
Unbiased Ad Click Prediction for Position-aware Advertising
Systems

Bowen Yuan

National Taiwan University

f03944049@csie.ntu.edu.tw

Yaxu Liu

National Taiwan University

d08944012@csie.ntu.edu.tw

Jui-Yang Hsia

National Taiwan University

hsiajuiyang5174@gmail.com

Zhenhua Dong

Huawei Noah’s ark lab

dongzhenhua@huawei.com

Chih-Jen Lin

National Taiwan University

cjlin@csie.ntu.edu.tw

ABSTRACT
Click-through rate (CTR) prediction is a core problem of building

advertising systems. In many real-world applications, because an

ad placed in various positions has different click probabilities, the

position information should be considered in both training and

prediction. For such position-aware systems, existing approaches

learn CTR models from clicks/not-clicks on historically displayed

events by leveraging the position information in different ways. In

this work, we explain that these approaches may give a heavily

biased model. We first point out that in position-aware systems,

two different types of selection biases coexist in displayed events.

Secondly, we explain that some approaches attempting to eliminate

the position effect from clicks/not-clicks may possess an additional

bias. Finally, to obtain an unbiased CTR model for position-aware

systems, we propose a novel counterfactual learning framework.

Experiments confirm both our analysis on selection biases and the

effectiveness of our proposed counterfactual learning framework.

CCS CONCEPTS
• Information systems→ Computational advertising.

KEYWORDS
CTR prediction, Selection bias, Counterfactual learning

ACM Reference Format:
Bowen Yuan, Yaxu Liu, Jui-Yang Hsia, Zhenhua Dong, and Chih-Jen Lin.

2020. Unbiased Ad Click Prediction for Position-aware Advertising Systems.

In Fourteenth ACM Conference on Recommender Systems (RecSys ’20), Septem-
ber 22–26, 2020, Virtual Event, Brazil. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3383313.3412241

1 INTRODUCTION
With the development of online advertising in recent decades, com-

pensation methods in advertising systems have been evolved from

simply charging by the number of displays to charging by explicit

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7583-2/20/09. . . $15.00

https://doi.org/10.1145/3383313.3412241

behaviours on displayed ads. A typical example is cost-per-click

(CPC) systems, where advertisers are only charged if their ads are

clicked by customers. When a customer visits a publisher page

providing 𝐾 positions to display ads, a request carrying the infor-

mation of the publisher and the customer will be sent to the system.

Once the system receives the request, the following two procedures

are conducted.

• Retrieval: The system selects 𝐾 ads from an inventory of 𝑛 ads.

• Placement: The system assigns positions for the retrieved 𝐾 ads

and places them.

We use a tuple (𝑖, 𝑗, 𝑘) to denote an event that in request 𝑖 , ad 𝑗

is placed in position 𝑘 . After these events are displayed, the system

will receive signals if a customer clicks one of these events. Then

the system gains revenue from the corresponding advertiser.

To maximize the revenue, the system must select the most valu-

able events to display. Therefore, the system values event (𝑖, 𝑗, 𝑘)
with the following expected revenue

𝑃𝑖 𝑗𝑘 × bid𝑗 , (1)

where bid𝑗 is the price paid by advertisers if the ad 𝑗 is clicked by

customers, and 𝑃𝑖 𝑗𝑘 is the probability of event (𝑖, 𝑗, 𝑘) being clicked
by the customer. For each request 𝑖 , to maximize the expected

revenue, the system solves the following optimization problem to

retrieve and place 𝐾 ads

max

𝑆𝑖

∑
(𝑖, 𝑗,𝑘) ∈𝑆𝑖

𝑃𝑖 𝑗𝑘 × bid𝑗 , (2)

where 𝑆𝑖 is a sequence of events (𝑖, 𝑗1, 1), · · · , (𝑖, 𝑗𝐾 , 𝐾) indicating
the 𝐾 ads displayed in 𝐾 positions. We give a simplified example in

Figure 1, which shows that for any request 𝑖 , five ads bid for three

positions. According to the solution to (2), the system retrieves ad

“1”,“2”, and “5” and then places them in position “2”, “1” and “3”,

respectively. Thus displayed events are (𝑖, 2, 1), (𝑖, 1, 2) and (𝑖, 5, 3).
Among these displayed events, event (𝑖, 2, 1) is clicked, while the
other two are not clicked.

The estimation of 𝑃𝑖 𝑗𝑘 , also referred to as click-through rate

(CTR) prediction, is the core problem of building advertising sys-

tems, which generally consists of the following two tasks

• Learning a CTR model to estimate 𝑃𝑖 𝑗𝑘 via machine learning

techniques

• Conducting an offline evaluation to estimate the CTR model’s

online performance before it is deployed

Typically CTR models are learned from clicks/not-clicks on

historically displayed events. Many past works (e.g., [2, 13]) as-

sume their systems are position-independent, so whether the event

https://doi.org/10.1145/3383313.3412241
https://doi.org/10.1145/3383313.3412241

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil B. Yuan and Y. Liu, et al.

ad 1 ad 2 ad 3 ad 4 ad 5

position 1

position 2

position 3

? X ?? ?? ?

x ? ?? ?? ?

? ? ?? ?? x

Figure 1: An illustration of a scenario of five ads biding for
three positions. For displayed events, the symbols ‘✓’, and
‘x’ indicate the event is clicked, and not clicked, respectively.
For any non-displayed event (𝑖, 𝑗, 𝑘), the symbol ‘??’ indicates
ad 𝑗 is not retrieved, and the symbol ‘?’ indicates ad 𝑗 is re-
trieved but not placed in position 𝑘 .

(𝑖, 𝑗, 𝑘) is clicked or not only depends on the information included

in request 𝑖 and ad 𝑗 , and the position 𝑘 has no effect. With this

assumption, clicks/not-clicks on displayed events are observations

from the following position-independent click probability,

𝑃𝑖 𝑗𝑘 = Pr(click=1 | request = 𝑖, ad = 𝑗) . (3)

Then they learn CTR models as an estimator of (3).

In many real-world applications, an ad placed in various posi-

tions has different click probabilities. Thus clicks/not-clicks on dis-

played events are observations from the following position-aware

click probability.

𝑃𝑖 𝑗𝑘 = Pr(click=1 | request = 𝑖, ad = 𝑗, position = 𝑘). (4)

Such position-aware systems are the focus in this work. Existing

approaches fall into the following two categories.

• Positional approach: This approach learns an estimator of (4) as

the CTR model, where position information is included in input

features

• Non-positional approach: The positional approach may not be

practically viable, because (2) is a difficulty assignment problem.

By assuming that (4) can be decomposed to a position-independent

part 𝑃𝑖 𝑗 and a position-dependent part, (2) can be easily solved.

This approach learns an estimator of 𝑃𝑖 𝑗 as the CTR model.

However, in this work, we argue that existing approaches for

position-aware systems are biased. For position-independent sys-

tems, it is known that the selection bias in historically displayed

events is a serious issue. Some recent works (e.g., [3, 12, 21]) have

proposed solutions, but few studies have considered this issue in

position-aware systems. Our first contribution is to investigate the

selection bias in position-aware systems. Specifically, we point out

that two different types of selection biases coexist, so the situation

is more complicated than that of position-independent systems.

Our second contribution is to point out that CTRmodels obtained

by the non-positional approach may posses an additional type of

biases. The reason is that because clicks and not-clicks on displayed

events are observations from 𝑃𝑖 𝑗𝑘 rather than 𝑃𝑖 𝑗 , CTR models are

learned and evaluated indirectly.

Finally, to address the above issues, our third contribution is to

derive a new counterfactual learning framework to consider both

displayed events and non-displayed events. The idea is related to

Table 1: Main notation.
(𝑖, 𝑗, 𝑘) (request, ad, position) event

𝑚,𝑛, 𝐾 numbers of requests, ads, positions

¯C, E indicator random variables of click and examination

(UUU,VVV,PPP) random variables for feature vectors

of a request, an ad, and a position

𝑆, 𝑆+, 𝑆− sets of displayed events

and clicked/not-clicked displayed events

𝐶 a tensor including 𝐶𝑖 𝑗𝑘 = 0/1 as a not-click/click

observation of event (𝑖, 𝑗, 𝑘)
𝜎 (·) a function transforming real values to [0, 1] as probabilities
𝒖, 𝒗,𝒑 feature vector of a request, an ad and a position

𝑔(·), 𝑓 (·), 𝑎(·) positional/non-positional CTR models and imputation model

[21] for position-independent scenarios. In [21], by ignoring the po-

sition information, non-displayed events are those of non-retrieved

ads. Examples are ads “3”, and “4” in Figure 1, where events are

marked by “??”. However, for position-aware systems, we should

additionally consider events of retrieved ads with non-placed posi-

tions. Examples in Figure 1 are events of retrieved ads “1”, “2”, and

“5” marked by “?”. We prove that under the proposed framework,

for both positional and non-positional approaches, learning and

evaluation are unbiased. A related topic is the unbiased learning to

rank from clicks [8, 19], but we will explain in Section 5 that these

techniques are not applicable to position-aware advertising systems

which require the point-wise learning for click probability due to

the existence of bid in (2). Therefore, to the best of our knowledge,

this is the first time that a solution of unbiased CTR prediction for

position-aware systems is offered.

The paper is organized as follows. In Section 2, we review existing

settings for position-independent and position-aware systems. In

Section 3, we first review the issue of selection bias in position-

independent systems. We then extend the discussion into position-

aware systems and novelly derive two types of selection biases. In

Section 4, we propose our solutions of unbiased CTR prediction for

position-aware systems. Related works are given in Section 5. In

Section 6, a series of experiments confirm our contributions. Finally

Section 7 concludes this work. A list of notations used in this work

is in Table 1. Supplementary materials and experiments code are at

https://www.csie.ntu.edu.tw/~cjlin/papers/debiases/.

2 ADVERTISING SYSTEMS: A REVIEW AND
EVOLUTION TO POSITION-AWARE
SCENARIO

We review position-independent and position-aware systems.

2.1 Position-independent Systems
To estimate CTR, most approaches assume that the position 𝑘 has

no effect and the following click probability depends only on the

information included in request 𝑖 and ad 𝑗 .

𝑃𝑖 𝑗𝑘 ≡ 𝑃𝑖 𝑗 = Pr(¯C = 1 | UUU = 𝒖𝑖 ,VVV = 𝒗 𝑗), (5)

where
¯C is the random variable indicating whether the event is be-

ing clicked,UUU andVVV are random variables respectively indicating

feature vectors of a request and an ad, and 𝒖𝑖 and 𝒗 𝑗 are feature
vectors of request 𝑖 and ad 𝑗 , respectively. From displayed events

https://www.csie.ntu.edu.tw/~cjlin/papers/debiases/

Unbiased Ad Click Prediction for Position-aware Advertising Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

(denoted as 𝑆) with clicks and not-clicks respectively as positive (de-

noted as 𝑆+) and negative instances (denoted as 𝑆−), a CTR model

𝑦 (𝒖, 𝒗) is learnt by solving a binary classification problem.

min

W

∑
(𝑖, 𝑗,𝑘) ∈𝑆+ ℓ (1, 𝑌𝑖 𝑗) +

∑
(𝑖, 𝑗,𝑘) ∈𝑆− ℓ (0, 𝑌𝑖 𝑗) +𝜆R(W), (6)

where 𝑌𝑖 𝑗 ≡ 𝑦 (𝒖𝑖 , 𝒗 𝑗),W is the set of parameters in the function

𝑦 (𝒖, 𝒗), R(W) is the regularization term with the parameter 𝜆

decided by users, and ℓ (𝑎, 𝑏) is any loss function. For example, the

following logistic loss is commonly used.

ℓ (𝑎, 𝑏) = −𝑎𝑏 + log(1 + 𝑒𝑏) . (7)

To achieve good CTR, many past works have focused on developing

the model 𝑦 (𝒖, 𝒗), which can range from simple ones (e.g., logistic

regression [2, 15]) to sophisticated ones (e.g., factorization machine

[9, 14], deep learning [5]).

In the prediction phase, because from (5) the click probability is

position-independent, the problem (2) is reduced to

max

𝑆𝑖

∑
(𝑖, 𝑗,_) ∈𝑆𝑖

𝑃𝑖 𝑗 × bid𝑗 . (8)

Solving (2) becomes very easy by simply selecting the 𝐾 ads with

the largest values of 𝑃𝑖 𝑗 × bid𝑗 . In practice, we consider the pre-

dicted 𝑦 (𝒖𝑖 , 𝒗 𝑗) and use 𝜎 (𝑦 (𝒖𝑖 , 𝒗 𝑗)) to transform 𝑦 (𝒖𝑖 , 𝒗 𝑗) into a

probability value in [0, 1] as an estimator of 𝑃𝑖 𝑗 (e.g., the sigmoid

function). We then sort

𝜎 (𝑦 (𝒖𝑖 , 𝒗 𝑗)) × bid𝑗 ,

of all 𝑛 ads and display the top 𝐾 ads. Thus handling a request can

be done within O(𝑛 log𝑛) cost.
Before deploying a machine learning model, usually we need

offline evaluation to select models and tune parameters such as 𝜆 in

(6). For this purpose, we usually split displayed events to two parts:

• One part is treated as the training set 𝑆 .

