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ABSTRACT
For building recommender systems, a critical task is to learn a pol-

icy with collected feedback (e.g., ratings, clicks) to decide which

items to be recommended to users. However, it has been shown

that the selection bias in the collected feedback leads to biased

learning and thus a sub-optimal policy. To deal with this issue,

counterfactual learning has received much attention, where exist-

ing approaches can be categorized as either value learning or policy

learning approaches. This work studies policy learning approaches

for top-𝐾 recommendations with a large item space and points out

several difficulties related to importance weight explosion, obser-

vation insufficiency, and training efficiency. A practical framework

for policy learning is then proposed to overcome these difficulties.

Our experiments confirm the effectiveness and efficiency of the

proposed framework.
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1 INTRODUCTION
In many applications, users are overwhelmed by a large number

of items. To satisfy their needs more efficiently, recommender sys-

tems have been constructed to pre-select items according to their

preference and some contextual information. Learning a policy

to decide which items to be recommended is the core problem of

building a recommender system. A widely used approach is to con-

sider rewards (like ratings, clicks, and dwell time) for historical

recommendations as labels and solve classification/regression prob-

lems to learn a model (e.g., matrix factorization [10], factorization

machines [17]) as an estimator of rewards. Then the system decides

future recommendations according to the estimated rewards from

the learned model.

However, recent works argue that such a learning scheme may

lead to biased recommendations. The reason is that the histori-

cal recommendations are decided by a previously deployed policy,

which is generally referred to as the behavior policy. The mismatch

between data distributions of the behavior policy and the new pol-

icy introduces the selection bias. To remove the bias, the key idea is

to consider rewards for both recommended and non-recommended

items. However, the realization of this idea is non-trivial. Unlike

rewards for recommended items, rewards for non-recommended

items, often known as counterfactual data, are generally not avail-

able. Learning an unbiased policy without counterfactual data,

which is also referred to as counterfactual learning, is an emerging

topic in recommender systems.

Generally speaking, existing approaches of counterfactual learn-

ing fall into two groups, value learning approaches [25, 27] and

policy learning approaches [9, 19, 20]. A review of them will be

given in Section 2.2. Between the two approaches, besides few

works (e.g., [8]) that propose combining these approaches for rec-

ommender systems, a systematic comparison between these two

paradigms is lacking. Our original purpose is to fill this gap. How-

ever, when we attempt to implement policy learning approaches

for a large-scale top-𝐾 recommender system, where 𝐾 items are

recommended for each context, we meet the following challenges.

• The propensity of a top-𝐾 recommendation can be very small,

resulting in the explosion of importance weights and poor per-

formances of the learned policy.

• For recommender systems with a large item space, it is almost

impossible to observe every item for every context. Thus, for

some rarer contexts, the empirical reward of each item can be far

away from the underlying true reward distribution. In particular,

the empirical reward can be wrongly concentrated on one single

https://doi.org/10.1145/3534678.3539295
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Table 1: Main notation.

𝑚,𝑛, 𝐾 numbers of contexts, items, and positions

𝛽, 𝜋 behavior (deployed) policy and new policy

A set of 𝑛 items

u, c random variable for the feature vector of a context and a

reward vector of 𝑛 items

𝑽 feature matrix of 𝑛 items

A,A𝑘 random variable for a permutation of 𝐾 items and the

item placed at position 𝑘

C random variable for a reward vector of items in A

item if only a few items are observed and one of them is largely

amplified by its low propensity weight. This canmake the learned

policy to be very sharp, a situation which has been pointed out

to be harmful to robustness and generalization.

• Training efficiency is a serious issue as optimization problems of

policy learning require computations over the entire item space,

the size of which can reach over millions in a real-world system.

This work aims to overcome these difficulties with the following

contributions.

• We propose a regularized per-item estimator to quell the first

issue mentioned above.

• We propose a formulation to handle the probability mass and

thus avoid the sharpness of the learned policy.

• We introduce a novel and efficient training method for policy

learning. It can be effectively deployed for large-scale top-𝐾

recommender systems.

The paper is organized as follows. The preliminary is in Section

2, which includes the problem setting and a review of existing ap-

proaches of counterfactual learning.We position the above-mentioned

difficulties and propose the corresponding solutions in Section 3.

Related works are given in Section 4. In Section 5, a series of exper-

iments confirm our contributions. Finally, Section 6 concludes this

work. A list of notations used in this work is in Table 1. Supplemen-

tarymaterials and programs/data used for our experiments are avail-

able at https://www.csie.ntu.edu.tw/~cjlin/papers/counterfactual_

topk/.

2 PRELIMINARY
In this section, after describing the problem settings, we briefly

review existing approaches for counterfactual learning.

2.1 Problem Setting
In this work, we focus on top-𝐾 recommender systems with 𝑛 items

(e.g., movies, products). Let A = {1, . . . , 𝑛} and 𝑽 ∈ R𝑛×𝐷𝑣 be the
associated side-feature matrix. The interactions between users and

a top-𝐾 recommender system can be described as the following

procedures.

• When a user visits a webpage with 𝐾 recommendation positions,

a feature vector u ∈ R𝐷𝑢 including the contextual information

(e.g., information of a user or a webpage) is sent to the system,

where u follows an underlying distribution Pr(u).
• Rewards (e.g., clicks, views) c for all items follow another un-

derlying distribution Pr(c | u; 𝑽 ), where for each item 𝑗 , the

corresponding c𝑗 depends only on its feature vector 𝒗 𝑗 in the

matrix 𝑽 and the feature vector u above. Note that 𝒗 𝑗 is the 𝑗th
row of 𝑽 .
• Given the received u, a recommendation policy 𝛽 deployed in the

system recommends 𝐾 distinct items according to the probability

𝛽 (A | u; 𝑽 ). These items form a 𝐾-element permutation of A as

following,

A ∈ 𝐺 (A, 𝐾) ≡ {(A1, . . . ,A𝐾 ) | A1, . . . ,A𝐾 ∈ A;A𝑖 ≠ A𝑗 ,∀𝑖 ≠ 𝑗}.
(1)

• Once items in A are recommended to users, their corresponding

rewards C = (cA1
, . . . , cA𝐾 ) are revealed to the system, while

rewards of other non-recommended items are still unknown.

