partitions to the model variables.
Tm A subset in {1, 2, . . . , nm}.
Pm The set of Tm.
S A subset in {1, 2, . . . , l}.
Sk A subset in {1, 2, . . . , l} chosen at the kth iteration.
GS The subsampled Gauss-Newton matrix of f(θ).
GSk The subsampled Gauss-Newton matrix at the kth iteration.
gkp The local component of the gradient in the partition p at the kth iteration.
dk The search direction at the kth iteration.
v An arbitrary vector in <n.
vp An arbitrary vector in <|Tm−1|×|Tm| in the partition p.
I An identity matrix.
αk A step size at the kth iteration.
ρk The ratio between the actual function reduction and the predicted reduction

at the kth iteration.
λk A parameter in the Levenberg-Marquardt method.
N (µ, σ2) A Gaussian distribution with mean µ and variance σ2.

II Calculation of Hessian-vector Product Using R Op-
erator

Here we demonstrate the calculation of the Hessian-vector product usingR operator.

Hkv,

where

v =


v1

v̄1

...
vL

v̄L

 ∈ <n (II.1)

is an iterate in the CG procedure. In the vector v, sub-vectors vm ∈ <nm−1×nm and
v̄m ∈ <nm respectively correspond to variables wm and bm at the mth layer.

The definition of theR operator on any function is as follows

Rv{f(θ)} =
∂

∂r
f(θ + rv)

∣∣∣∣
r=0

. (II.2)
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Because

Rv{∇f(θ)} =
∂

∂r
∇f(θ + rv)

∣∣∣∣
r=0

= ∇2f(θ + rv)v
∣∣
r=0

= ∇2f(θ)v,

we can apply theR operator to (11)-(14) to get the Hessian-vector product.

Rv{
∂ξ

∂sm,ij

} = σ′(sm,ij )Rv{
∂ξ

∂zm,ij

}+
∂ξ

∂zm,ij

σ′′(sm,ij )Rv{sm,ij },

Rv{
∂ξ

∂zm−1,it

} =
nm∑
j=1

(
wmtjRv{

∂ξ

∂sm,ij

}+Rv{wmtj }
∂ξ

∂sm,ij

)
, (II.3)

Rv{
∂f

∂wmtj
} =

1

C
Rv{wmtj }+

1

l

l∑
i=1

(
zm−1,it Rv{

∂ξ

∂sm,ij

}+Rv{zm−1,it } ∂ξ

∂sm,ij

)
,

Rv{
∂f

∂bmj
} =

1

C
Rv{bmj }+

1

l

l∑
i=1

Rv{
∂ξ

∂sm,ij

}.

In this work, instead of Hessian we consider the Gauss-Newton matrix, so (II.3) must
be modified, and details are in Section III.

III Details of UsingROperators for Gauss-Newton Ma-
trix Vector Products

The matrix-vector product can be obtained by following the settings in Schraudolph
[2002], Martens and Sutskever [2012]. We consider the first-order approximation of
zL,i(θ) to define

ẑL,i(θ) = zL,i(θk) + Ĵ i(θ − θk) ≈ zL,i(θ), i = 1, . . . , l,

where
Ĵ i = J i

∣∣
θ=θk

.

Next we define

f̂(θ) =
1

2C
θTθ +

1

l

l∑
i=1

ξ(ẑL,i;yi).

The gradient vector of f̂(θ) is

∇f̂(θ) =
1

C
θ +

1

l

l∑
i=1

(Ĵ i)T
∂ξ(ẑL,i;yi)

∂ẑL,ij
(III.4)

and the Hessian matrix of f̂(θ) is

1

C
I +

1

l

l∑
i=1

(Ĵ i)T B̂iĴ i
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where

B̂i
ts =

∂2ξ(ẑL,i;yi)

∂ẑL,it ∂ẑL,is

, t = 1, . . . , nL, s = 1, . . . , nL.

Therefore, from (16) we can derive that

∇f̂(θ)
∣∣∣
θ=θk

= ∇f(θ)|θ=θk and ∇2f̂(θ)
∣∣∣
θ=θk

= G|θ=θk . (III.5)

We can apply the R operator to ∇f̂(θ) and derive the Gauss-Newton matrix-vector
product. That is,

Rv{∇f̂(θ)
∣∣∣
θ=θk
} = ∇2f̂(θk)v = Gv. (III.6)

From (III.5), instead of using
R{∇f̂(θ)

∣∣∣
θ=θk
}

we can use
R{∇f(θ)|θ=θk}.

Then in (11)-(14), zm−1,it , sm,ij , and wmta can be considered as constant values after sub-
stituting θ with θk. Therefore, the following results can be derived.