• The other part is the test set 𝑆te for offline evaluation.

The success of offline evaluation relies on that the test set is

independent of the training set. For CTR prediction, the progressive

validation [13] is commonly used. That is, we split the displayed

events in a chronological way and the latest period is treated as the

test set 𝑆te.

For evaluation criterion, two metrics are commonly used. Sup-

pose |𝑆te | is the number of events in the test set 𝑆te. The first crite-

rion is the logarithmic loss (LogLoss):

1

|𝑆te |
(
∑
(𝑖, 𝑗,𝑘) ∈𝑆+

te

log(1 + 𝑒−𝑦 (𝒖𝑖 ,𝒗 𝑗)) +
∑
(𝑖, 𝑗,𝑘) ∈𝑆−

te

log(1 + 𝑒𝑦 (𝒖𝑖 ,𝒗 𝑗))) .
(9)

Another one is the area under the ROC curve (AUC):∑
(𝑖, 𝑗,𝑘) ∈𝑆+

te

Rank𝑖, 𝑗 −
|𝑆+

te
| (|𝑆+

te
|+1)

2

|𝑆+
te
| |𝑆−

te
| , (10)

where |𝑆+
te
|, |𝑆−

te
| are respectively the number of positive instances

and negative instances, and Rank𝑖, 𝑗 is the rank of a positive event

(𝑖, 𝑗, 𝑘) in 𝑆te, obtained through ordering predicted values from

𝑦 (𝒖, 𝒗).

2.2 Position-aware Advertising Systems
In contrast to the position-independent systems reviewed in Sec-

tion 2.1, in many applications the click probability of an event is

position-aware. That is, in each request, an ad placed in various

positions has different click probabilities and the assumption in (5)

no longer holds. To incorporate position information, we review

two approaches that learn an estimator 𝑔(·) of position-aware CTR
in (4) by solving the following problem.

min

W

∑
(𝑖, 𝑗,𝑘) ∈𝑆+ ℓ

(
1,𝐶𝑖 𝑗𝑘

)
+
∑
(𝑖, 𝑗,𝑘) ∈𝑆− ℓ

(
0,𝐶𝑖 𝑗𝑘

)
+𝜆R(W), (11)

where 𝐶𝑖 𝑗𝑘 ≡ 𝑔(𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘), and 𝒑𝑘 is the feature vector of posi-

tion 𝑘 . Because the two approaches differ on whether the inferred

CTR model depends on the position information, we call them

respectively as positional approach and non-positional approach.

2.2.1 Positional Approach. A positional approach directly applies

𝑔(·) as the CTR model. In the training stage, because clicks and

not-clicks have been observed , the task is to simply solve the

binary classification problem in (11). However, a bottleneck of this

approach occurs in the prediction stage. The complexity in deciding

which and where ads to be displayed is extremely high. Specifically,

once 𝑔(·) is deployed online for handling the request 𝑖 , among 𝑃𝑛
𝐾

permutations, we must choose one so that the sum of

𝜎 (𝐶𝑖 𝑗𝑘) × bid𝑗 (12)

over 𝐾 events is maximized. Such an assignment problem is a diffi-

cult combinational optimization issue. For any system with large 𝑛,

handling each request in real-time is prohibitive.

2.2.2 Non-positional Approach. To avoid the prohibitive cost in the
prediction stage, the non-positional approach is proposed [1, 15].

Let PPP and E be respectively the random variable of a position’s

feature vector, and the indicator of whether the ad is examined or

not. The idea is to assume that (4) can be expressed as

Pr(¯C = 1 | UUU = 𝒖𝑖 ,VVV = 𝒗 𝑗 ,PPP = 𝒑𝑘) = 𝑃𝑖 𝑗 × 𝛽𝑘 , (13)

where we factor out a position-independent term

𝑃𝑖 𝑗 ≡ Pr(¯C = 1 | UUU = 𝒖𝑖 ,VVV = 𝒗 𝑗 , E = 1), (14)

being the click probability of ad 𝑗 given it has been examined by

the customer, and

𝛽𝑘 ≡ Pr(E = 1 | PPP = 𝒑𝑘) (15)

is the probability of any ad placed at position 𝑘 being examined.

Without loss of generality, we number the positions such that

𝛽1 ≥ 𝛽2 ≥ · · · ≥ 𝛽𝐾 . (16)

Under the assumption in (13), the expected revenue of placing ad 𝑗

at position 𝑘 is changed from (1) to 𝑃𝑖 𝑗 × bid𝑗 × 𝛽𝑘 . From (16), for

any retrieved 𝐾 ads, we must order them such that 𝑃𝑖 𝑗1 × bid𝑗1 ≥
· · · ≥ 𝑃𝑖 𝑗𝑘 × bid𝑗𝑘 in order to maximize the objective value in (2).

Then problem (2) is reduced to find and sort 𝐾 values of 𝑃𝑖 𝑗 × bid𝑗
such that the inner product with 𝛽1, · · · , 𝛽𝑘 is maximized. Clearly,

the solution is to retrieve the 𝐾 ads with the largest 𝑃𝑖 𝑗 × bid𝑗 .

Therefore, in the training stage we learn a CTR model 𝑓 (·) so that

𝜎 (𝑓 (𝒖𝑖 , 𝒗 𝑗)) is an estimate of 𝑃𝑖 𝑗 in (14). Once 𝑓 (·) is deployed
online for handling request 𝑖 , we sort

𝜎 (𝑓 (𝒖𝑖 , 𝒗 𝑗)) × bid𝑗 (17)

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil B. Yuan and Y. Liu, et al.

of all 𝑛 ads and orderly place the top 𝐾 ads from the first position to

the 𝐾th position, which can be done within O(𝑛 log𝑛). This setting
effectively addresses the high cost of using (12) to select events for

display.

Though using (17) rather than (12) helps to develop an efficient

display algorithm, it brings a new difficulty in the training stage

for learning 𝑓 (·). For most systems, observations from 𝑃𝑖 𝑗 and 𝛽𝑘
can not be collected, because we do not know if an ad is examined

or not. In contrast, if (4) instead of (14) is considered, collected

clicks and not-clicks are available observations. To overcome the

difficulty, some recent works [6, 11, 23] propose to infer 𝑓 (·) from
𝑔(·). Specifically, they follow the positional approach to solve the

problem (11), but consider a customized 𝑔(·), which can be decom-

posed into two parts: 𝑓 (·) and ℎ(·). Then 𝜎 (𝑓 (·)) is taken as the

estimator of (14), while 𝜎 (ℎ(·)) is the estimator of (15). For example,

in [6], they propose

𝜎 (𝑔(𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘)) = 𝜎
(
𝑓 (𝒖𝑖 , 𝒗 𝑗)

)
𝜎
(
ℎ(𝒑𝑘)

)
. (18)

Another line of works (e.g., [11, 23]) consider the following combi-

nation.

𝑔(𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘) = 𝑓 (𝒖𝑖 , 𝒗 𝑗) + ℎ(𝒑𝑘) . (19)

2.2.3 Offline Evaluation. Aswementioned in Section 2.1, before de-

ploying a CTR model, we need an offline evaluation to estimate the

potential online performance. For the positional approach, because

collected clicks and not-clicks of displayed events in 𝑆te have been

observed, we can compute LogLoss and AUC scores respectively

defined in (9) and (10) but replace 𝑦 (𝒖𝑖 , 𝒗 𝑗) with position-aware

predictions 𝑔(𝒖𝑖 , 𝒗 𝑗 𝒑𝑘), for any event (𝑖, 𝑗, 𝑘) in 𝑆te.
For the non-positional approach aiming to estimate (14), as we

lack the corresponding observations, we can not directly evaluate

the CTR model 𝑓 (·) from clicks/not-clicks of displayed events in

𝑆te. Instead, existing works (e.g., [6, 23]) consider 𝑔(·) as the surro-
gate to evaluate LogLoss and AUC scores. We then deploy a 𝑓 (·)
extracted from 𝑔(·) that can result in the best LogLoss or AUC score.

However, this indirect way brings a new potential problem that

will be discussed in Section 4.2.

2.2.4 Discussion. From the review in this section, we can see that

to construct a position-aware system, both positional and non-

positional approaches have their own merits. We note that in the

training phase, both learn some 𝑔(·) functions as an estimator of

(4) through solving the problem in (11). Unfortunately, we will

discuss in Section 3 that solving (11) with clicks/not-clicks on past

displayed events may give a heavily biased estimator of (4).

3 SELECTION BIAS IN CTR PREDICTION
In this section, we first review the issue of selection bias in the

position-independent systems. Then we point out that for the

position-aware systems, this issue also occurs and becomes more

complicated.

3.1 Selection Bias in Position-independent
Systems

Let Pr(¯C,UUU,VVV) be the distribution to generate events and the

corresponding clicks or not-clicks. The probability value from the

CTR model 𝑦 (𝒖, 𝒗) obtained by solving the following expected risk

minimization should be an optimal estimation of (5).

min

𝑦
𝑅(𝑦), where 𝑅(𝑦) =

∫
ℓ (𝑌,𝑦 (𝒖, 𝒗))𝑑 Pr(𝑌, 𝒖, 𝒗). (20)

In practice, because Pr(¯C,UUU,VVV) is unknown, we conduct empirical

risk minimization byminimizing the average loss of sampled results.

Assume that𝑚 different requests have occurred. Then from (20), we

should learn 𝑦 (𝒖, 𝒗) from all𝑚𝑛 observations 𝑌𝑖 𝑗 , for 𝑖 = 1, · · · ,𝑚,

𝑗 = 1, · · · , 𝑛, which are observations of the click result
¯C under

𝒖𝑖 and 𝒗 𝑗 . Thus we have a standard binary classification problem

of𝑚𝑛 training instances (𝑌𝑖 𝑗 , 𝒖𝑖 , 𝒗 𝑗), ∀(𝑖, 𝑗). However, because the
previously deployed CTR model only displays a subset 𝑆 of events,

only 𝑌𝑖 𝑗 for (𝑖, 𝑗, 𝑘) ∈ 𝑆 are revealed. Thus 𝑌𝑖 𝑗 satisfies

𝑌𝑖 𝑗 =

1 (𝑖, 𝑗, 𝑘) ∈ 𝑆+,
0 (𝑖, 𝑗, 𝑘) ∈ 𝑆−,
unrevealed (𝑖, 𝑗, 𝑘) ∉ 𝑆.

(21)

Because we lack 𝑌𝑖 𝑗 for non-displayed events, as mentioned in Sec-

tion 2.1, most approaches solve (6) only with 𝑆 by ignoring the

non-displayed events. However, many works (e.g., [16, 21]) have

pointed out that because the distribution of displayed events in 𝑆

is biased to that of the overall𝑚𝑛 events, the model obtained by

(6) is a biased estimator of the probability defined in (5). Specifi-

cally, let O be an indicator of whether an event is displayed, and

Pr(¯C,UUU,VVV,O = 1) be the joint distribution of clicks, request, and

ads being displayed. The expected risk minimization is changed to

min

𝑦
𝑅(𝑦), where 𝑅(𝑦) =

∫
ℓ (𝑌,𝑦 (𝒖, 𝒗))𝑑 Pr(𝑌, 𝒖, 𝒗,O = 1).

(22)

Because (22) can be reformulated as

𝑅(𝑦) =
∫

ℓ (𝑌,𝑦 (𝒖, 𝒗))𝑑 Pr(𝑌, 𝒖, 𝒗,O = 1)
𝑑 Pr(𝑌, 𝒖, 𝒗) , (23)

from (20), whether 𝑅(·) is an unbiased expected risk depends on if

events have the same chance to be displayed. That is, if there exists

a constant Δ > 0 such that

Pr(¯C,UUU,VVV,O = 1) = Δ Pr(¯C,UUU,VVV), (24)

then

𝑅(𝑦 (𝒖, 𝒗)) =
∫

ℓ (𝑌,𝑦 (𝒖, 𝒗))Δ𝑑 Pr(𝑌, 𝒖, 𝒗) = Δ𝑅(𝑦), (25)

so (20) and (22) return the same optimal model. To investigate (24),

we first express two sides respectively as

Pr(¯C,UUU,VVV,O = 1) = Pr(¯C | UUU,VVV,O = 1) Pr(UUU,VVV,O = 1),
and Pr(¯C,UUU,VVV) = Pr(¯C | UUU,VVV) Pr(UUU,VVV) . (26)

Because the tendency of a customer click can not be affected by if

the ad is displayed, given an event, we should have

Pr(¯C | UUU,VVV,O = 1) = Pr(¯C | UUU,VVV). (27)

By using (27) to cancel terms in the division of the two expressions

in (26) and through Pr(UUU,VVV,O = 1) = Pr(UUU,VVV) Pr(O = 1 |
UUU,VVV), the task of investigating (24) is reduced to checking if the

distribution of an event being displayed

Pr(O = 1 | UUU,VVV) (28)

Unbiased Ad Click Prediction for Position-aware Advertising Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

is uniform. For position-independent systems, whether event (𝑖, 𝑗, 𝑘)
can be included in 𝑆 depends on if ad 𝑗 is retrieved. To maximize

the revenue, most real-world systems retrieve ads with higher ex-

pected revenue into 𝑆 , so (28) is non-uniform and (24) does not

hold, nor does (25). Then 𝑅(·) is not proportional to 𝑅(·), so 𝑅(·) is
a biased expected risk of 𝑦 (𝒖, 𝒗) and the model obtained by solv-

ing (6) leads to a biased estimator of (5). The bias caused by the

non-uniform (28) is referred to as the selection bias and we say

the selected set 𝑆 carries the selection bias. Analysis in works such

as [21] has pointed out that a biased model may overestimate the

expected revenue of ads which had less opportunity to appear in

𝑆 and wrongly display too many of them in future requests. For

the offline evaluation, the set 𝑆te obtained from displayed events in

the test period also carries the selection bias. Thus criteria such as

LogLoss and AUC computed on 𝑆te are biased and cannot give an

accurate performance estimation.