With the repetition of the above procedures, the system can collect

a set S, which includes vast logged events (u,A,C). One of the

most crucial tasks of building a recommender system is to learn

a new policy 𝜋 so that the probability distribution 𝜋 (A | u; 𝑽 , 𝜽 )
parameterized by 𝜽 maximizes the expected cumulated reward

𝑉 𝜋 = E𝑃𝜋

[
𝑟 (c,A)

]
, (2)

where

E𝑃𝜋 [·] = EPr(u)E𝜋 (A |u;𝑽 ,𝜽 )EPr(c |u;𝑽 ) [·] (3)

and

𝑟 (c,A) =
∑︁𝐾

𝑘=1

cA𝑘
(4)

is the cumulated reward from A. To distinguish 𝜋 from the previ-

ous policy 𝛽 , the latter is also called the behavior policy. A natural

setting to obtain a useful 𝜋 is by using the historical events in S.
However, the challenge comes from the fact that directly maxi-

mizing the expected reward in (2) requires rewards c for all items.

Unfortunately, among all
𝑛!

(𝑛−𝐾 )! permutations as the candidate

of A, we only observe the one recommended by 𝛽 for each con-

text u in S. Opposed to the logged events in S, these events of

non-recommended permutations are called counterfactual data.

Conducting policy learning with partial rewards in logged events

is also referred to as counterfactual learning or batch learning from

logged bandit feedback [19].

2.2 A Review on Existing Approaches of
Counterfactual learning

Existing approaches of counterfactual learning can be roughly cate-

gorized into two groups, the value learning approach and the policy

learning approach. They differ on explicitly or implicitly learning

the new policy 𝜋 . Subsequently, we give a brief review of them.

2.2.1 Value Learning Approaches. The main idea of value learning

methods is to learn a reward estimation model 𝑠 (·) parametrized by

𝜽 to model the reward probability Pr(c | u; 𝑽 ). To have an unbiased

estimate, it has been pointed out [25] that we should minimize the

following full-labeled risk

𝐿(𝜽 ) = E
Pr(u)EPr(c |u;𝑽 ) [

∑︁𝑛

𝑗=1

ℓ (c𝑗 , 𝑠 (𝜽 ; u, 𝒗 𝑗 ))], (5)

where 𝒗 𝑗 is the feature vector of the 𝑗th item extracted from row 𝑗

of 𝑽 , and ℓ (𝑎, 𝑏) is a loss function (e.g., logistic loss or squared loss).

However, for each event (u,A,C), we only have rewards contained

in C, which correspond to those selected items included in A. It has
been shown [25, 27] that because the behavior policy 𝛽 (A | u; 𝑽 )

https://www.csie.ntu.edu.tw/~cjlin/papers/counterfactual_topk/
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non-uniformly selects items with the highest reward, considering

a modified form of (5) with only items included in A results in a

heavily biased 𝑠 (·).
For addressing the bias, a commonly used way is to apply an

inverse-propensity-score (IPS) method [5]. The main idea is to

re-weigh the loss term of each recommended item by its inverse

propensity score such that the following unbiased risk is minimized

𝐿IPS (𝜽 ) = EPr(u)E𝛽 (A |u;𝑽 )EPr(c |u;𝑽 ) [
∑︁𝐾

𝑘=1

ℓ (cA𝑘 , 𝑠 (𝜽 ; u, 𝒗A𝑘 ))
𝑧 (A𝑘 | u; 𝑽 ) ],

(6)

where 𝑧 (A𝑘 | u; 𝑽 ) is the propensity score, which is a value pro-

portional to the probability of the item being recommended at the

position. For 𝑧 (A𝑘 | u; 𝑽 ), we can infer it with the behavior policy

𝛽 as follows

𝑧 (A𝑘 | u; 𝑽 ) =
∑︁

Â∈𝐺 (A,𝐾 ) 𝛽 (Â | u; 𝑽 )𝟙[A𝑘 = Â𝑘 ], (7)

where 𝟙[·] is the indicator function. In some case, when the behav-

ior policy 𝛽 is not reserved, we need to estimate 𝑧 (A𝑘 | u; 𝑽 ) from S.
Unfortunately, it is known that accurately estimating 𝑧 (A𝑘 | u; 𝑽 )
is not an easy task. Therefore, some recent works (e.g., [25, 27])

extend (6) to minimize the following doubly robust risk [4] for

mitigating the issue caused by poor estimates of propensity scores.

𝐿DR (𝜽 ) = EPr(u)E𝛽 (A |u;𝑽 )EPr(c |u;𝑽 ) [𝛾
∑︁𝑛

𝑗=1

ℓ̄ (ĉ𝑗 , 𝑠 (𝜽 ; u, 𝒗 𝑗 ))

+
∑︁𝐾

𝑘=1

ℓ (cA𝑘 , 𝑠 (𝜽 ; u, 𝒗A𝑘 )) − 𝛾ℓ (ĉA𝑘 , 𝑠 (𝜽 ; u, 𝒗A𝑘 ))
𝑧 (A𝑘 | u; 𝑽 ) ],

(8)

where ĉ𝑗 is an imputed reward of item 𝑗 and ℓ̄ (·) is the loss function
for the imputation part. Because the imputed rewards of those non-

recommended items are less reliable than recommended items, a

small user-specified hyper-parameter 𝛾 is applied to balance the

two parts.

The reward estimation model 𝑠 (·) is learned from the following

minimization problem

min

𝜽
𝐿IPS (𝜽 ) (or 𝐿DR (𝜽 )) + 𝜆Φ(𝜽 ), (9)

where Φ(𝜽 ) is a regularizer to avoid overfitting (e.g., l2 regularizer),
and 𝜆 is a pre-specified regularization coefficient. Then, the optimal

𝜋 (A | u; 𝑽 , 𝜽 ) can be obtained by selecting the top-𝐾 items with the

highest reward estimates from 𝑠 (·). However, it has been pointed

out [25] that such a deterministic policy causes difficulties for opti-

mizing future policies. Thus the 𝜖-greedy method is always applied

to impose stochasticity. That is, we greedily select the item with

the highest reward estimates with probability 1 − 𝜖 , and uniformly

draw a random item with probability 𝜖 .

2.2.2 Policy Learning Approaches. Instead of estimating rewards,

policy learning approaches [4, 19] directly find an optimal 𝜋 (A |
u; 𝑽 , 𝜽 ) to maximize𝑉 𝜋 in (2). Similar to value learning approaches

discussed in the previous section, since S is generally collected by a
non-uniform 𝛽 , we should apply the inverse propensity weighting

method to correct the distribution mismatching between 𝛽 and 𝜋 .