R{zm−1,it } = 0, R{sm,ij } = 0, andR{wmta} = 0.

The following equations are therefore used in a backward process to get the Gauss-
Newton matrix-vector product.

R{ ∂ξ

∂sm,ij

} = σ′(sm,ij )R{ ∂ξ

∂zm,ij

}, (III.7)

R{ ∂ξ

∂zm−1,it

} =
nm∑
j=1

wmtjR{
∂ξ

∂sm,ij

},

R{ ∂f̂
∂wmtj

} =
l∑

i=1

zm−1,it R{ ∂ξ

∂sm,ij

},

R{ ∂f̂
∂bmj
} =

l∑
i=1

R{ ∂ξ

∂sm,ij

}. (III.8)

However, because

R{ ∂ξ

∂zL,ij

} =
∂2ξ

∂(zL,ij )2
R{zL,ij },

R{zL,ij } are also needed. They are not computed in the backward process. Instead, we
can pre-calculate them in the following forward process.

R{sm,ij } = R{
nm−1∑
t=1

wmtj z
m−1,i
t + bmj } =

nm−1∑
t=1

(wmtjR{z
m−1,i
t }+ vmtj z

m−1,i
t ) +R{bmj }

(III.9)

R{zm,ij } = R{σ(sm,ij )} = R{sm,ij }σ′(s
m,i
j )

where m = 1, . . . , L. Notice that R{z0,it } = 0 because z0,it is a constant. For more
details, see Section 6.1 of Martens and Sutskever [2012].
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(A0, A1)

(B0, A1) (C0, A1)

(A0, B1)

(B0, B1) (C0, B1)

Figure IV.1: An example of using binary trees to implement allreduce operations for
obtaining s1,ij , ∀j ∈ {1, . . . , n1}, i ∈ {1, . . . , l}. The left tree corresponds to the
calculation in (23).

(A0, A1)

(A1, A2) (A1, B2)

(A1, C2)

(A0, B1)

(B1, A2) (B1, B2)

(B1, C2)

Figure IV.2: An example of using binary trees to broadcast s1,ij to partitions between
layers 1 and 2.

IV Implementation Details of Allreduce and Broadcast
Operations

We follow Agarwal et al. [2014] to use a binary-tree based implementation. For the
network in Figure 2, we give an illustration in Figure IV.1 for summing up the three local
values respectively in partitions (A0, A1), (B0, A1), and (C0, A1), and then broadcast
the resulting

s1,ij , i = 1, . . . , l, j ∈ A1 (IV.10)

back. After the allreduce operation, we broadcast the same values in (IV.10) to parti-
tions between layers 1 and 2 by choosing (A0, A1) as the root of another binary tree
shown in Figure IV.2. For values

s1,ij , i = 1, . . . , l, j ∈ B1,

a similar allreduce operation is applied to (A0, B1), (B0, B1) and (C0, B1). The result
is broadcasted from (A0, B1) to (B1, A2), (B1, B2) and (B1, C2); see binary trees on
the right-hand side of Figures IV.1-IV.2.

Next we discuss details of implementing reduce and broadcast operations in the
Jacobian operation. We again take Figure 2 as an example. To sum up the three values
in (38), we consider a binary tree in Figure IV.3. Partitions (A1, B2) and (A1, C2)
send the second and the third terms in (38) to (A1, A2), respectively. Then, (A1, A2)
broadcasts the resulting

∂zL,iu

∂z1,it
, t ∈ A1, u = 1, . . . , nL, i = 1, . . . , l

to nodes (A0, A1), (B0, A1), and (C0, A1) by being the root of another binary tree
shown in Figure IV.4. A similar reduce operation is applied to (B1, A2), (B1, B2),
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(A1,A2)

(A1,B2) (A1,C2)

(B1,A2)

(B1,B2) (B1,C2)

Figure IV.3: An example to implement reduce operations for obtaining
∂z2,iu /∂z

1,i
t , ∀t ∈ {1, . . . , n1}, i ∈ {1, . . . , l}. The left tree corresponds to the cal-

culation in (38).
(A1,A2)

(A0,A1) (B0,A1)

(C0,A1)

(B1,A2)

(A0,B1) (B0,B1)

(C0,B1)

Figure IV.4: An example to broadcast ∂z2,iu /∂z
1,i
t to partitions between layers 0 and 1.

and (B1, C2), and then the result is broadcasted from (B1, A2) to (A0, B1), (B0, B1),
and (C0, B1); see binary trees on the right-hand side of Figures IV.3-IV.4.

V Cost for Solving (61)

In Section 5.3, we omit discussing the cost of solving (61) after the CG procedure. Here
we provide details.

To begin we check the memory consumption. The extra space needed to store the
linear system (62) is negligible. For the computational and the communication cost, we
analyze the following steps in constructing (61).