3.2 Two Types of Selection Bias in
Position-aware Systems

Now we extend our discussion of the selection bias to position-

aware systems, where clicks and not-clicks are affected by positions.

For a displayed event (𝑖, 𝑗, 𝑘) in request 𝑖 , we only know whether

ad 𝑗 placed in position 𝑘 is clicked or not, but the click information

of this ad placed in other positions is unknown. To incorporate

the position information, we extend 𝑌 in (21) into a tensor 𝐶 ∈
{0, 1}𝑚×𝑛×𝐾 where each 𝐶𝑖 𝑗𝑘 is the click/not-click observation

of the random variable
¯C. Only for any event included in 𝑆 , the

corresponding 𝐶𝑖 𝑗𝑘 can be revealed. Thus 𝐶𝑖 𝑗𝑘 satisfies

𝐶𝑖 𝑗𝑘 =

1 (𝑖, 𝑗, 𝑘) ∈ 𝑆+,
0 (𝑖, 𝑗, 𝑘) ∈ 𝑆−,
unrevealed (𝑖, 𝑗, 𝑘) ∉ 𝑆.

(29)

By the discussion of (28) in Section 3.1, in a biased setting, the

distribution of an event being included in 𝑆 ,

Pr(O = 1 | UUU,VVV,PPP), (30)

is non-uniform. Thus similar to the failure of (24), in position-aware

systems, Pr(¯C,UUU,VVV,PPP,O = 1) is not proportional to Pr(¯C,UUU,VVV,PPP).
As a result, the learnt 𝑔(·) from solving (11) is a biased estimator of

(4). However, different from the situation of position-independent

systems where only the retrieval procedure is involved, for position-

aware systems, event (𝑖, 𝑗, 𝑘) is included in 𝑆 only if the placement

procedure puts the retrieved ad 𝑗 at position 𝑘 . From this view, by

assuming the retrieval procedure is independent to the position

information, we can expand (30) as

(30) = Pr(retrieved=1, placed@PPP=1 | UUU,VVV,PPP)
= Pr(retrieved = 1 | UUU,VVV)
× Pr(placed@PPP = 1 | UUU,VVV,PPP, retrieved = 1),

(31)

In (31), the retrieval distribution,

Pr(retrieved = 1 | UUU,VVV), (32)

is the same as (28) for position-independent systems, but the fol-

lowing placement distribution is additionally involved for position-

aware systems

Pr(placed@PPP = 1 | UUU,VVV,PPP, retrieved = 1) . (33)

Therefore, besides the bias caused by the non-uniform (32) discussed

in Section 3.1, we expect the non-uniform (33) in the placement

procedure introduces some other bias. To systematically investigate

this, our next analysis is conducted from two aspects:

•We extend the analysis given in [21] to position-aware systems

by assuming that (33) is uniform.

• To explore the bias newly introduced by the placement procedure,

we assume (32) is uniform.

To make (33) uniform, we assume the retrieved 𝐾 ads are placed

in random positions. In this scenario, the system can be seen as a

combination of𝐾 unrelated position-independent systems and each

has a single position. From this view, the analysis given in Section

3.1 can be easily extended to position-aware systems. Given a fixed

position 𝑘 , for an ad more frequently displayed in this position,

more associated events are included in 𝑆 and the clicked/not-clicked

results are revealed in𝐶 . Then the observed click probability of this

ad placed in position 𝑘 is closer to the unbiased one obtained from

the fully-labeled 𝐶 . In contrast, for an ad infrequently displayed in

this position, it was chosen because of the higher expected revenue

predicted by the previous model. The observed click probability

tends to be higher than the unbiased one. The overestimation of

such ads may carry on through the learning of 𝑔(·) by solving (11).

Next, to understand the new bias caused by the non-uniform

(33) in the placement procedure, we design a hypothetical example.

Consider a position-independent systemwhere in each request, two

ads are displayed in two positions. Because both ads are retrieved,

Pr(retrieved = 1 | UUU,VVV) = 1.

Thus no bias is introduced in the retrieval procedure. We assume

that a previous model was deployed for handling requests. For

each request, the model tends to place the ad with a higher click

probability in the first position, while the one with a lower click

probability in the second position. Apparently, the observed click

probability of an ad placed in the first position is significantly higher

than if it is placed in the second position. This example indicates

that for any position-aware scenario, even if the bias discussed in

Section 3.1 is avoided through applying the uniform (32), the non-

uniform (33) results in a new bias. The estimator𝑔(·) obtained by the
positional approach should overestimate click probability of each

ad placed in front positions while underestimate click probability

of each ad placed in last positions.

Moreover, for the non-positional approach that extracts 𝑓 (·)
from 𝑔(·), if the bias due to (33) is ignored, we may excessively

blame the examination probability in (15) for the difference of

click probabilities among various positions. Specifically, recall that

in the hypothetical example given above, we assume a position-

independent system, whose probability in (15) of two positions

should satisfy

Pr(E = 1 | PPP = 𝒑
1
) = Pr(E = 1 | PPP = 𝒑

2
) = 1.

Thus an unbiased estimator ℎ(·) of (15) should predict the same

value for these two positions. However, we have mentioned that

the bias leads to a large gap between

Pr(¯C = 1 | UUU = 𝒖𝑖 ,VVV = 𝒗 𝑗 ,PPP = 𝒑
1
) and

Pr(¯C = 1 | UUU = 𝒖𝑖 ,VVV = 𝒗 𝑗 ,PPP = 𝒑
2
)

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil B. Yuan and Y. Liu, et al.

observed from displayed events, which misleads us to consider this

system to be position-dependent. If we learn 𝑔(·) by solving (11)

with the set carrying the bias, the ℎ(·) extracted from the learnt

𝑔(·) will wrongly digest the gap. As a result, both extracted 𝑓 (·)
and ℎ(·) should be biased and cause the loss of revenue.

To summarize, in this section, we point out two different types

of selection biases in position-aware systems. According to how

they occur, we formally term them respectively as

• Retrieval bias: The bias caused by the non-uniform (32). That is,

in each request, some ads are non-uniformly retrieved.

• Placement bias: The bias caused by the non-uniform (33). That is,

the retrieved ads are non-uniformly placed in positions.

The coexistence of two types of selection biases makes the situ-

ation much more complicated than that of position-independent

systems. Next, we propose a novel framework of unbiased CTR

prediction for position-aware systems.

4 UNBIASED CTR PREDICTION FOR
POSITION-AWARE SYSTEMS

Up to now, for the position-aware systems, we can conclude that

due to the retrieval bias and the placement bias discussed in Section

3.2, both the positional approach and the non-positional approach

reviewed in Section 2.2 meet two difficulties:

• CTR models learnt from the biased training set 𝑆 cannot give

accurate predictions.

• Offline evaluation conducted on a biased test set 𝑆te gives mis-

leading performance estimation on CTR models.

In this section, we propose our solutions to overcome these diffi-

culties respectively for the two approaches.

4.1 Unbiased Positional Approach
We first discuss an unbiased solution for the positional approach,

which aims to estimate (4). Following the discussion in Section 3,

to avoid the selection bias, we should consider all𝑚𝑛𝐾 training

instances (𝐶𝑖 𝑗𝑘 , 𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘) drawn from Pr(𝐶, 𝒖, 𝒗,𝒑) and learn an

unbiased estimator of (4) through solving the following problem.

min

W

∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) + 𝜆R(W). (34)

However, in practice only a subset 𝑆 of events are displayed, so

from (29), 𝐶𝑖 𝑗𝑘 of non-displayed events are unrevealed. Further,

instances (𝐶𝑖 𝑗𝑘 , 𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘) in 𝑆 may not follow the true probabil-

ity distribution Pr(¯C,UUU,VVV,PPP), so solving the binary classification

problem in (11) leads to a biased model. The research “counterfac-

tual learning” [18] aims to obtain an unbiased model by (34) or its

modifications under the given partially labeled and possibly biased

instances. Existing approaches are based on either one (or some) of

the following ideas:

• Randomization: A straightforward idea is to collect an unbiased

training set 𝑆 through randomly retrieving 𝐾 ads and then placing

them on random positions. Because both (32) and (33) become

uniform distributions, Pr(¯C,UUU,VVV,PPP,O = 1) is proportional to
Pr(¯C,UUU,VVV,PPP). Therefore, the optimization problem (11) is the

empirical risk minimization of the expected risk and the resulting

model is unbiased. In other words, instead of drawing all 𝑚𝑛𝐾

instances from Pr(¯C,UUU,VVV,PPP), we sample fewer instances and

solve an approximation of (34). The number of instances collected

through the random strategy is crucial. It cannot be too small to

give enough converage. On the other hand, in contrast to the greedy

strategy discussed in Section 2.2 to maximize the expected revenue,

the random strategy may cause a significant loss of revenue. Thus

collecting a large 𝑆 by the random strategy is often impractical.

• Imputation of non-displayed events [4, 17]: As 𝐶𝑖 𝑗𝑘 , ∀(𝑖, 𝑗, 𝑘) ∉ 𝑆
are not available, the idea is to estimate these values by learning

an imputation model 𝑎(·) using displayed events in 𝑆 . Assume 𝑎(·)
outputs𝐴𝑖 𝑗𝑘 ≡ 𝑎(𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘) as labels for non-displayed events. The
following problem is solved

min

W

∑
(𝑖, 𝑗,𝑘) ∈𝑆 ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) +

∑
(𝑖, 𝑗,𝑘)∉𝑆 ℓ (𝐴𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) +𝜆R(W).

(35)

However, the imputation model 𝑎(·) learnt from a biased set 𝑆 may

propagate the bias to non-displayed events, so CTR models from

(35) may still be biased.

• Inverse-propensity scores (IPS) of displayed events [7, 16]: From

(30), define 𝑧𝑖 𝑗𝑘 = Pr(O = 1 | UUU = 𝒖𝑖 ,VVV = 𝒗 𝑗 ,PPP = 𝒑𝑘) referred
to as the propensity score of event (𝑖, 𝑗, 𝑘). We can have a 0/1
random variable

˜O𝑖 𝑗𝑘 that follows a Bernoulli distribution as ˜O𝑖 𝑗𝑘 ∼
Bern(𝑧𝑖 𝑗𝑘) to control whether an event (𝑖, 𝑗, 𝑘) can be displayed.

Because

E
˜O˜O˜O [
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘)
𝑧𝑖 𝑗𝑘

˜O𝑖 𝑗𝑘]

=
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘),

from the observation of
˜O𝑖 𝑗𝑘 satisfying

˜O𝑖 𝑗𝑘 = 0,∀(𝑖, 𝑗, 𝑘) ∉ 𝑆 , we
can consider the following problem

min

W

∑
(𝑖, 𝑗,𝑘) ∈𝑆

ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘)
𝑧𝑖 𝑗𝑘

+ 𝜆R(W) (36)

to get an unbiased estimator of 𝑃𝑖 𝑗𝑘 . Unfortunately, it is known

that accurately estimating 𝑧𝑖 𝑗𝑘 is not an easy task. This requires

that whether event (𝑖, 𝑗, 𝑘) can be displayed is decided by a ran-

dom variable
˜O𝑖 𝑗𝑘 , but as pointed out in [21], for most advertising

systems, displayed events are selected according to the expected

revenue. Such a deterministic display algorithm makes the IPS

method impractical.

Through a tradeoff between these ideas and their shortcomings,

we extend the framework proposed in [21] to position-aware sys-

tems, which combines the three ideas listed above and solves the

following problem.

min

W

∑
(𝑖, 𝑗,𝑘) ∈𝑆

ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 𝜔ℓ̄ (𝐴𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘)
𝑧𝑖 𝑗𝑘

+ 𝜔
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

ℓ̄ (𝐴𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) + 𝜆R(W),
(37)

where (35) and (36) are combined by the doubly robust method [4]

in the first two terms, which are respectively termed as the IPS

part and the imputation part, and ℓ̄ (·) is the loss function for the

imputation part. Moreover, because the number of (𝑖, 𝑗, 𝑘) ∉ 𝑆 is

huge and the imputed labels 𝐴𝑖 𝑗𝑘 of these non-displayed events

are less reliable than observed 𝐶𝑖 𝑗𝑘 of those displayed events in

𝑆 , a small user-specified parameter 𝜔 is applied to balance the

two parts. To accurately impute labels of non-displayed events in

the imputation part, we utilize the random strategy on a small

Unbiased Ad Click Prediction for Position-aware Advertising Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

proportion of traffic to collect a minor but unbiased subset 𝑆
unbiased

of 𝑆 . Through solving (11) with 𝑆
unbiased

, we can learn an unbiased

imputation model 𝑎(·), which outputs 𝐴𝑖 𝑗𝑘 ≡ 𝑎(𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘) as the
imputed labels for non-displayed events. For 𝑧𝑖 𝑗𝑘 in the IPS part,

with the tuning of 𝜔 , we follow [10, 21] to use a constant.