This leads to the following estimate of 𝑉 𝜋 ,

𝑉 𝜋
IPS

= E𝑃𝛽

[
wA𝑟 (c,A)

]
, (10)

where

E𝑃𝛽 [·] = EPr(u)E𝛽 (A |u;𝑽 )EPr(c |u;𝑽 ) [·] (11)

and

wA =
𝜋 (A | u; 𝑽 , 𝜽 )
𝛽 (A | u; 𝑽 ) . (12)

It is known that 𝑉 𝜋
IPS

is an unbiased estimate of 𝑉 𝜋 under the fol-

lowing assumption. The proof can be found in our supplementary

materials.

Assumption 1. For any A and u, 𝜋 (A | u; 𝑽 , 𝜽 ) ≠ 0 only if
𝛽 (A | u; 𝑽 ) ≠ 0.

It indicates that our new policy 𝜋 only considers items with non-

zero probability in our behavior policy 𝛽 .

Thus we can solve the following problem to learn 𝜋 ,

max

𝜽
𝑅(𝜽 ) = 𝑉 𝜋

IPS
(𝜽 ) − 𝜆Φ(𝜽 ), (13)

where similar to (5), a regularizerΦ(𝜽 ) is considered to avoid overfit-
ting. To solve (13), the following policy gradient method is applied,

𝜽 ← 𝜽 + 𝜂∇𝑅(𝜽 ), (14)

where 𝜂 is a specified learning rate. In (14), ∇𝑅(𝜽 ) is computed as

follows,

∇𝑅(𝜽 ) =E𝑃𝛽
[
𝑟 (c,A) ∇𝜋 (A | u; 𝑽 , 𝜽 )

𝛽 (A | u; 𝑽 )

]
− 𝜆∇Φ(𝜽 )

=E𝑃𝛽

[
𝑟 (c,A) 𝜋 (A | u; 𝑽 , 𝜽 )

𝛽 (A | u; 𝑽 ) ∇ log𝜋 (A | u; 𝑽 , 𝜽 )
]
− 𝜆∇Φ(𝜽 ),

(15)

where the second equality is from the following chain rule,

∇ log𝜋 =
1

𝜋
∇𝜋. (16)

3 A PRACTICAL FRAMEWORK FOR POLICY
LEARNING

Except a recent work [8] that proposes a new model that combines

approaches of both value learning and policy learning for recom-

mender systems, few studied these two paradigms together in this

field. Thus the original purpose of this work is to detailedly com-

pare them for recommendation problems. However, to implement

them for a large-scale top-𝐾 recommender system, where both the

number of logged events and the number of items are tremendous,

we find some extra difficulties in policy learning approaches. In

this section, after positioning a difficulty in each of the following

subsections, we propose the corresponding solution. Finally, inte-

grating these solutions leads to a practical framework of policy

learning for top-𝐾 recommendations.

3.1 Regularized Per-item IPS Estimator
3.1.1 Weight Explosion in IPS Estimators. In practice, given finite

historical events logged by 𝛽 , we generally derive an unbiased esti-

mate of 𝑉 𝜋
IPS

via Monte Carlo approximation. Expressly, assuming

that the collected set includes𝑚 logged events, we maximize the

following estimate of 𝑉 𝜋
IPS

.

𝑉 𝜋
IPS
(𝜽 ) = 1

𝑚

∑︁𝑚

𝑖=1

w
𝑖
A𝑟 (c𝑖 ,A𝑖 ) . (17)

The quality of 𝑉 𝜋
IPS

estimating 𝑉 𝜋 deeply relies on the range of

wA. To explain this, we make the following assumptions.
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Assumption 2. For any A and u, the reward cA for every A ∈ A
is bounded in [0, 1].

Assumption 3. For any A and u, if 𝛽 (A | u; 𝑽 ) ≠ 0, then

wA =
𝜋 (A | u; 𝑽 , 𝜽 )
𝛽 (A | u; 𝑽 ) ≤ 𝑤max .

Then, we give the following theorem.
1

Theorem 1. Given a finite policy classH with |H | =𝑁 , we assume
that Assumptions 1-3 are all satisfied. Then, with probability at least
1 − 𝛿 , we have

sup

𝜋∈H
|𝑉 𝜋IPS −𝑉

𝜋 | ≤ 𝐾𝑤max

√︂
2

𝑚
log

2𝑁

𝛿
.

From Theorem 1, we conclude that the quality of 𝑉 𝜋
IPS

can suf-

fer when the range of wA is large. Unfortunately, this situation

commonly occurs for large-scale top-𝐾 recommender systems. The

leading cause of this issue is that the number of possible item

permutations A is an extremely large number 𝑛!/(𝑛 − 𝐾)!. As a
consequence, for most item permutations, both 𝜋 (A | u; 𝑽 , 𝜽 ) and
𝛽 (A | u; 𝑽 ) can be very small. During the training procedure, any

slight disagreement between 𝜋 (A | u; 𝑽 , 𝜽 ) and 𝛽 (A | u; 𝑽 ) may

cause an explosion of wA. This conjecture has been confirmed in

a real-world top-𝐾 advertising system [11]. When 𝐾 grows, by in-

creasing the disagreement between 𝜋 (A | u; 𝑽 , 𝜽 ) and 𝛽 (A | u; 𝑽 ),
they demonstrate a vast gap between 𝑉 𝜋

IPS
and 𝑉 𝜋 .

3.1.2 Weight Factorization and Pruning. The explosion of wA is

caused by the massive number of possible permutations of 𝐾 items.

Thus, for avoiding this issue, an intuitive idea is to assume that

𝜋 (A | u; 𝑽 , 𝜽 ) and 𝛽 (A | u; 𝑽 ) can be respectively factorized as

𝜋 (A | u; 𝑽 , 𝜽 ) =
𝐾∏
𝑘=1

𝜋 (A𝑘 | u,A1:𝑘−1
; 𝑽 , 𝜽 ), (18)

and

𝛽 (A | u; 𝑽 ) =
𝐾∏
𝑘=1

𝛽 (A𝑘 | u,A1:𝑘−1
; 𝑽 ). (19)

This decomposes the decision of A into sequential decisions of A𝑘

in 𝐾 sub-contexts. Now each sub-context consists of not only u but

also items A
1:𝑘−1

that have been recommended beforehand. From

(4), we can rewrite (10) as

𝑉 𝜋
IPS

= E𝑃𝛽

[
wA (

∑︁𝐾

𝑘=1

cA𝑘
)
]
= E𝑃𝛽

[∑︁𝐾

𝑘=1

wAcA𝑘

]
. (20)

From (18) and (19), we can rewrite (12) as

wA =
∏𝐾

𝑘=1

w𝑘 , (21)

where

w𝑘 =
𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 )
𝛽 (A𝑘 | û𝑘 ; 𝑽 ) and û𝑘 = [ u

A1:𝑘−1
] (22)

are respectively the importance weight and the feature vector of

the 𝑘th sub-context.