1. For −∇f(θk)Tdk and −∇f(θk)T d̄
k, we sum up local inner products of sub-vectors

(i.e., −gpdkp and −gpd̄
k
p at the pth node) among all partitions.

2. For the 2 by 2 matrix in (62), we must calculate

(dk)TGSkdk =
1

C
(dk)Tdk +

1

|Sk|
(
P∑
p=1

JSk
p d

k
p)
TBSk(

P∑
p=1

JSk
p d

k
p),

(dk)TGSk d̄
k

=
1

C
(dk)T d̄

k
+

1

|Sk|
(
P∑
p=1

JSk
p d

k
p)
TBSk(

P∑
p=1

JSk
p d̄

k
p), (V.11)

(d̄
k
)TGSk d̄

k
=

1

C
(d̄

k
)T d̄

k
+

1

|Sk|
(
P∑
p=1

JSk
p d̄

k
p)
TBSk(

P∑
p=1

JSk
p d̄

k
p),
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where

JSk
p d

k
p =


...
J ip
...

dkp, JSk
p d̄

k
p =


...
J ip
...

 d̄kp, i ∈ Sk.

From (V.11), JSk
p d

k
p and JSk

p d̄
k
p, ∀p must be summed up. We reduce all these O(nL)

vectors to one node and obtain

P∑
p=1

JSk
p d

k
p and

P∑
p=1

JSk
p d̄

k
p.

For (dk)Tdk, (dk)T d̄
k, and (d̄

k
)T d̄

k, we also sum up local inner products in all
partitions by a reduce operation. Then, the selected partition can compute the three
values in (V.11) and broadcast them to all other partitions.

The computation at each node for JSk
p d

k
p and JSk

p d̄
k
p is comparable to two matrix-vector

products in the CG procedure. This cost is relatively cheap because the CG procedure
often needs more matrix-vector products.

For the reduce and broadcast operations, by the analysis in Section 5.3, for the
binary tree implementation, a rough cost estimation of the reduce operation is

O(α + 2× (β + γ)× (|Sk| × nL)× dlog2(
L∑

m=1

nm−1
|Tm−1|

× nm
|Tm|

)e). (V.12)

Note that one reduce operation is enough because we can concatenate all local values
as a vector. The broadcast operation is cheap because only three scalars in (V.11) are
involved.

By comparing (V.12) with the communication cost for function/gradient evalua-
tions in (74)-(75), the cost here is not significant. Note that here we need only one
reduce/broadcast operation, but in each function/gradient evaluation, multiple opera-
tions are needed because of the forward/backward process.

VI Effectiveness of Using Levenberg-Marquardt Meth-
ods

We mentioned in Section 4.5 that the Levenberg-Marquardt method is often not applied
together with line search. Here we conduct a preliminary investigation by considering
the following two settings.

1. diag + sync 50%: the proposed method in Section 8.1.

2. noLM + diag + sync 50%: it is the same as diag + sync 50% except that the LM
method is not considered.

The experimental results are shown in Figure VI.6. We can make the following
observations.
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1. For testing accuracy/AUC versus number of iterations, the setting without applying
LM converges faster. The possible explanation is that for noLM + diag + sync 50%,
by solving

GSkd = −∇f(θk) (VI.13)

without the term λkI, the direction leads to a better second-order approximation of
the function value.

2. For testing accuracy/AUC versus training time, we observe the opposite result. The
setting with the Levenberg-Marquardt method is faster for all problems except HIGGS1M.
It is faster because of fewer CG steps in the CG procedure. A possible explanation is
that with the term λkI, the linear system becomes better conditioned and therefore
can be solved by a smaller number of CG steps.

VII Effectiveness of Combining Two Directions by Solv-
ing (61)

In Section 4.3 we discussed a technique from Wang et al. [2015] by combining the
direction dk from the CG procedure and the direction dk−1 from the previous iteration.
Here we preliminarily investigate the effectiveness of this technique.

We take the approach diag + sync 50% in Section 8.1 and compare the results
with/without solving (61).

The results are shown in Figure VII.8. From the figures of test accuracy versus the
number of iterations, we see that the method of combining two directions after the CG
procedure effectively improves the convergence speed. Further, the figures of showing
training time are almost the same as those of iterations. This result confirms our analysis
in Section V that the extra cost at each iteration is not significant.
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Figure VI.6: A comparison of using LM methods and without using LM methods. Left:
testing accuracy versus number of iterations. Right: testing accuracy versus training
time. 10
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Figure VII.8: A comparison between with/without implementing the combination of
two directions by solving (61). Left: testing accuracy versus number of iterations.
Right: testing accuracy versus training time.12
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