With the inclusion of non-displayed events, (37) can be seen as a

standard classification problem with𝑚𝑛𝐾 instances. Because both

𝑚 and 𝑛 can be tremendous in real-world systems, any optimization

algorithm applied to solve (37) may easily involve a prohibitive cost

proportional to O(𝑚𝑛𝐾). For position-independent systems, the

training of fully-labeled problems has been well-studied in recent

works (e.g., [20–22]) by imposing some restrictions on the selection

of the model function and the loss function ℓ̄ (·) of the imputation

part. These past studies consider a two-dimensional label matrix

without the position dimension, but here we have a tensor 𝐶 . We

make an extension by considering the following settings.

• The squared loss is applied for ℓ̄ (·) as ℓ̄ (𝑎, 𝑏) = (𝑎 − 𝑏)2
• The CTR model function 𝑔(𝒖, 𝒗,𝒑) and the imputation model

𝑎(𝒖, 𝒗,𝒑) can be decomposed to multiple parts respectively related

to 𝒖,𝒗 or 𝒑 only.

Under these settings efficient optimization methods can be devel-

oped so all operations involving the O(𝑚𝑛𝐾) cost can be factorized

into a series of operations with a smaller O(𝑚) +O(𝑛) +O(𝐾) cost.
In our realization for experiments in Section 6, we propose tensor

factorization machine (TFM) as both the CTR model 𝑔(·) and the

imputation model 𝑎(·). It is an extension of factorization machines

[14]. Given any 𝒖𝑖 ∈ R𝐷𝑢 , 𝒗 𝑗 ∈ R𝐷𝑣
and𝒑𝑘 ∈ R𝐷𝑝

, TFM finds three

embedding matrices 𝑄𝑢 ∈ R𝐷𝑢×𝑑
, 𝑄𝑣 ∈ R𝐷𝑣×𝑑

, and 𝑄𝑝 ∈ R𝐷𝑝×𝑑

to represent information of request 𝑖 , ad 𝑗 and position 𝑘 as three

𝑑-dimensional vectors, 𝑄𝑇𝑢 𝒖𝑖 , 𝑄
𝑇
𝑣 𝒗 𝑗 , and 𝑄

𝑇
𝑝 𝒑𝑘 , respectively. Here

𝑑 is a user-specified parameter. Then TFM uses 1𝑑 , a vector of all
ones, to sum up the component-wise product of the three vectors

as the following output value

1𝑇
𝑑

(
(𝑄𝑇𝑢 𝒖𝑖) ⊙ (𝑄𝑇𝑣 𝒗 𝑗) ⊙ (𝑄𝑇𝑝 𝒑𝑘)

)
, (38)

where ⊙ is the Hadamard product. We apply a block coordinate

descent method to efficient solve (37) without the O(𝑚𝑛𝐾) cost;
see more details in supplementary materials.

For the offline evaluation, some displayed events in a separate

time period should be considered as the test set. For our setting,

recall a small portion of traffic is used to collect an unbiased subset

through the random strategy. This set can be used as the test set

𝑆te to give an unbiased offline evaluation.

4.2 Unbiased Non-positional Approach
The non-positional approach finds 𝑓 (·) and ℎ(·) that are decom-

posed from 𝑔(·). Naturally we can extract them from an unbiased

estimator 𝑔(·) obtained through techniques discussed in Section

4.1. However, subsequently we point out a new issue occurred in

the non-positional approach.

We mentioned in Section 2.2 that under the decomposition of the

probability value in (13), the click random variable
¯C is observed,

but neither 𝑃𝑖 𝑗 nor 𝛽𝑘 is directly available. A new issue is that

even if an unbiased 𝑔(·) is obtained, the resulting 𝑓 (·) can still be a

heavily biased estimator of (14). Take the setting (19) to decompose

𝑔(·) as an example and assume 𝑓 ∗ (·) and ℎ∗ (·) are respectively

unbiased estimators of (14) and (15). Given any 𝑔(·), there exists
an arbitrary constant 𝑐1 such that for any 𝒖𝑖 , 𝒗 𝑗 , and 𝒑𝑘 ,

𝑔(𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘) = 𝑓 ∗ (𝒖𝑖 , 𝒗 𝑗) + ℎ∗ (𝒑𝑘) = (𝑓 ∗ (𝒖𝑖 , 𝒗 𝑗) − 𝑐1) + (ℎ∗ (𝒑𝑘) + 𝑐1) .
If 𝑐1 ≠ 0, we explain that 𝑓 (·) = 𝑓 ∗ (·)−𝑐1 may be a biased estimator.

For any request 𝑖 , computing (17) by 𝑓 ∗ (·) and 𝑓 (·) respectively as

𝜎 (𝑓 ∗ (𝒖𝑖 , 𝒗 𝑗)) × bid𝑗 ,∀𝑗 and 𝜎 (𝑓 ∗ (𝒖𝑖 , 𝒗 𝑗) − 𝑐1) × bid𝑗 ,∀𝑗
may lead to different orders of the 𝑛 ads. Thus results by 𝑓 (·)
are different from 𝑓 ∗ (·). In addition, an unbiased 𝑓 (·) can not be

detected through offline evaluation because, from Section 2.2.3,

existing non-positional approaches can only evaluate 𝑔(·) rather
than 𝑓 (·).

Recall that the goal of the non-positional approach is that through

the assumption in (13), we can learn a non-positional CTR model

𝑓 (·) for an efficient display algorithm. We show that this purpose

can be accomplished without requiring 𝑓 (·) to be an unbiased esti-

mator of 𝑃𝑖 𝑗 in (14). For the explanation, we begin with a simplified

scenario so all positions share a positive constant 𝛼 as the exam-

ination probability (15). From (13), the click probability of event

(𝑖, 𝑗, 𝑘) satisfies
𝛼𝑃𝑖 𝑗 = 𝑃𝑖 𝑗𝑘 . (39)

Under this setting, for any request 𝑖 , retrieving 𝐾 ads with the

largest values respectively of

𝛼𝑃𝑖 𝑗 × bid𝑗 ,∀𝑗, and 𝑃𝑖 𝑗 × bid𝑗 ,∀𝑗, (40)

leads to the same solution of the assignment problem discussed

in Section 2.2. So from clicks/not-clicks we can learn an estimator

of 𝑃𝑖 𝑗𝑘 in (39) as the non-positional CTR model 𝑓 (·). Though 𝑓 (·)
obtained in this way estimates 𝛼𝑃𝑖 𝑗 rather than 𝑃𝑖 𝑗 , through (40) it

accomplishes the original purpose of the non-positional approach.

Now we switch back to discuss the general scenario, where (39)

does not hold and different positions have various examination

probabilities 𝛽𝑘 . The following theorem (proof is in supplementary

materials) shows that an unbiased 𝑓 (·) can be learnt by solving

(34).

Theorem 4.1. Assume the following conditions hold.
(1) A fully-labeled 𝐶 is avaiable
(2) The logistic loss in (7) is applied as the loss function ℓ (·)

By considering 𝐶𝑖 𝑗𝑘 = 𝑓 (𝒖𝑖 , 𝒗 𝑗) and solving (34), there exists an 𝛼
such that the resulting 𝑓 (·) is an unbiased estimator of 𝛼𝑃𝑖 𝑗 .

From Theorem 4.1, because 𝐶𝑖 𝑗𝑘 = 𝑓 (𝒖𝑖 , 𝒗 𝑗) in solving (37), the

function ℎ(·) in the non-positional approach can be ignored. For

the offline evaluation, we follow the setting in Section 4.1 to have a

small portion of traffic served by the random strategy to compose an

unbiased subset as 𝑆te. We prove in supplementarymaterials that for

any non-positional CTR model 𝑓 (𝒖, 𝒗) to be evaluated, the obtained
LogLoss and AUC on 𝑆te are unbiased metrics of estimating (39).

5 RELATEDWORKS
Besides the several works on CTR prediction and the selection

bias reviewed earlier, in supplementary materials we discuss a

related topic “unbiased learning-to-rank (LTR) from clicks” [8, 19].

However, due to the different roles of position and the difference

between ranking learning and point-wise learning, their ideas and

derived approaches are quite different from ours.

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil B. Yuan and Y. Liu, et al.

6 EXPERIMENTS
In this section, after presenting our experiment setup including

datasets, evaluation criteria and parameter selection, we conduct a

series of experiments to investigate the following research questions

(RQs).

• RQ1: How do the retrieval bias and the placement bias degrade

the performance of CTR prediction for position-aware systems?

• RQ2: Can our proposed unbiased positional approach accurately

estimate (4)?

• RQ3: Can our proposed unbiased non-positional approach accu-

rately estimate (39)?

• RQ4: Can our proposed unbiased offline evaluation for the non-

position approachal give accurate performance estimation on non-

positional CTR models?

6.1 Experiment Setup
We consider two data sets for experiments. They are generated from

the “Outbrain Click Prediction” competition,
1
and “KKBox’s Music

Recommendation Challenge” competition.
2
From the original set we

construct a fully-observed set with instances in three time windows.

For Outbrain, we select 8.4M requests and 300 ads. For KKBox, we

select 2.6M requests and 100 ads. Details of data preprocessing is

in supplementary materials.

To get the training set 𝑆 , similar to practical CTR systems, we

use a model built on data in the first window to select events in the

second window. From the discussion in Sections 2.2, 3.2 and 4, for

each request, we select 𝐾 events by the following strategies .

• Greedy: This strategy, described in Section 2.2, retrieves the top-

𝐾 ads according to the expected revenue. For the placement, the

retrieved 𝐾 ads are orderly placed in 𝐾 positions; see Section 3.2.

The generated 𝑆 carries both the retrieval bias and placement bias.

• RG: This strategy randomly retrieves 𝐾 ads and orderly places

them according to the expected revenue. From Section 3.2, the

generated 𝑆 solely carries the placement bias, as the retrieval bias

has been eliminated by the uniform (32).

• GR: In contrast to RG, this strategy retrieves the top-𝐾 ads with

the highest expected revenue but places them in random positions.

From Section 3.2, this setting eliminates the placement bias by the

uniform (33), so the generated 𝑆 solely carries the retrieval bias.

•Random: This strategy randomly retrieves𝐾 ads and places them

in random positions. Because both (32) and (33) are uniform, the

generated 𝑆 is unbiased.

• 𝜖-greedy: This strategy is a compromise of Greedy andRandom
introduced in Section 4.1. For most requests, ads are generated by

the Greedy strategy, while for a small ratio 𝜖 of requests, we use

the Random strategy to form an unbiased 𝑆
unbiased

as a subset of

𝑆 . For 𝜖 , we consider 0.01 and 0.1.

Next we discuss the generation of labels (clicks and not-clicks)

in 𝑆 , which now simulates a position-aware system. We consider

𝐶𝑖 𝑗𝑘 = 𝑌𝑖 𝑗𝐸𝑖 𝑗𝑘 , ∀(𝑖, 𝑗, 𝑘) ∈ 𝑆, (41)

where 𝑌𝑖 𝑗 is the ground-truth observation of 𝑃𝑖 𝑗 in (14), and under

the given (𝑖, 𝑗), 𝐸𝑖 𝑗𝑘 is an observation from 𝐵(𝛽𝑘). In our experi-

ments, we set 𝛽𝑘 = 0.5𝑘−1
. From 𝐶𝑖 𝑗𝑘 , we can split 𝑆 into 𝑆+ and

1
https://www.kaggle.com/c/outbrain-click-prediction

2
https://www.kaggle.com/c/kkbox-music-recommendation-challenge

Table 2: Data statistics.

Data Set

Outbrain KKBox

|𝑆+ | |𝑆− | |𝑆+ | |𝑆− |
Greedy 1.34M 83.70M 0.28M 25.54M

RG 0.19M 84.85M 0.11M 25.71M

GR 0.68M 84.36M 0.17M 25.65M

Random 0.06M 84.98M 0.05M 25.77M

0.01-greedy 1.32M 83.71M 0.28M 25.54M

0.1-greedy 1.21M 83.83M 0.25M 25.57M

𝑆−. Finally, by the random strategy described above and the 𝐶𝑖 𝑗𝑘
setting in (41), we construct and unbiased test set 𝑆te from events

in the last time window, which are independent from the training

set 𝑆 .

Besides the 𝑆 and 𝑆te sets generated above, to evaluate results

in Section 4.2 on non-positional approaches, we prepare another

version of 𝑆 and 𝑆te as follows.

• 𝑆(𝛼): We select events by the Random strategy. For the gener-

ation of label 𝐶𝑖 𝑗𝑘 , the setting in (41) is applied but positions are

assumed to share the same examination probability 𝛼 . Thus 𝐸𝑖 𝑗𝑘 is

the observation from 𝐵(𝛼) and 𝛼 is computed by
1

𝐾

∑𝐾
𝑘=1

𝛽𝑘 .