However, an explosive wA may still occur as it involves the prod-

uct of 𝐾 unbounded w𝑘 . To address the issue, our idea is to prune

w𝑘 included in wA. The following theorem shows that under certain

1
See the proof in our supplementary materials.

conditions, pruning

∏𝐾
𝑗=𝑘+1 w𝑗 will not change the unbiasedness

of the estimate.
2

Theorem 2. Assume that

𝑃𝛽 (cA𝑘 |u,A1:𝑘 ,A𝑘+1:𝐾 ) = 𝑃𝛽 (cA𝑘 |u,A1:𝑘 ) .

The resulting estimate

E𝑃𝛽

[∑︁𝐾

𝑘=1

(
∏𝑘

𝑗=1

w𝑗 )cA𝑘
]

after pruning
∏𝐾
𝑗=𝑘+1 w𝑗 is still unbiased to 𝑉

𝜋 .

According to the problem setting described in Section 2.1, we

assume 𝑐A𝑘 is only dependent on u and 𝒗A𝑘 , so the conditions

required in Theorem 2 can hold for our considered scenarios. Thus

we can prune

∏𝐾
𝑗=𝑘+1 w𝑗 in (20) without introducing any bias. Next

we discuss how to prune

∏𝑘−1

𝑗=1
wA𝑗

. Let

𝑉 𝜋
IIPS

= E𝑃𝛽 [
∑︁𝐾

𝑘=1

w𝑘cA𝑘 ] (23)

be the resulting estimator after pruning

∏𝑘−1

𝑗=1
w𝑗 . From (18), (19),

and (21),

|𝑉 𝜋
IPS
−𝑉 𝜋

IIPS
| = E𝑃𝛽 [

∑︁𝐾

𝑘=1

����∏𝑘−1

𝑗=1

w𝑗 − 1

����w𝑘cA𝑘 ]
=E𝑃𝛽 [

∑︁𝐾

𝑘=1

��𝜋 (A
1:𝑘−1

| u; 𝑽 , 𝜽 ) − 𝛽 (A
1:𝑘−1

| u; 𝑽 )
��

𝛽 (A
1:𝑘−1

| u; 𝑽 ) w𝑘cA𝑘 ] .
(24)

This then implies that the loss of pruning

∏𝑘−1

𝑗=1
w𝑗 can be bounded

by the difference between 𝜋 and 𝛽 . Intuitively, as long as 𝜋 imitates

𝛽 , the product can be pruned without any loss. However, any im-

provement of 𝜋 over 𝛽 can not be achieved, which is contradictory

to the purpose of policy optimization. Instead, we alleviate the loss

caused by pruning

∏𝑘−1

𝑗=1
w𝑗 through constraining the difference

between 𝜋 and 𝛽 . Consider Pinsker’s inequality defined as follows

sup |𝜋 − 𝛽 | ≤
√︂

1

2

𝐷KL (𝛽 | | 𝜋), (25)

where 𝐷KL (𝛽 | | 𝜋) is the Kullback-Leibler divergence between 𝜋
and 𝛽 .

𝐷KL (𝛽 | | 𝜋) = − EPr(u)
∑︁
A
𝛽 (A | u; 𝑽 ) log( 𝜋 (A | u; 𝑽 , 𝜽 )

𝛽 (A | u; 𝑽 ) )

= − E
Pr(u)E𝛽 (A |u;𝑽 ) log( 𝜋 (A | u; 𝑽 , 𝜽 )

𝛽 (A | u; 𝑽 ) )

= − E
Pr(u)E𝛽 (A |u;𝑽 )

∑︁𝐾

𝑘=1

log( 𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 )
𝛽 (A𝑘 | û𝑘 ; 𝑽 ) ).

(26)

The last equality in (26) follows from (18) and (19). Then, the task

of alleviating the loss caused by pruning

∏𝑘−1

𝑗=1
w𝑗 can be accom-

plished by bounding 𝐷KL (𝛽 | | 𝜋). Therefore, we consider to bound

𝐷KL (𝛽 | | 𝜋) as an additional constraint by the method of adding a

penalty function and propose the following regularized per-item

IPS (RIIPS) estimator.

𝑉 𝜋
RIIPS

= 𝑉 𝜋
IIPS
− 𝛼𝐷KL (𝛽 | | 𝜋), (27)

2
See the proof in our supplementary materials.
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where 𝛼 is the penalty hyper-parameter decided by a validation pro-

cedure. Finally, for policy learning, by equipping the regularization

term, we achieve the following problem.

max

𝜽
E𝑃𝛽

[∑︁𝐾

𝑘=1

(𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 )
𝛽 (A𝑘 | û𝑘 ; 𝑽 ) cA𝑘

+ 𝛼 log(𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 ))
)]

− 𝜆Φ(𝜽 ),
(28)

where 𝛽 in 𝐷KL (𝛽 | | 𝜋) has been omitted due to its independence

to 𝜽 . It is straightforward to solve the problem by the policy gradi-

ent method in (14). Specifically, with the trick defined in (16), the

gradient of the objective function in (28) can be computed as

E𝑃𝛽

[∑︁𝐾

𝑘=1

(
( 𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 )
𝛽 (A𝑘 | û𝑘 ; 𝑽 ) cA𝑘

+ 𝛼)∇ log(𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 ))
)]

+ 𝜆∇Φ(𝜽 ) .
(29)

Now, it comes to how to model 𝜋 . Let 𝑦 (·) be a score function
parametrized by 𝜽 . To guarantee that the A resulting from 𝜋 is a 𝐾-

element permutation of A, we apply the Plackett-Luce (PL) model

[15], which requires to exclude items recommended beforehand for

each sub-context. Recalling (22), we can divide each sub-context

û𝑘 into two parts: u for the inference of 𝑦 (·) and A
1:𝑘−1

for item

exclusion. Then, with the softmax function, 𝜋 is defined as,

𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 ) = 𝑒
�̂� (𝜽 ;u,𝒗A𝑘 )∑𝑛

𝑗=1, 𝑗∉A1:𝑘−1

𝑒 �̂� (𝜽 ;u,𝒗𝑗 )
. (30)

According to A
1:𝑘−1

, items recommended previously are explicitly

excluded from the item space A. For practical convenience, instead
of (30), during training we can use the following formulation,

𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 ) = 𝑒
�̂� (𝜽 ;û𝑘 ,𝒗A𝑘 )∑𝑛
𝑗=1

𝑒 �̂� (𝜽 ;û𝑘 ,𝒗𝑗 )
, (31)

which does not explicitly excludeA
1:𝑘−1

but instead includesA
1:𝑘−1

as additional contextual features for𝑦 (·). The PL model is then only

used for generating a𝐾-element permutation ofA during the online

deployment. Empirically, the models trained with (30) and (31) have

similar performance in our experiments.

3.2 Adaptive Policy Learning
The main idea of IPS and its derivatives is to divide the observed

reward cA𝑘
by the propensity 𝛽 , so that in expectation this adjusted

empirical reward will match the underlying reward distribution. As

described in [18], IPS generally works when the behavior policy is

stochastic and a sufficient amount of events are observed.

However, for recommender systems, the context feature u is

often very sparse and high-dimensional. This makes some contexts

very rare while the number of items is usually very large. Conse-

quently, it is almost impossible to go through every item for every

context. In fact, it is more likely that we only observed a small

fraction of items for each context.

To see why this can be bad for IPS, we give a simple example

in Figure 1, which only involves two items and two independent

contexts. Specifically, we assume the first context appears more

frequently than the second one. Under these two contexts, the

empirical rewards of the two items are observed. We show the

normalized empirical reward in Figure 1(a).

(a) Observed Reward (b) IPS

(c) Log-IPS (d) Our Method (𝜇 = 0.1)

Figure 1: A toy example with two contexts and two items.

From Figure 1(b), we can see that for both contexts, the learned

policy from IPS almost puts the probability mass entirely on the

item with the highest empirical reward, and the other item is simply

ignored. This is known as thewinner-takes-all effect, and it has been

pointed out [8] that the effect can be harmful to the robustness

and generalization of the learned policy from IPS. The issue is

particularly acute when we do not have enough observations, and

as in this case, the item with the highest empirical reward might

not actually be the best one.

To handle the winner-takes-all effect, [8] proposes the so-called

log-IPS as below. By applying the log transformation to our RIIPS

and switching to a minimization setting, (28) becomes

min

𝜽
E𝑃𝛽 [

∑︁𝐾

𝑘=1

(
−ZA𝑘 log(𝜋 (A𝑘 | û𝑘 ; 𝑽 , 𝜽 ))

)
] + 𝜆Φ(𝜽 ), (32)

where

ZA𝑘
=

cA𝑘

𝛽 (A𝑘 | û𝑘 ; 𝑽 ) + 𝛼. (33)

According to [8], the log transformation in (32) moves the global

optimum and thus makes the learned policy from log-IPS allocate

probability mass proportional to the normalized empirical reward

in Figure 1(a). This results in what is shown in Figure 1(c). Thus, if

the empirical reward spreads across multiple items with enough

observations, then log-IPS can alleviate the winner-takes-all effect

successfully. For example, as the first context occurs frequently,

both items have been observed for several times and the ratio of

their empirical reward becomes even and stable. A comparison

between Figure 1(c) and Figure 1(b) shows that log-IPS makes good

use of this even ratio while IPS does not.

However, we argue that for contexts with few occurrences, it

is likely that one item will wrongly occupy a large portion of the

empirical reward. The reason behind this is that when one of the

many lower propensity items is selected, its empirical reward will

be largely amplified by the inverse propensity scaling. If we do not

have enough observations, this will result in a high concentration

of empirical rewards as the second context in Figure 1(a). In this
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case, log-IPS does not help much, as the probability mass of the

learned policy is still highly concentrated on one single item.

To address this problem, our idea is to introduce a hyper-parameter

which can further smoothen the probability mass of the learned

policy. However, we find it difficult to introduce such a hyper-

parameter in (32), so an alternative formulation is needed. To this

end, we connect (32) to themulti-class classification. A closer look at

(32) shows that if the softmax function is used for 𝜋 as in (31), then

− log𝜋 in (32) is the well-known cross-entropy loss function com-

monly applied for multi-class classification problems. Specifically,

(31) is the probability for an instance to be in class A𝑘 and (32) can

be considered as to minimize a weighted negative log-likelihood.

A common alternative used for multi-class classification prob-

lems is the one-versus-all scheme. In this setting, a binary probabil-

ity model is considered for each class. That is, the recommended

item A𝑘 is seen as positive and the non-recommended items are

seen as negative. Then, for class A𝑘 , the following probability model

is considered

Pr(positive | 𝑦 (𝜽 ; û𝑘 , 𝒗A𝑘 )) = 𝜎 (𝑦 (𝜽 ; û𝑘 , 𝒗A𝑘 )), (34)

where 𝜎 (·) is the sigmoid function. In the one-versus-all setting,

each binary problem corresponds to its own parameter 𝜽A𝑘 , so
an independent optimization problem to minimize the negative

log-likelihood of (34) is solved.

Keeping this process in mind, here we still consider one 𝜽 for all

binary models and propose the following formulation,

min

𝜽
E𝑃𝛽

𝐾∑︁
𝑘=1

ZA𝑘

[
ℓ+
log
(𝑦 (𝜽 ; û𝑘 , 𝒗A𝑘 )) + 𝜇

𝑛∑︁
𝑗=1, 𝑗≠A𝑘

ℓ−
log
(𝑦 (𝜽 ; û𝑘 , 𝒗 𝑗 ))

]
+ 𝜆Φ(𝜽 ),

(35)

where

ℓ+
log
(𝑥) = log𝜎 (𝑥) and ℓ−

log
(𝑥) = log(1 − 𝜎 (𝑥)), (36)

and 𝜇 is a hyper-parameter explained below. This formulation sums

over all the binary classification problems in the one-versus-all

scheme. To construct 𝜋 , we must combine all 𝑛 probability models

in (34) into one. This issue has been well studied in the literature

of the one-versus-all multi-class classification; see, for example,

Section 4.1 in [7]. Here, instead of using some sophisticated settings,

we use the following heuristic to construct 𝜋 .

𝜋 (A𝑘 | û; 𝑽 , 𝜽 ) =
𝜎 (𝑦 (𝜽 ; u, 𝒗A𝑘 ))∑𝑛

𝑗=1, 𝑗∉A1:𝑘−1

𝜎 (𝑦 (𝜽 ; u, 𝒗 𝑗 ))
, (37)

which also explicitly excludes A
1:𝑘−1

as in (30).