• 𝑆te (𝛼): By the same setting for 𝑆(𝛼), we select events by the

Random strategy and apply 𝐸𝑖 𝑗𝑘 , the observation from 𝐵(𝛼), to
generate 𝐶𝑖 𝑗𝑘 .

The statistics of the generated 𝑆 sets are in Table 2. Note that

|𝑆+ |, the number of clicked events in 𝑆 , significantly vary accord-

ing to the strategy to retrieve and place ads. For example, 𝑆+ of
the Greedy strategy is much larger than Random. The reason is

that from the prior knowledge by the previous model, the Greedy
strategy tends to select events with a high click probability, while

the Random strategy randomly selects events without considering

their click probabilities. For the similar reason, though the RG and

GR strategies employ randomization solely in the retrieval or place-

ment procedure, their |𝑆+ | are much smaller than Greedy. Note
that as |𝑆+ | also reflects the revenue gained during collecting 𝑆 , the
gap between |𝑆+ | collected by Greedy and |𝑆+ | by other strategies

can be seen as the revenue loss caused by employing randomization.

Clearly, while Random (or RG, GR) leads to an unbiased or (less

biased) model for future predictions, the revenue loss in the current

time period may be huge. In contrast, for the strategy 𝜖-greedy,
through the collection and the effective use of a small unbiased

subset 𝑆
unbiased

, the revenue loss due to randomization is negligible.

For evaluation criteria, we consider LogLoss and AUC respec-

tively defined in (9) and (10). For parameter selection, details are in

supplementary materials. We finally train a model with 𝑆 by using

the selected parameters, and report LogLoss and AUC by evaluating

𝑆te.

6.2 Deep Understanding of Two Types of
Selection Bias through Visualization

Details of this analysis are in supplementary materials.

6.3 Comparison on Various Positional
Approaches

To investigate RQ2, we compare various positional approaches,

where all of them consider the TFM in (38) as the positional CTR

Unbiased Ad Click Prediction for Position-aware Advertising Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

model 𝑔(·). We group these approaches into two main categories.

The first category includes four approaches solving (11) with dif-

ferent biased training set 𝑆 . According to how 𝑆 is generated in

Section 6.1, we term them respectively as TFM-Greedy, TFM-RG,
TFM-GR, and TFM-EE (𝜖). The second category includes approaches
in Section 4.1 that aim to eliminate biases.

• TFM-Random: This approach simply solves (11) using an unbi-

ased 𝑆 generated by the Random strategy.

• TFM-CF (𝜖): This approach is a realization of our proposed frame-

work in (37). The set 𝑆 collected by the 𝜖-greedy strategy is used

so that it includes a small unbiased subset 𝑆
unbiased

. The imputation

model 𝑎(·) is obtained by solving (11) with the TFM model on the

subset 𝑆
unbiased

. We then have 𝐴𝑖 𝑗𝑘 = 𝑎(𝒖𝑖 , 𝒗 𝑗 ,𝒑𝑘) and solve (37)

to obtained a CTR model. For the propensity score 𝑧𝑖 𝑗𝑘 , we follow

[21] to simply set 𝑧𝑖 𝑗𝑘 = 1.

After the above models are trained, we evaluate them on the test

set 𝑆te; see details in Section 6.1. By comparing results of different

positional approaches in Table 3, we have the following observa-

tions.

• The approach TFM-Greedy, which learns 𝑔(·) with 𝑆 carrying

both the retrieval and the placement biases, performs the worst.

This observation confirms our conjecture that the two types of

selection bias significantly degrade the performance of the learnt

𝑔(·).
• For TFM-RG and TFM-GR, through respectively eliminating the

retrieval bias and the placement bias, their performance has im-

proved. In particular, the improvement of TFM-RG is more remark-

able. The reason is as we mentioned in Section 6.2, the overestima-

tion effect caused by the retrieval bias is more dominant.

• The approach TFM-Random performs the best. The reason is as

we mentioned in Section 4.1, learning from the unbiased 𝑆 leads

𝑔(·) to be an unbiased estimator of (4).

• For TFM-EE (𝜖) and TFM-CF (𝜖), by including a small but unbi-

ased subset 𝑆
unbiased

in 𝑆 collected by 𝜖-greedy, their performance

is significantly better than TFM-Greedy. With the increase of the

ratio 𝜖 , the improvement enlarges. Under the same 𝜖 , our proposed

TFM-CF (𝜖) is remarkably better than TFM-EE (𝜖). The reason is

that besides displayed events in 𝑆 , TFM-CF (𝜖) incorporates non-
displayed events by imputing their labels.

• The performance of TFM-CF (𝜖) is almost as good as the best

approaches TFM-Random and TFM-RG. However, as we mentioned

in Section 6.1, the revenue loss is much smaller due to employing

randomization on only a small subset 𝑆
unbiased

. By trading off the

performance improvement against the revenue loss, TFM-CF (𝜖) is
the most competitive approach.

6.4 Comparison on Various Approaches for
Learning Non-positional CTR Models

We investigate RQ3 through comparing various approaches for

learning non-positional CTR models. Following the discussion in

Section 2.2.2, the CTR model 𝑓 (·) is now non-positional. Thus

the TFM model considered earlier should be reduced to standard

factorization machine (FM) [14], but here we consider an extension

called the field-aware FM (FFM) [9, 22]. We group non-positional

approaches into three categories. The first category includes an

ideal approach.

Table 3: A comparison of test scores by using different posi-
tional approaches. The best approach is bold-faced.

Data Set KKBox Outbrain

Metric LL AUC LL AUC

TFM-Greedy 0.049 0.779 0.102 0.766

TFM-RG 0.012 0.869 0.005 0.915

TFM-GR 0.025 0.765 0.062 0.807

TFM-EE (0.01) 0.018 0.749 0.011 0.839

TFM-EE (0.1) 0.013 0.854 0.005 0.875

TFM-Random 0.012 0.875 0.004 0.948
TFM-CF (0.01) 0.013 0.858 0.005 0.888

TFM-CF (0.1) 0.013 0.864 0.005 0.918

• FFM-Ideal: This approach learns 𝑓 (·) through solving (6) with

𝑆 (𝛼). As mentioned in Section 6.1, because 𝑆 (𝛼) has the ground-
truth of (39) and is free of selection biases, the performance of the

learnt 𝑓 (·) can be considered as the optimal benchmark.

The scecond category includes two existing approaches reviewed

in Section 2.2.2. They extract 𝑓 (·) from a customized 𝑔(·) learnt
through solving (11) by the following settings.

• FFM-Greedy-A: This approach follows [11, 23] to consider the

combination in (19).

• FFM-Greedy-P: This approach follows [6] to consider the combi-

nation in (18).

For ℎ(·), we apply ℎ(𝒑𝑘) = 𝑏𝑘 for both approaches, where 𝑏𝑘
is a real-valued parameter of position 𝑘 . The training set 𝑆 is the

one collected by the Greedy strategy because that is the standard

setting ignoring the issue of selection biases. The third category

includes unbiased approaches discussed in Section 4.2.

• FFM-Random: By using 𝑆 collected by the Random strategy, this

approach obtains an unbiased estimator of (39) through solving (6).

• FFM-CF (𝜖): By using 𝑆 collected under the Random strategy,

this is a realization of our proposed framework in (37), where 𝑆

is collected by 𝜖-greedy to have a small unbiased subset 𝑆
unbiased

.

For learning the imputation model 𝑎(·), we consider the FFM and

solve (6) by using the unbiased subset 𝑆
unbiased

. We then have

𝐴𝑖 𝑗𝑘 ≡ 𝑎(𝒖𝑖 , 𝒗 𝑗) and solve (37) with𝐶𝑖 𝑗𝑘 = 𝑓 (𝒖𝑖 , 𝒗 𝑗). Similar to the

TFM-CF (𝜖) approach in Section 6.3, we set 𝑧𝑖 𝑗𝑘 = 1 in (37).

While non-positional approaches were introduced to address the

impracticability of positional approaches on large-scale position-

aware systems, it is important to check if they are really superior

to systems without considering position information at all. To this

end, we include the following position-independent systems as

a baseline for comparison: FFM-Greedy, and FFM-EE (𝜖). They
vary according to how 𝑆 is collected. The model function 𝑦 (𝒖, 𝒗) is
learned by solving (6).

For evaluation, we consider two test sets 𝑆te and 𝑆te (𝛼); see
details of these sets in Section 6.1. A purpose is to check for RQ4

whether results on 𝑆te, which are obtained in practice, are consistent

with those by using 𝑆te (𝛼) that has the ground truth of (39).

From the results presented in Table 4, we have the following

observations.

• By comparing the scores on 𝑆te and 𝑆te (𝛼), the small difference

justifies the result in Section 4.2 that evaluating LogLoss and AUC

on 𝑆te can an unbiased evaluation of estimating (39).

• The bad performance of FFM-Greedy, which simulates the stan-

dard setting of position-independent systems, confirms the need to

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil B. Yuan and Y. Liu, et al.

Table 4: A performance comparison of different approaches
of estimating (14). We show scores of evaluating on two test
sets 𝑆te, and 𝑆te (𝛼). The best approach is bold-faced.
Data Set KKbox Outbrain

Test Set 𝑆te 𝑆te (𝛼) 𝑆te 𝑆te (𝛼)
Metric LL AUC LL AUC LL AUC LL AUC

FFM-Ideal 0.014 0.726 0.014 0.729 0.004 0.914 0.004 0.914
FFM-Greedy-A 0.057 0.449 0.057 0.448 0.213 0.615 0.213 0.615

FFM-Greedy-P 0.102 0.472 0.102 0.473 0.155 0.583 0.155 0.584

FFM-Random 0.014 0.729 0.014 0.733 0.004 0.912 0.004 0.912
FFM-CF (0.01) 0.015 0.634 0.015 0.642 0.006 0.780 0.006 0.785

FFM-CF (0.1) 0.014 0.677 0.014 0.682 0.005 0.865 0.005 0.864

Baseline: position-independent systems

FFM-Greedy 0.028 0.493 0.028 0.493 0.046 0.611 0.046 0.612

FFM-EE (0.1) 0.016 0.531 0.016 0.530 0.008 0.683 0.008 0.682

FFM-EE (0.1) 0.015 0.585 0.015 0.581 0.006 0.767 0.006 0.766

consider the position information and the selection bias.

• Compared to FFM-Greedy, the improvement of FFM-Greedy-A
and FFM-Greedy-P is minor. From the discussion in Section 3, the

reason is that because the selection bias leads to a biased 𝑔(·), the
extracted 𝑓 (·) is also biased and gives poor predictions.

• The approach FFM-Ideal and FFM-Random are the best. The

performance of FFM-Ideal is intuitive, as it directly learns 𝑓 (·)
from the unbiased 𝑆 (𝛼) containing ground-truth of (39). The small

difference between FFM-Random and FFM-Ideal confirms our re-

sult given in Theorem 4.1 that the 𝑓 (·) obtained by the unbiased

solution of the problem (34) is an unbiased estimator of (39).

• For FFM-CF (𝜖) and FFM-EE (𝜖) , leveraging the unbiased small

subset 𝑆
unbiased

leads to competitive performances. By incorporat-

ing the non-displayed events through imputing their labels, FFM-CF
(𝜖) performs significantly better than FFM-EE (𝜖) under the same 𝜖 .

This observation is consistent with the comparison between TFM-
EE (𝜖) and TFM-CF (𝜖) in Section 6.3.

• Finally, as we have commented on the approach TFM-CF (𝜖) in
Section 4.1, the revenue loss of FFM-CF (𝜖) is much smaller than

FFM-Random because of considering only a small subset to em-

ploy randomization. Thus our proposed FFM-CF (𝜖) approach is

practically useful for position-aware systems.

7 CONCLUSION
In this work, we focus on CTR prediction for position-aware ad-

vertising systems, where because an ad placed in various positions

has different click probabilities, the position information should

be considered in both training and prediction. Existing approaches

for position-aware systems broadly fall into two categories: posi-

tional approach and non-positional approach, which learn CTR

models from clicks/not-clicks on historically displayed events by

leveraging the position information in different ways. However,

through pointing out the following issues, we argue that these

existing approaches are biased.

• For each request, some ads are non-uniformly retrieved and then

these retrieved ads are non-uniformly placed in positions. This

causes that two types of selection biases, the retrieval bias and the

placement bias, coexist in displayed events.

• For the non-positional approaches attempting to estimate (14),

CTR models are learned and evaluated indirectly. An additional

bias may occur.

To address the above issues, we derive a novel counterfactual

learning framework. We prove that under the proposed framework,

for both positional and non-positional approaches, learning and

evaluation are unbiased. Experiments confirm both our analysis on

selection biases and the effectiveness of our proposed counterfactual

learning framework.

REFERENCES
[1] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles, D. Max

Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013.

Counterfactual reasoning and learning systems: The example of computational

advertising. JMLR 14 (2013), 3207–3260.

[2] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. 2015. Simple and scalable

response prediction for display advertising. ACM TIST 5, 4 (2015), 61:1–61:34.

[3] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and

Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender

system. In WSDM.