One major benefit of (35) is that the loss function is now decou-

pled for the positive and negative labels, and the hyper-parameter 𝜇

can be naturally added in front of ℓ−
log
(·) to control the smoothness

of the final probability distribution. As we can see in Figure 1(d), if

we set 𝜇 = 0.1, this new setting can alleviate the winner-takes-all

effect for both the first and the second contexts. In practice, we can

use a grid search to find a suitable value for 𝜇, and the probability

mass of the learned policy will then adapt accordingly. We thus

name our approach Adaptive-RIIPS, as it can adapt the smoothness

of the learned policy to address the winner-takes-all effect.

3.3 Efficient Training
Another critical challenge of policy learning approaches for recom-

mender systems is the training efficiency, which is rarely discussed

in past works. As we mentioned in Section 2.2.2, the policy gradi-

ent method is applied to solve a policy learning problem. For each

context, this involves the calculation of all possible decisions of 𝜋 .

For (13), the number of possibilities is equal to the number of all

𝐾-element permutations of A, which has the order of O( 𝑛!

(𝑛−𝐾 )! ).
Clearly, for any top-𝐾 recommender system with a tremendous

number of contexts and items, solving (13) through the policy gra-

dient method is infeasible.

As for the RIIPS estimator proposed in Section 3.1, we decom-

pose the 𝐾-element permutation decision for each context into 𝐾

sequential decisions for 𝐾 sub-contexts. Thus 𝜋 is only responsible

for deciding a single item A𝑘 from 𝑛 items for each sub-context, and

the decision space of 𝜋 is remarkably reduced to 𝑛. Consequently,

given a training set including 𝑚 logged events, the cost of com-

puting (29) by going through all events becomes O(𝑀𝑛), where
𝑀 =𝑚𝐾 is the number of sub-contexts after decomposition.

However, since both𝑀 and 𝑛 can reach over millions in recom-

mender systems, the training time of (29) is still prohibitive with the

O(𝑀𝑛) cost. This difficulty has been reported and addressed in re-

cent works [3, 13] of policy learning with a large action (item) space.

Their main idea is to reduce the cost by subsampling items from

A. But just as reported in these works, this kind of subsampling

mechanism often degenerates the performance. To have a better

trade-off between the training efficiency and the performance, we

propose a novel solution in this work based on (35), which consid-

ers a non-subsampled training setting. As shown in [23], such a

non-subsampled setting empirically leads to less performance loss

than the subsampled one.

Define

�̂�𝑖 = [
𝒖𝑙

A1:𝑘−1

],

where 𝑖 = (𝑙 − 1) × 𝐾 + 𝑘 , to be the 𝑘th sub-context of the 𝑙th

context realization 𝒖𝑙 . Thus, for 𝑀 = 𝑚𝐾 sub-contexts after the

decomposition from𝑚 contexts, we derive the following empirical

formulation of (35).

min

𝜽

1

𝑚

∑︁𝑀

𝑖=1

𝑧𝑖

[
ℓ+
log
(𝑌𝑖𝑎𝑖 ) + 𝜇

∑︁𝑛

𝑗=1, 𝑗≠𝑎𝑖
ℓ−
log
(𝑌𝑖 𝑗 )

]
+ 𝜆Φ(𝜽 ),

(38)

where 𝑌𝑖 𝑗 = 𝑦 (𝜽 ; �̂�𝑖 , 𝒗 𝑗 ), 𝒂 ∈ A𝑀 and 𝒛 ∈ R𝑀 . Here 𝒂 and 𝒛 contain
realizations of A𝑘 and ZA𝑘

for𝑀 sub-contexts, respectively. With

this formulation, we transform the policy learning problem to a

binary classification problem of𝑀𝑛 training instances. Similar to

the situation of the RIIPS estimator, solving (38) by conventional

optimization methods is not easy. For example, the stochastic gra-

dient (SG) method may face difficulties in the process of sampling

𝑀𝑛 samples [23].

To overcoming this difficulty, our idea is to connect (38) with

the extreme similarity learning problem, which learns the relation

between a huge number of (context, item) pairs. Efficient training

has been well studied for such problems, like [23, 24, 26]. This

connection relies on the following facts.
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• In our experiments, we consider a two-tower structure for the

model 𝑦 (·).3 This setting is very prevalent in modern recom-

mender systems.

• By applying the second-order Taylor expansion, the second term

in (38) can be approximated with a weighted squared loss as

ℓsq (�̃�𝑖 𝑗 , 𝑌𝑖 𝑗 ) = 𝜔𝑖 𝑗 (�̃�𝑖 𝑗 − 𝑌𝑖 𝑗 )2, where 𝜔𝑖 𝑗 is a cost weight associ-
ated with the loss and �̃�𝑖 𝑗 is an imputed value.

4

As these two facts satisfy the requirements in works of extreme

similarity learning, we can apply efficient optimization methods

for this problem. In our implementation, we consider the Gauss-

Newtonmethod proposed in [26], which can factorize all operations

involving the O(𝑀𝑛) cost into a series of operations with a much

smaller O(𝑀) + O(𝑛) cost.

4 RELATEDWORKS
In previous sections, we discuss the counterfactual learning in a

storyline of recommender systems, where actions decided by a

policy are specified as recommended items. For general scenarios,

counterfactual learning has been immensely discussed in recent

studies. The mainline of these studies [9, 19, 20] focus on stabilizing

the learning process and consider learning a policy that decides only

one single action. To the best of our knowledge, [2] is the first work

extending policy learning to top-𝐾 recommender systems. Similar

to our discussion in Section 3.1, they meet the difficulty caused

by the vast number of item permutations. To make the problem

tractable, they impose the following two constraints.

• For each context, at most one item in A has a non-zero reward,

which is denoted by A
+
.

• For each A, the 𝐾 recommended items are sampled with replace-

ment during training but without replacement during deploy-

ment.

Under the above constraints, they propose the following top-𝐾

REINFORCE estimator,

𝑉 𝜋
top-K
(𝜽 ) = E𝑃𝛽 [

1 − (1 − 𝜋 (A+ | u; 𝑽 ;𝜽 ))𝐾
𝑧 (A+ | u; 𝑽 ) c

A
+ ], (39)

where 1 − (1 − 𝜋 (A+ | u; 𝑽 ;𝜽 ))𝐾 is the probability of A
+
being

included in 𝐾 items sampled by 𝜋 with replacement, and 𝑧 (A+ |
u; 𝑽 ) is the propensity score the same as that in (6). For the gra-

dient of (39), there will be an additional multiplier derived from

1−(1−𝜋 (A+ |u;𝑽 ;𝜽 ) )𝐾
𝑧 (A+ |u;𝑽 ) , which allocates some probability mass of the

learned policy to other items of interest and thus helps to alleviate

the winner-takes-all effect.

Our idea of pruning importance weights in the RIIPS estimator is

inspired by reinforcement learning [16], where the pruning method

is used for decreasing weights from long horizons. A similar idea

appeared in the policy evaluation [12, 21] for top-𝐾 recommen-

dations, where both 𝛽 and 𝜋 are pre-known and fixed. For policy

learning, we are not the only work to apply this idea. A parallel

work [13] also considers pruning the weight around the current

action. However, different from their empirical study, we offer a

theoretical analysis on the loss of the pruning in Section 3.1. This

3
See the details in Appendix A.1.

4
See the detailed derivations in our supplementary materials.

D1 S2

Comparison

learn β from D1

apply β on D2

learn π from S2

evaluate π on DVa/DTe

Figure 2: An illustration of the supervised-to-bandit conver-
sion, where 𝛽 is the behavior policy, and 𝜋 is the policy to be
learnt and evaluated.

analysis leads to the addition of a regularization term to alleviate the

loss, whose effectiveness is confirmed in our empirical experiments.

On the other hand, while most works of policy learning only

consider a relatively small action space (e.g., less than hundreds),

[2, 13] are the pioneers to extend policy learning for tremendous

actions. To tackle the training efficiency issue described in Section

3.3, which is resulted from going over all the possible actions, they

pre-select actions from A to reduce the cost. Specifically, in [2, 3],

they perform sampled softmax [1] for training 𝜋 . In [13], they

consider a heuristic 𝜌 (·) to pre-select actions, which results in their

proposed POXM estimator as follows.

𝑉 𝜋
POXM

(𝜽 ) = E𝑃𝛽 [
∑︁𝐾

𝑘=1

𝜋 (A𝑘 | �̂�𝑘 , 𝜌 (u); 𝑽 , 𝜽 )
𝛽 (A𝑘 | �̂�𝑘 ; 𝑽 ) (cA𝑘 − 𝛼)], (40)

where they only consider actions in the pre-selected set 𝜌 (u) of
each context such that

𝜋 (A𝑘 | �̂�𝑘 , 𝜌 (u); 𝑽 , 𝜽 ) =


𝑒
�̂� (𝜽 ;u,𝒗

A𝑘
)∑

𝑗 ∈𝜌 (u)\A
1:𝑘−1

𝑒
�̂� (𝜽 ;u,𝒗𝑗 ) A𝑘 ∈ 𝜌 (u),

0 A𝑘 ∉ 𝜌 (u).

Besides, they follow [9] to adjust 𝛼 in (40). In [13], they empirically

construct 𝜌 (u) by referring to the behavior policy 𝛽 such that

𝜌 (u) ={A𝑘 | A𝑘 has the largest 𝛽 (𝐴𝑘 | �̂�𝑘 ; 𝑽 ),
and 1 ≤ 𝑘 ≤ 𝑝}, (41)

where 𝑝 is a specified number of pre-selected actions. The perfor-

mance of this kind of methods highly relies on the quality of the

pre-selection procedure. For example, in [3], they find the number

of sampled actions significantly impacts the performance of the

learned policy. For POXM, if 𝜌 can successfully cover actions with

the highest rewards with only a small action space, POXM should

perform better than approaches learned from the whole action

space. However, the task to construct such an effective 𝜌 is just as

challenging as learning 𝜋 . That is to say, if for all contexts, we are

already able to obtain the wanted 𝜌 , which includes the actions

with the highest rewards, then there may be no need for us to learn

a new 𝜋 . In contrast, our proposed training method in Section 3.3

does not require any pre-selection on items.

5 EXPERIMENTS
In this section, after presenting our experimental setup for online

simulation, we conduct a series of experiments to compare our

proposed framework in Section 3 with other existing state-of-the-

art approaches.
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Table 2: Data statistics, where 𝑛 is the number of items. | · |
indicates the number of elements in a set.

Data Set 𝑛 |D1 | |D2 | |DVa | |DTe |
ml1m 3,513 12,066 27,153 9,051 12,077

ml10m 10,210 139,022 312,836 104,279 139,081

5.1 Experimental Setup for Online Simulation
To simulate the problem setting described in Section 2.1, we fol-

lowing the supervised-to-bandit conversion in [14, 19] to generate

our data from MovieLens 1M (ml1m) and 10M (ml10m) data sets.
5

We first randomly split a data set into four independent subsets:

D1, D2, Dva and Dte. Then, as shown in Figure 2, we learn a be-

havior policy 𝛽 with D1 and deploy it onD2 by logging a (u,A,C)
event for each context to form a set S2. Next we conduct different

approaches to learn a new policy 𝜋 , where DVa is used as the vali-

dation set for tuning hyper-parameters. Finally, we evaluate 𝜋 on

the test setDTe and compare the resulting performance. The whole

procedure is illustrated in Figure 2, while the statistics of the gen-

erated data sets are in Table 2. More details of data preprocessing

and constructing 𝛽 are in Appendices A.2 and A.3.

For learning 𝜋 , we compare seven approaches, which can be

grouped into four categories:

• Value-IPS, Value-DR: They are two value learning approaches

solving (9) respectively with (6) and (8).

• BanditNet: This approach considers the estimate in (20) without

pruning wA. To alleviate the possible issue caused by any ex-

tremely large wA, it additionally applies the technique proposed

in [9].

• Top-𝐾 REINFORCE [2] and POXM [13]: They are two state-of-

the-art competitors in the policy learning for top-𝐾 decision

making; see the discussion in Section 4. For POXM, we follow

[13] to construct 𝜌 (·) by (41) and conduct grid searches on 𝑝 .

• RIIPS, Log-RIIPS and Adaptive-RIIPS: Three approaches derived
from our proposed RIIPS estimator, which respectively solve

problems in (28), (32) and the approximation of (38). For Adaptive-
RIIPS, we empirically set all �̃�𝑖 𝑗 = −1 and consider 𝜔𝑖 𝑗 = 𝜔 as a

hyper-parameter to tune.

More details of the hyper-parameter setting and selection are in

Appendix A.4.

To evaluate 𝜋 , we simulate the online environment. Specifically,

we compute the following average cumulated reward (ACR) on a

data set with fully observed rewards for all items.