[4] Miroslav Dudík, John Langford, and Lihong Li. 2011. Doubly robust policy

evaluation and learning. In ICML.
[5] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: a factorization-machine based neural network for CTR prediction. In

IJCAI.
[6] Huifeng Guo, Jinkai Yu, Qing Liu, Ruiming Tang, and Yuzhou Zhang. 2019. PAL: a

position-bias aware learning framework for CTR prediction in live recommender

systems. In RecSys.
[7] Daniel G. Horvitz and Donovan J. Thompson. 1952. A Generalization of Sampling

Without Replacement From a Finite Universe. J. Amer. Statist. Assoc. 47 (1952),
663–685.

[8] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased

learning-to-rank with biased feedback. In WSDM.

[9] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware

Factorization Machines for CTR Prediction. In RecSys.
[10] Carolin Lawrence, Artem Sokolov, and Stefan Riezler. 2017. Counterfactual

Learning from Bandit Feedback under Deterministic Logging: A Case Study in

Statistical Machine Translation. In EMNLP.
[11] Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun.

2017. Model ensemble for click prediction in bing search ads. In WWW.

[12] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong,

and Ed H Chi. 2020. Off-policy Learning in Two-stage Recommender Systems.

In WWW.

[13] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat

Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos,

and Jeremy Kubica. 2013. Ad Click Prediction: a View from the Trenches. In

KDD.
[14] Steffen Rendle. 2010. Factorization machines. In ICDM.

[15] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting

clicks: estimating the click-through rate for new ADs. In WWW.

[16] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and

Thorsten Joachims. 2016. Recommendations As Treatments: Debiasing Learning

and Evaluation. In ICML.
[17] Harald Steck. 2010. Training and Testing of Recommender Systems on Data

Missing Not at Random. In KDD.
[18] Adith Swaminathan and Thorsten Joachims. 2015. Batch learning from logged

bandit feedback through counterfactual risk minimization. JMLR 16 (2015),

1731–1755.

[19] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to rank with selection bias in personal search. In SIGIR.
[20] Hsiang-Fu Yu, Hsin-Yuan Huang, Inderjit S. Dihillon, and Chih-Jen Lin. 2017.

A Unified Algorithm for One-class Structured Matrix Factorization with Side

Information. In AAAI.
[21] Bowen Yuan, Jui-Yang Hsia, Meng-Yuan Yang, Hong Zhu, Chihyao Chang, Zhen-

hua Dong, and Chih-Jen Lin. 2019. Improving Ad Click Prediction by Considering

Non-displayed Events. In CIKM.

[22] Bowen Yuan, Meng-Yuan Yang, Jui-Yang Hsia, Hong Zhu, Zhirong Liu, Zhenhua

Dong, and Chih-Jen Lin. 2019. One-class Field-aware Factorization Machines for
Recommender Systems with Implicit Feedbacks. Technical Report. National Taiwan
Univ.

[23] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,

Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019.

Recommending what video to watch next: a multitask ranking system. In RecSys.

Unbiased Ad Click Prediction for Position-aware Advertising Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

Supplementary Materials for“Unbiased Ad Click Prediction

for Position-aware Advertising Systems”

A EFFICIENT TRAINING OF TENSOR
FACTORIZATION MACHINE

As we mentioned in Section 4.1, to solve (37) without O(𝑚𝑛𝐾)
costs, the CTR model and imputation model should satisfy some

conditions. In this section, we take the TFMmodel defined in (38) as

an example to present our efficient training algorithm. Specifically,

we consider the TFM model as both CTR and imputation models,

which is a multi-block convex function. Therefore, we can apply

block coordinate descent (CD) method to solve (37). At each cycle of

the block CDmethod, we sequentially solve convex sub-problems of

𝑄𝑢 , 𝑄𝑣 and 𝑄𝑝 . The overall procedure is summarized in Algorithm

1.

If we consider to update the block 𝑄𝑢 , then the convex sub-

problem is to solve

min

𝑄𝑢

∑
(𝑖, 𝑗,𝑘) ∈𝑆

ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 𝜔 (𝐴𝑖 𝑗𝑘 −𝐶𝑖 𝑗𝑘)2

𝑧𝑖 𝑗𝑘

+ 𝜔
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

(𝐴𝑖 𝑗𝑘 −𝐶𝑖 𝑗𝑘)2 +
𝜆

2

∥𝑄𝑢 ∥2
F
,

(A.1)

where 𝑙2 regularization is considered such that 𝑅(𝑄𝑢) = ∥𝑄𝑢 ∥2
F
/2.

The objective function in (A.1) is a general convex function, so some

differentiable optimization techniques such as gradient descent,

Quasi-Newton or Newton are needed. All these methods must

calculate the gradient (i.e., the first derivative) or the Hessian-vector

product (where Hessian is the second-order derivative), but the

O(𝑚𝑛𝐾) cost is the main concern.

Following [20–22], for easy analysis, we write (A.1) to a vector

form

𝑓 (�̃�),
where �̃� = vec(𝑄𝑢) and vec(·) stacks the columns of a matrix. We

consider Newton methods to solve the sub-problem.

An iterative procedure is conducted in a Newton method. Each

Newton iteration minimizes a second-order approximation of the

function to obtain a updating direction 𝒔

min

𝒔
∇𝑓 (�̃�)𝑇 𝒔 + 1

2

𝒔𝑇∇2 𝑓 (�̃�)𝒔 . (A.2)

Because 𝑓 (�̃�) is convex, the direction 𝒔 can be obtained by solving

the following linear system

∇2 𝑓 (�̃�)𝒔 = −∇𝑓 (�̃�) . (A.3)

We follow [20, 22] to solve (A.2) by an iterative procedure called

the conjugate gradient method (CG). The main reason of using CG

is that ∇2 𝑓 (�̃�) is too large to be stored, and CG addresses this issue

by that each CG step mainly involves the product between ∇2 𝑓 (�̃�)
and a vector �̃�

∇2 𝑓 (�̃�)�̃�, (A.4)

which, with the problem structure, may be conducted without ex-

plicitly forming ∇2 𝑓 (�̃�).
To ensure the convergence of the Newton method, after obtain-

ing an updating direction 𝒔, a line search procedure is conducted

to find a suitable step size 𝜃 . Then we update the �̃� by

�̃� ← �̃� + 𝜃𝒔 .

We follow the standard backtracking line search to check a sequence

1, 𝛽, 𝛽2, · · · and choose the largest 𝜃 such that the sufficient decrease

of the function value is obtained

𝑓 (�̃� + 𝜃𝒔) − 𝑓 (�̃�) ≤ 𝜃𝜈∇𝑓 𝑇 (�̃�)𝒔 . (A.5)

where 𝛽, 𝜈 ∈ (0, 1) are pre-specified constants.

A.1 Algorithm Details
To discuss techniques for addressing the issue of O(𝑚𝑛𝐾) complex-

ity, let

�̃� = vec(𝑄𝑢)
and re-write (A.1) as

𝑓 (�̃�) = 𝜆

2

∥�̃� ∥2
2
+ 𝐿+ (�̃�) + 2𝜔𝐿− (�̃�), (A.6)

where

𝐿+ (�̃�) =
∑
(𝑖, 𝑗,𝑘) ∈𝑆

1

𝑧𝑖 𝑗𝑘
(ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 𝜔 (𝐴𝑖 𝑗𝑘 −𝐶𝑖 𝑗𝑘)2) (A.7)

𝐿− (�̃�) = 1

2

∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

(𝐴𝑖 𝑗𝑘 −𝐶𝑖 𝑗𝑘)2 .

Then the gradient and Hessian-vector product can be respectively

re-written as

∇ ˜𝑓 (�̃�) = 𝜆�̃� + ∇𝐿+ (�̃�) + 2𝜔∇𝐿− (�̃�), and

∇2 ˜𝑓 (�̃�)�̃� = 𝜆�̃� + ∇2𝐿+ (�̃�)�̃� + 2𝜔∇2𝐿− (�̃�)�̃� .

A.1.1 The Computation of ∇ ˜𝑓 (�̃�). Let𝒘𝑖 = 𝑄𝑇𝑢 𝒖𝑖 , 𝒉 𝑗 = 𝑄𝑇𝑣 𝒗 𝑗 and
𝒛𝑘 = 𝑄𝑇𝑝 𝒑𝑘 . When updating vec(𝑄𝑢), the value𝐶𝑖 𝑗𝑘 can be written

as

𝐶𝑖 𝑗𝑘 = 1𝑇
𝑑

(
(𝑄𝑇𝑢 𝒖𝑖) ⊙ (𝑄𝑇𝑣 𝒗 𝑗) ⊙ (𝑄𝑇𝑝 𝒑𝑘)

)
= (𝒖𝑇𝑖 𝑄𝑢) (𝒉 𝑗 ⊙ 𝒛𝑘)

= vec(𝑄𝑢)𝑇 (𝒖𝑖 ⊗ (𝒉 𝑗 ⊙ 𝒛𝑘)) = �̃�𝑇 vec(𝒖𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇), (A.8)

and its derivative𝐶 ′
𝑖 𝑗𝑘

with respect to �̃� is vec(𝒖𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇). Then
∇𝐿+ (�̃�) can be computed as∑

(𝑖, 𝑗,𝑘) ∈𝑆
1

𝑧𝑖 𝑗𝑘
(ℓ ′(𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 2𝜔 (𝐶𝑖 𝑗𝑘 −𝐴𝑖 𝑗𝑘))𝐶 ′𝑖 𝑗𝑘

=vec(
∑
(𝑖, 𝑗,𝑘) ∈𝑆

1

𝑧𝑖 𝑗𝑘
(ℓ ′(𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘)

− 2𝜔 (𝐶𝑖 𝑗𝑘 −𝐴𝑖 𝑗𝑘)) (𝒖𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇)), (A.9)

where ℓ ′(𝐶,𝐶) indicates the derivativewith respect to𝐶 , and∇𝐿− (�̃�)
can be computed as∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

(𝐶𝑖 𝑗𝑘 −𝐴𝑖 𝑗𝑘)𝐶 ′𝑖 𝑗𝑘

=vec(
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

(𝐶𝑖 𝑗𝑘 −𝐴𝑖 𝑗𝑘) (𝒖𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇)) . (A.10)

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil B. Yuan and Y. Liu, et al.

1 Given initial 𝑄𝑢 , 𝑄𝑣 and 𝑄𝑝 ;

2 while stopping condition is not satisfied do
3 Update 𝑄𝑢 via solving (37) by fixing 𝑄𝑣 and 𝑄𝑝 ;

4 Update 𝑄𝑣 via solving (37) by fixing 𝑄𝑢 and 𝑄𝑝 ;

5 Update 𝑄𝑝 via solving (37) by fixing 𝑄𝑢 and 𝑄𝑣 ;

6 end
Algorithm 1: Block CD method for solving (37)

The ∇𝐿+ (�̃�) evaluation in (A.9) requires the summation of O(|𝑆 |)
terms. With |𝑆 | ≪ 𝑚𝑛𝐾 , ∇𝐿+ (�̃�) can be easily calculated but the

bottleneck is on ∇𝐿− (�̃�), which sums up O(𝑚𝑛𝐾) terms.

In order to deal with the O(𝑚𝑛𝐾) cost in (A.10), we develop an

efficient computation for ∇𝐿− (�̃�) as follows. From (A.8),∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

𝒖𝑖 (𝐶𝑖 𝑗𝑘 −𝐴𝑖 𝑗𝑘) (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇

=
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

𝒖𝑖 (𝒘𝑇𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘) −𝐴𝑖 𝑗𝑘) (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇

=
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

𝒖𝑖 (𝒘𝑇𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘)) (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇 (A.11)

−
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

𝐴𝑖 𝑗𝑘𝒖𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇 . (A.12)

Let

𝑈 = [𝒖1, · · · , 𝒖𝑚]𝑇 ∈ R𝑚×𝐷𝑢 ,𝑊 = [𝒘1, · · · ,𝒘𝑚]𝑇 ∈ R𝑚×𝑑 ,

𝐻 = [𝒉1, · · · ,𝒉𝑛]𝑇 ∈ R𝑛×𝑑 and 𝑍 = [𝒛1, · · · , 𝒛𝐾]𝑇 ∈ R𝐾×𝑑 .

The term in (A.11) can be computed as∑𝑚

𝑖=1

(𝒖𝑖𝒘𝑇𝑖) (
∑𝑛

𝑗=1

∑𝐾

𝑘=1

(𝒉 𝑗 ⊙ 𝒛𝑘) (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇)

=(𝑈𝑇𝑊) ((𝐻𝑇𝐻) ⊙ (𝑍𝑇𝑍)), (A.13)

which can be computed within O(nnz(𝑈)𝑑 + (𝑚 + 𝑛 + 𝐾)𝑑2). For
the term in (A.12), because the TFM imputation model is used, the

imputed label have an identical structure with 𝐶𝑖 𝑗𝑘 , which can be

expressed as

𝐴𝑖 𝑗𝑘 = �̂�𝑇𝑖 (ˆ𝒉 𝑗 ⊙ �̂�𝑘) (A.14)

Let

�̂� = [�̂�1, · · · , �̂�𝑚]𝑇 , �̂� = [ˆ𝒉1, · · · , ˆ𝒉𝑛]𝑇 and 𝑍 = [�̂�1, · · · , �̂�𝐾]𝑇 .

By substituting (A.14), the term in (A.12) can be computed as∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

�̂�𝑇𝑖 (ˆ𝒉 𝑗 ⊙ �̂�𝑘)𝒖𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇

=
∑𝑚

𝑖=1

(𝒖𝑖�̂�𝑇𝑖)
∑𝑛

𝑗=1

∑𝐾

𝑘=1

(ˆ𝒉 𝑗 ⊙ �̂�𝑘) (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇)

=(𝑈𝑇�̂�) ((�̂�𝑇𝐻) ⊙ (𝑍𝑇𝑍)), (A.15)

which can be computed within O(nnz(𝑈)𝑑 + (𝑚 + 𝑛 + 𝐾)𝑑2).

A.1.2 The Computation of∇2 ˜𝑓 (�̃�)�̃�. From (A.9), we give the deriva-

tion of ∇2𝐿+ (�̃�) as

∇
[∑

(𝑖, 𝑗,𝑘) ∈𝑆
1

𝑧𝑖 𝑗𝑘
(ℓ ′(𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 2𝜔 (𝐶𝑖 𝑗𝑘 −𝐴𝑖 𝑗𝑘))𝐶 ′𝑖 𝑗𝑘

]
=
∑
(𝑖, 𝑗,𝑘) ∈𝑆

1

𝑧𝑖 𝑗𝑘
(ℓ ′′(𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 𝜔)𝐶 ′𝑖 𝑗𝑘 (𝐶

′
𝑖 𝑗𝑘
)𝑇 ,

where ℓ ′′(𝐶,𝐶) indicates the second derivative with respect to

𝐶 . Let 𝑀 ∈ R𝐷𝑢×𝑑
be a matrix satisfying vec(𝑀) = �̃�. Then

∇2𝐿+ (�̃�)vec(𝑀) can be computed as∑
(𝑖, 𝑗,𝑘) ∈𝑆

1

𝑧𝑖 𝑗𝑘
(ℓ ′′(𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 𝜔)𝐶 ′𝑖 𝑗𝑘 (𝐶

′
𝑖 𝑗𝑘
)𝑇 vec(𝑀)

=
∑
(𝑖, 𝑗,𝑘) ∈𝑆

1

𝑧𝑖 𝑗𝑘
(ℓ ′′(𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 𝜔)𝐶 ′𝑖 𝑗𝑘 (𝒖

𝑇
𝑖 𝑀) (𝒉 𝑗 ⊙ 𝒛𝑘)

=
∑
(𝑖, 𝑗,𝑘) ∈𝑆

1

𝑧𝑖 𝑗𝑘
vec

[
ℓ ′′(𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘) − 𝜔)

𝒖𝑖 (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇 ((𝒖𝑇𝑖 𝑀) (𝒉 𝑗 ⊙ 𝒛𝑘))
]
, (A.16)

Analogous to (A.9), because∇2𝐿+ (�̃�)�̃� only requires the summation

of O(|𝑆 |) cost, it can be easily calculated without any O(𝑚𝑛𝐾) cost.
The derivation of ∇2𝐿− (�̃�) is

∇
[∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

(𝐶𝑖 𝑗𝑘 −𝐴𝑖 𝑗𝑘)𝐶 ′𝑖 𝑗𝑘
]

=
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

𝐶 ′
𝑖 𝑗𝑘
(𝐶 ′
𝑖 𝑗𝑘
)𝑇 .

For ∇2𝐿− (�̃�)�̃�, to avoid theO(𝑚𝑛𝐾) cost, we develop the following
computation.

∇2𝐿− (�̃�)vec(𝑀)

=
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

𝐶 ′
𝑖 𝑗𝑘
(𝐶 ′
𝑖 𝑗𝑘
)𝑇 vec(𝑀)

=
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

𝐶 ′
𝑖 𝑗𝑘
((𝒖𝑇𝑖 𝑀) (𝒉 𝑗 ⊙ 𝒛𝑘))

=
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

vec(𝒖𝑖 (𝒖𝑇𝑖 𝑀) (𝒉 𝑗 ⊙ 𝒛𝑘) (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇)

=vec(
∑𝑚

𝑖=1

(𝒖𝑖 (𝒖𝑇𝑖 𝑀)
∑𝑛

𝑗=1

∑𝐾

𝑘=1

(𝒉 𝑗 ⊙ 𝒛𝑘) (𝒉 𝑗 ⊙ 𝒛𝑘)𝑇)

=vec(𝑈𝑇 ((𝑈𝑀) ((𝐻𝑇𝐻) ⊙ (𝑍𝑇𝑍)))), (A.17)

which can be computed within O(nnz(𝑈)𝑑 + (𝑚 + 𝑛 + 𝐾)𝑑2).

A.1.3 Line Search. To check the sufficient decrease condition in

(A.5), for the current iterate �̃� and a direction 𝒔, we must calculate

𝑓 (�̃� + 𝜃𝒔) − 𝑓 (�̃�) . (A.18)

Because

1

2

𝜆∥�̃� ∥ + 𝐿− (�̃�)

is quadratic, (A.18) is equivalent to

𝐿+ (�̃� + 𝜃𝒔) − 𝐿+ (�̃�) + 𝜃∇(1
2

𝜆∥�̃� ∥2 + 𝐿− (�̃�))𝑇 𝒔

+ 1

2

𝜃2𝒔𝑇∇2 (1
2

𝜆∥�̃� ∥2 + 𝐿− (�̃�))𝒔

=𝐿+ (�̃� + 𝜃𝒔) − 𝐿+ (�̃�) + 𝜃 (𝜆�̃� + ∇𝐿− (�̃�))𝑇 𝒔

+ 1

2

𝜃2𝒔𝑇 (𝜆𝐼 + ∇2𝐿− (�̃�))𝒔 .

(A.19)

The value 𝐿+ (�̃�) is available from the previous iteration. We then

calculate the following two values so that (A.19) can be easily ob-

tained for any 𝜃 .

(𝜆�̃� + ∇𝐿− (�̃�))𝑇 𝒔 (A.20)

and

𝒔𝑇 (𝜆𝐼 + ∇2𝐿− (�̃�))𝒔 . (A.21)

Unbiased Ad Click Prediction for Position-aware Advertising Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

Besides, we also have to cache the right hand side of (A.5), which is

∇𝑓 (�̃�)𝑇 𝒔 .

For the value in (A.21) we have

(𝜆𝐼 + ∇2𝐿− (�̃�))𝒔 = 𝜆𝒔 + ∇2𝐿− (�̃�)𝒔,

and the second term can be conducted by the procedure in (A.17).

With the above cached values, to evaluate the function-value

difference at each new 𝜃 , we only need to calculate

𝐿+ (�̃� + 𝜃𝒔). (A.22)

From (A.7), new 𝐶𝑖 𝑗𝑘 values are needed. That is, from (A.8),

𝐶𝑖 𝑗𝑘 + 𝜃𝒖𝑇𝑖 vec
−1 (𝒔) (𝒉 𝑗 ⊙ 𝒛𝑘) ∀(𝑖, 𝑗, 𝑘) ∈ 𝑆, (A.23)

where vec
−1 (𝒔) converts 𝒔 to a matrix in a column-wise setting and

has the same dimension as 𝑄𝑢 . We can avoid calculating (A.23) for

any new 𝜃 by applying a similar trick. Specifically, with the cached

variables

Δ𝑖 𝑗𝑘 = 𝒖𝑇𝑖 vec
−1 (𝒔) (𝒉 𝑗 ⊙ 𝒛𝑘),

we can calculate (A.22) by∑
(𝑖, 𝑗,𝑘) ∈𝑆 ℓ (𝐶𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘 + 𝜃Δ𝑖 𝑗𝑘) − 𝜔 (𝐴𝑖 𝑗𝑘 − (𝐶𝑖 𝑗𝑘 + 𝜃Δ𝑖 𝑗𝑘))

2

with the complexity proportional to O(|𝑆 |).

B ADDITIONAL DETAILS OF UNBIASED
NON-POSITIONAL APPROACH

B.1 Proof of Theorem 4.1
Proof. Let

˜C𝑖 𝑗𝑘 ∼ Bern(𝑃𝑖 𝑗𝑘) be the random variable indicating

whether event (𝑖, 𝑗, 𝑘) is clicked, ˜Y𝑖 𝑗 ∼ Bern(𝑃𝑖 𝑗) be the random
variable indicating whether an examined event (𝑖, 𝑗, 𝑘) is clicked,
and

˜E𝑘 be the random variable indicating whether the ad placed

in the position 𝑘 is examined or not. Because each click/not-click

𝐶𝑖 𝑗𝑘 is an observation of
˜C𝑖 𝑗𝑘 = ˜Y𝑖 𝑗 ˜E𝑘 and the logistic loss is used,

we have

E[
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

ℓ

(
˜C𝑖 𝑗𝑘 , 𝑓 (𝒖𝑖 , 𝒗 𝑗)

)
]

=E[
∑𝑚

𝑖=1

∑𝑛

𝑗=1

∑𝐾

𝑘=1

− ˜Y𝑖 𝑗 ˜E𝑘 𝑓 (𝒖𝑖 , 𝒗 𝑗)] .
(B.1)

For the simplified scenario of assuming a constant 𝛼 as the exam-

ination probability, the random variable
˜E𝑘 follows a Bernoulli

distribution Bern(𝛼). The value of (B.1) is

𝐾
∑𝑚

𝑖=1

∑𝑛

𝑗=1

−𝑃𝑖 𝑗 𝑓 (𝒖𝑖 , 𝒗 𝑗)𝛼. (B.2)

For the general scenario of assuming 𝛽𝑘 as the examination prob-

ability of position 𝑘 , the random variable
˜E𝑘 follows a Bernoulli

distribution Bern(𝛽𝑘). The value of (B.1) is

𝐾
∑𝑚

𝑖=1

∑𝑛

𝑗=1

−𝑃𝑖 𝑗 𝑓 (𝒖𝑖 , 𝒗 𝑗) (
1

𝐾

∑𝐾

𝑘=1

𝛽𝑘). (B.3)

If we set

𝛼 =
1

𝐾

∑𝐾

𝑘=1

𝛽𝑘 , (B.4)

then solving (34) leads to an unbiased estimator of 𝛼𝑃𝑖 𝑗 . Then

though (40), 𝑓 (·) behaves the same as an unbiased estimator of

𝑃𝑖 𝑗 . □

B.2 Unbiased Evaluation
In this section, we prove that for any non-positional CTR model

𝑓 (𝒖, 𝒗) to be evaluated on a test set 𝑆te collected from a small portion

of traffic served by the random strategy, the obtained LogLoss and

AUC on 𝑆te are unbiased metrics of estimating (39).

B.2.1 LogLoss. Because 𝑓 (𝒖, 𝒗) does not consider the position in-

formation, we omit this information to construct the following

set

Ω = {(𝑖, 𝑗) | (𝑖, 𝑗, 𝑘) ∈ 𝑆te}. (B.5)

LetD𝑖 𝑗 = 1 or 0 to indicate whether pair (𝑖, 𝑗) is selected to 𝑆+
te
. We

can write (9) as

1

|𝑆te |
∑
(𝑖, 𝑗) ∈Ω −D𝑖 𝑗 𝑓 (𝒖𝑖 , 𝒗 𝑗) + log(1 + 𝑒 𝑓 (𝒖𝑖 ,𝒗 𝑗)) (B.6)

Because the position of pair (𝑖, 𝑗) in Ω is uniformly assigned from

1, · · · , 𝐾 with the probability 1/𝐾 , D𝑖 𝑗 is a random variable sam-

pled from Bern(1

𝐾

∑𝐾
𝑘=1

𝑃𝑖 𝑗𝑘). In the simplified scenario of (14),

where all positions share the same constant 𝛼 as the examination

probabilities, D𝑖 𝑗 is sampled from a Bernoulli distribution as

D𝑖 𝑗 ∼ Bern(𝛼𝑃𝑖 𝑗). (B.7)

For the case of the general scenario, where 𝛽𝑘 is various over 𝐾

positions, D𝑖 𝑗 is sampled from a Bernoulli distribution as

D𝑖 𝑗 ∼ Bern(1

𝐾

∑𝐾

𝑘=1

𝛽𝑘𝑃𝑖 𝑗) . (B.8)

We have

ED [(B.6)] =
1

|𝑆te |
∑
(𝑖, 𝑗) ∈Ω −E[D𝑖 𝑗] 𝑓 (𝒖𝑖 , 𝒗 𝑗) . (B.9)

From (B.4), the two results of computing (B.9) withD𝑖 𝑗 respectively
generated by (B.7) and (B.8) are equivalent. Therefore, LogLoss

computed on an unbiased test set 𝑆te is an unbiased evaluation of

estimating (39) with certain 𝛼 .

B.2.2 AUC. From the same random variable D𝑖 𝑗 and the set Ω
defined above, we can express (10) as∑

(𝑖, 𝑗) ∈Ω D𝑖 𝑗Rank𝑖, 𝑗 −
𝛾 (𝛾+1)

2

𝛾 (|𝑆te | − 𝛾)
, (B.10)

where Rank𝑖, 𝑗 is the rank of pair (𝑖, 𝑗) in all events in Ω in the

descending order according to prediction values by 𝑓 (·), and 𝛾 =∑
(𝑖, 𝑗) ∈Ω D𝑖 𝑗 . We then compute the expectation of (B.10) with re-

gard to D𝑖 𝑗 as follows∑
(𝑖, 𝑗) ∈Ω E[D𝑖 𝑗]Rank𝑖, 𝑗 −

E[𝛾] (E[𝛾]+1)
2

E[𝛾] (|𝑆te | − E[𝛾])
, (B.11)

where

E[𝛾] =
∑
(𝑖, 𝑗) ∈Ω E[D𝑖 𝑗] .

By considering the two ways of generating D𝑖 𝑗 in (B.7) and (B.8),

respectively, if we apply (B.4), the results of (B.11) computed with

D𝑖 𝑗 generated by (B.7) and (B.8) are equivalent. Therefore, AUC

computed on an unbiased test set 𝑆te is an unbiased evaluation of

estimating (39) with certain 𝛼 .

RecSys ’20, September 22–26, 2020, Virtual Event, Brazil B. Yuan and Y. Liu, et al.

C ADDITIONAL DETAILS OF RELATED
WORKS

Due to the following properties, the ideas and derived approaches

of unbiased learning-to-rank (LTR) are quite different from ours.

• The role of position: for LTR systems, the learnt models predict

the relevance between a query and a document, which should be

position-independent. From this perspective, each click/not-click is

the feedback of the relevance but carries the bias caused by posi-

tions, which is also referred to as the position bias and should be

eliminated in this context. However, as we mentioned in Section

1, the goal of our considered position-aware ad systems is to es-

timate 𝑃𝑖 𝑗𝑘 , which is intrinsically dependent on position 𝑘 . Thus

the learnt CTR model can be position-dependent. For example, in

the positional approach reviewed in Section 2.2.1, the CTR model

𝑔(·) includes the position information in the input features. It is

worth noting that though the non-positional approach in Section

2.2.2 learns a position-independent CTR model 𝑓 (·), its motivation

is to accelerate the display algorithm rather than to eliminate the

position bias.

• Ranking learning vs point-wise learning: To eliminate the posi-

tion bias from clicks, similar to the non-positional approach, some

approaches of unbiased LTR consider the relation in (13) but term

𝑃𝑖 𝑗 and 𝛽𝑘 as the relevance to learn and the position bias to elimi-

nate, respectively. Because LTR systems rank documents according

to learnt relevance, these works (e.g., [8, 19]) take such a property

into account. For example, by only requiring the relevant docu-

ments to be ranked ahead of not-clicked ones, they do not have

to disambiguate whether each not-clicked event is unexamined

or irrelevant. Thus the position bias on not-clicked events can be

ignored and the unbiasedness discussed in these works is limited

to ranking relevant documents ahead of others. However, for the

non-positional approach in our case, due to the existence of bids in

the expected revenue, it is required to conduct point-wise learning

for 𝑃𝑖 𝑗 or 𝛼𝑃𝑖 𝑗 . Therefore, existing approaches for unbiased LTR

are not applicable for position-aware ad systems. In contrast, our

proposed approach in Section 4.2 to learn unbiased point-wise 𝛼𝑃𝑖 𝑗

can naturally give unbiased ranking of 𝑃𝑖 𝑗 for LTR systems.

In addition, for LTR systems, because clicks are collected on

search results provided by formerly deployed models, the issue of

the selection bias discussed in 3.2 also occurs. However, this issue

is neglected in most approaches for LTR.

D ADDITIONAL DETAILS OF EXPERIMENTS
D.1 Data Preprocessing
For our experiments, we select𝑚 requests and 𝑛 ads to construct a

fully-observed set

𝐺 = {(𝑖, 𝑗) | 𝑖 = 1, · · · ,𝑚 and 𝑗 = 1, · · · , 𝑛}.
The corresponding labels are denoted as a densematrix𝑌 ∈ {0, 1}𝑚×𝑛 ,
where 𝑌𝑖 𝑗 is assumed to be the observation from (14) satisfying

𝑌𝑖 𝑗 =

{
1 (𝑖, 𝑗) is clicked in the original set,

0 (𝑖, 𝑗) is not-clicked or unobserved in the original set.

(D.1)

To have the training set 𝑆 and the test set 𝑆te satisfying the scenario

of position-aware systems with two types of selection bias, we

orderly split𝐺 by requests into three subset𝐺1,𝐺2 and𝐺3 in ratios

of 10%, 80%, and 10%, respectively. They are considered to be fully-

labeled sets of events for three consecutive windows.

We first generate the training set 𝑆 by using 𝐺1 and 𝐺2 of the

first two windows. Specifically, by referring to 𝑌𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ 𝐺1, we

split 𝐺1 into 𝐺+
1
and 𝐺−

1
as the sets of clicked/not-clicked events

collected in the first window, with that we learn a 𝑓1 (·) by solving

(11). The purpose of 𝑓1 (·) is to act as a CTR model deployed during

the second window. In the second window, we select some events

from𝐺2 into the training set 𝑆 by simulating different retrieval and

placing strategies. To accomplish this, for any request 𝑖 , we must

order ads according to their expected revenue. By using 𝑓1 (·) we
calculate the expected revenue as

𝜎 (𝑓1 (𝒖𝑖 , 𝒗 𝑗)) × bid𝑗 , ∀(𝑖, 𝑗) ∈ 𝐺2,

where because we focus on CTR prediction and the ad auction is

out of scope of this work, we simply assume bid𝑗 = 1,∀𝑗 . Then by

considering different strategies listed in Section 6.1, 𝑆 is generated.

Finally, 𝐺3 is used to generate 𝑆te.

For any event (𝑖, 𝑗, 𝑘) in 𝑆 and 𝑆te, besides the feature vectors 𝒖𝑖
and 𝒗 𝑗 available from the original data sets, we convert 𝑘 into a

vector 𝒑𝑘 by applying one-hot encoding technique.

D.2 Implementation
For training approaches compared in Section 6.3, we implement

the algorithm proposed in Section A, where we set 𝜔 = 0 for all

approaches except TFM-CF (𝜖). The dense operations (e.g., matrix-

matrix and matrix-vector products) are implemented using Intel®

Math Kernel Library (MKL).

For approaches compared in Section 6.4, we implement FFM-
Ideal, FFM-Greedy-A, FFM-Greedy-P, FFM-Random, FFM-Greedy,
and FFM-EE (𝜖) by PyTorch, where we apply Adam as the optimizer

with initial rates 0.001 and batch size 5,120. For FFM-CF (𝜖), we use
the implementation in [21].

D.3 Parameter Selection
For parameter selections, we orderly split 𝑆 by requests into 𝑆tr and

𝑆va in ratios of 80% and 20% respectively and conduct grid searches

by training multiple models on the corresponding training set of

each approach. We tune the following parameters.

• 𝜆: the 𝑙2 regularization coefficient for each approach.

• 𝑑 : the number of latent factors for each approach.

• 𝜔 : the weight of the imputation part.

• 𝑇 : the max number of training iterations.

The search range of each parameter is listed in Table I. We then

choose parameters and an iteration ∈ {1, · · · ,𝑇 } achieving the

highest AUC on the validation set. For building the final model to

predict the test set, we should include data in the validation period.

D.4 Deep Understanding of Two Types of
Selection Bias through Visualization

We visualize the effect caused by the retrieval bias, the placement

bias and both biases. To begin we calculate CTR values of the unbi-

ased 𝑆 obtained from the Random strategy; see details in Section

4.1. Then we compare them with CTR values of some biased 𝑆 sets,

which were generated using the GR, RG, and Greedy strategies.

Unbiased Ad Click Prediction for Position-aware Advertising Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

Table I: Search range of parameters considered in different approaches.
TFM-Greedy, TFM-Random,
TFM-RG, TFM-GR, TFM-EE TFM-CF

FFM-Ideal, FFM-Greedy,
FFM-Random, FFM-EE FFM-CF FFM-Greedy-A FFM-Greedy-P

𝜆 4
{−2, · · · ,2} × 10

−6
4
{−2, · · · ,2} × 10

−6
10
{−7,−6,−5}

4
{−2, · · · ,3}

10
{−7,−6,−5}

10
{−7,−6,−5}

𝑑 2
5

2
5

2
5

2
5

2
5

2
5

𝜔 - 16
{−4, · · · ,0}

- 16
{−4, · · · ,0}

- -

𝑇 50 50 20 50 20 20

k0 1 2 3 4 5 6 7 8 9

j
0

30
60
90

120
150
180210240270300

ρ

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Retrieval Bias

ρ>0
ρ≤0

k0 1 2 3 4 5 6 7 8

j
0

30
60
90

120
150
180210240270300

ρ

−1.0

−0.5

0.0

0.5

1.0

1.5

Placement Bias

ρ>0
ρ≤0

k0 1 2 3 4 5 6 7 8 9

j
0

30
60
90

120
150
180210240270300

ρ

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Retrieval Bias + Placement Bias

ρ>0
ρ≤0

(a) Outbrain

k0 1 2 3 4 5 6 7 8 9

j
0

10
20
30
40
50
60708090100

ρ

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Retrieval Bias

ρ>0
ρ≤0

k0 1 2 3 4 5 6 7 8 9

j
0

10
20
30
40
50
60708090100

ρ

−1.0

−0.5

0.0

0.5

1.0

Placement Bias

ρ>0
ρ≤0

k0 1 2 3 4 5 6 7 8 9

j
0

10
20
30
40
50
60708090100

ρ

−1.0

−0.5

0.0

0.5

1.0

Retrieval Bias + Placement Bias

ρ>0
ρ≤0

(b) KKbox

Figure I: A demonstration of the effect of the retrieval bias
and the placement bias; see the definition of 𝜌 in (D.2)

Specifically, we check the CTR value for events associated with

any (ad 𝑗 , position 𝑘) pair and denote it as CTR𝑗,𝑘 . Then points

(𝑗, 𝑘, 𝜌 𝑗,𝑘) from the Outbrain and KKbox datasets are presented in

Figure I, where 𝜌 𝑗,𝑘 measures the CTR difference between a biased

𝑆 and an unbiased 𝑆 :

𝜌 𝑗,𝑘 = log(
CTR𝑗,𝑘 observed from a biased 𝑆

CTR𝑗,𝑘 observed from 𝑆 collected by Random
).

(D.2)

A positive or a negative 𝜌 𝑗,𝑘 respectively indicate CTR𝑗,𝑘 observed

in this biased 𝑆 is higher or lower than the unbiased one, and the

CTR model learnt from the biased 𝑆 will probably overestimate or

underestimate the corresponding 𝑃𝑖 𝑗𝑘 . From the results presented

in Figure I, we have the following observations.

• Retrieval bias: From the first column of Figure I, we can observe

most points are with 𝜌 𝑗,𝑘 > 0. This confirms our analysis given

in Section 3.2 that because any ad 𝑗 is only retrieved when it has

higher expected revenue, its CTR𝑗,𝑘 observed from the biased 𝑆

is always higher than the unbiased one. Besides, we use a blue

surface to highlight points with the largest numbers of requests.

Their corresponding 𝜌 𝑗,𝑘 are close to 0, indicating that CTR𝑗,𝑘 ,

even from a biased 𝑆 , is similar to CTR𝑗,𝑘 of an unbiased 𝑆 . This

observation confirms that the more associated events are included,

the more associated 𝐶𝑖 𝑗𝑘 are revealed, so the observed CTR𝑗,𝑘 is

more accurate.

• Placement bias: From the second column of Figure I, a clear trend

is that in the order of positions, CTR𝑗,𝑘 gradually changes from

higher to lower than the unbiased ones. The reason is that as we

mentioned in Section 3.2, the retrieved ads with higher expected

revenue tend to be placed in the front positions, while those with

lower expected revenue are placed in the back positions.

• Both biases: From the third column of Figure I, the effects of two

types of selection biases are mixed together. By comparing with

the ranges of 𝜌 shown in the first and second columns, because the

overestimation effect caused by the retrieval bias is more serious

than the underestimation effect caused by the placement bias, the

retrieval bias is more dominant on the overall trend for both data

sets.

	Abstract
	1 Introduction
	2 Advertising Systems: A review and evolution to position-aware Scenario
	2.1 Position-independent Systems
	2.2 Position-aware Advertising Systems

	3 Selection Bias in CTR Prediction
	3.1 Selection Bias in Position-independent Systems
	3.2 Two Types of Selection Bias in Position-aware Systems

	4 Unbiased CTR Prediction for Position-aware Systems
	4.1 Unbiased Positional Approach
	4.2 Unbiased Non-positional Approach

	5 Related Works
	6 Experiments
	6.1 Experiment Setup
	6.2 Deep Understanding of Two Types of Selection Bias through Visualization
	6.3 Comparison on Various Positional Approaches
	6.4 Comparison on Various Approaches for Learning Non-positional CTR Models

	7 Conclusion
	References
	A Efficient Training of Tensor Factorization Machine
	A.1 Algorithm Details

	B Additional Details of Unbiased Non-positional Approach
	B.1 Proof of Theorem 4.1
	B.2 Unbiased Evaluation

	C Additional Details of Related Works
	D Additional Details of Experiments
	D.1 Data Preprocessing
	D.2 Implementation
	D.3 Parameter Selection
	D.4 Deep Understanding of Two Types of Selection Bias through Visualization