ACR =
1

�̂�

∑︁�̂�

𝑖=1

𝑟 (𝒄𝑖 ,A𝑖 ), (42)

where �̂� is the number of contexts included in this set, 𝒄𝑖 is the fully-
observed reward vector of context 𝑖 , and A𝑖 is the set of 𝐾 items

recommended according to 𝜋 (A𝑖 | 𝒖𝑖 ; 𝑽 ). Here we focus on the

exploitation ability of each learned policy 𝜋 , so the decision of A𝑖
is made by selecting top 𝐾 items with the highest scores predicted

by 𝑦 (·). For consistency, we use the same 𝐾 for constructing S2

and evaluating models on DVa and DTe.

5
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Table 3: For two data sets, we report theACRof all approaches
on DTe. All scores below are scaled up by 100.

Approach

ml1m ml10m

𝐾 = 1 𝐾 = 10 𝐾 = 1 𝐾 = 10

Value-IPS 24.04 25.91 25.23 17.07

Value-DR 38.80 28.75 27.46 26.25

POXM 28.66 16.48 22.74 14.54

top-𝐾 REINFORCE 34.47 29.13 30.41 25.39

BanditNet 34.51 18.21 30.38 19.14

RIIPS 35.99 28.44 30.41 24.19

Log-RIIPS 35.11 26.40 28.73 20.57

Adaptive-RIIPS 39.02 32.27 34.66 28.27
RIIPS (𝛼 = 0) 34.47 23.01 30.41 23.01

5.2 Comparison on Various Approaches
By comparing results in Table 3, we have the following observations.

• Firstly, Value-DR is much better than Value-IPS. This result con-
firms what we described in Section 3.2. That is, the IPS approach

may not work properly when the amount of observed events

is deficient. Compared to Value-IPS, Value-DR imputes rewards

for unobserved items and reweighs the loss term for these items,

which can be seen as a way to tune the reward distribution adap-

tively. This leads to a great improvement on the performance.

• RIIPS makes a significant improvement over BanditNet when
𝐾 = 10. The reason is that RIIPS prunes wA. As reported in [11],

the value of wA gets exploded very easily when 𝐾 > 1, which

leads to a huge divergence between 𝑉 𝜋
IPS

and 𝑉 𝜋 . BanditNet’s
performance suffers without pruning wA.
• In Table 3, RIIPS is better than RIIPS (𝛼 = 0) for 𝐾 = 10, which

confirms the rationality of adding the regularization term𝐷KL (𝛽 | |
𝜋) with pruning

∏𝑘−1

𝑗=1
w𝑗 .

• Compared to other approaches, top-𝐾 REINFORCE is almost the

second optimal approach in policy learning when 𝐾 = 10. This

verifies the applicability of (39) proposed in [2] and confirms the

necessity for alleviating the winner-takes-all effect.

• Adaptive-RIIPS proposed in this work performs the best. As

stated in Section 3.2, by tuning 𝜔 , we can adapt the probability

mass of the learned policy. This effectively addresses the winner-

takes-all effect and overcomes the drawback of Log-RAIPS.
• In our data sets, POXM performs the worst because as described

in Section 4, it is tough to get an effective 𝜌 (u). Even though

our behavior policy 𝛽 is trained on D1 with fully-revealed 𝒄 , the
pre-selected 𝜌 still can not cover enough items with the highest

rewards. Increasing the size of 𝜌 may help, but it also lowers the

training efficiency. This issue might limit the usability of POXM.

To further confirm the efficiency and effectiveness of the framework

proposed in this work, we compare the performance and training

time of Adaptive-RIIPS trained by two different optimizers:Adagrad
and Gauss-Newton. In Table 4, we can observe that Adaptive-RIIPS
with Gauss-Newton consistently converges faster and better than

the one with Adagrad. Take ml1m with 𝐾 = 1 for example. Gauss-
Newton not only speeds up more than 10 times for the model

training but also improves the model performance by about 6%

respectively when compared to Adagrad.

https://grouplens.org/datasets/movielens/
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Table 4: Comparison on Adaptive-RIIPS with two different
optimizers: Adagrad and Gauss-Newton. Training time and
performance under 𝐾 = 1 and 10 for two datasets are shown.

Dataset Optimizers

𝐾 = 1 𝐾 = 10

Time(s) ACR Time(s) ACR

ml1m

Adagrad 739.04 36.74 6028.79 30.70

Gauss-Newton 58.12 39.02 1422.50 32.70

ml10m

Adagrad 13826.98 34.24 60850.22 27.07

Gauss-Newton 673.52 34.66 14500.11 28.27

6 CONCLUSION
In this work, we categorize the conventional approaches of counter-

factual learning for recommender systems into two classes: value

learning and policy learning. To do a comparison between these

two kinds of approaches, we point out that some existing difficulties

in the policy learning approaches for large top-𝐾 recommender

systems must be addressed first.

• It is likely that the extremely small propensity of a top-𝐾 recom-

mendation would lead to a poor estimation of 𝑉 𝜋
IPS

and thus a

sub-optimal policy.

• The robustness and generalization of policy learning approaches

suffer from the limited observations of each item for each context.

• The issue of training efficiency in recommender systems with a

large item space limits the usability of policy learning approaches.

To address the above difficulties, we derive a novel policy learning

framework. We introduce a regularized per-item approach to bal-

ance between the variance and the bias of policy learning. Then,

through decoupling the objective function and introducing an extra

hyper-parameter for tuning the smoothness, we manage to improve

the robustness of policy learning. For efficient training, we inte-

grate our proposed approach with the two-tower structure and

the algorithm developed in [26] to be a framework able to train

large top-𝐾 recommender systems. With experiments conducted

on real-world data sets, we confirm the effectiveness and efficiency

of our proposed framework.
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A APPENDIX
A.1 Details of Model Setting and its Connection

with Extreme Similarity Learning Problems
The connection between our proposed Adaptive-RIIPS and ex-

treme similarity learning problems relies on the fact that the two-

tower structure models are prevalent in modern recommender sys-

tems. Let 𝜽 = [ 𝜽𝑢𝜽𝑣 ]. The two-tower structure transforms �̂� and 𝒗

into two 𝑑-dimensional embeddings respectively by learning two

embedding functions 𝑓 (𝜽𝑢 ; �̂�) and 𝑔(𝜽𝑣 ; 𝒗), and then 𝑦 (𝜽 ; �̂�, 𝒗) =
𝑓 (𝜽𝑢 ; �̂�)⊤𝑔(𝜽𝑣 ; 𝒗) is the score function of this structure. Many

commonly-used recommendation models fall into the two-tower

structure. For example, when 𝑓 (·) and 𝑔(·) are linear embedding

functions, it has been pointed out [28] that 𝑦 (·) is a variant of the
factorization machine [17]. Besides, non-linear embedding func-

tions (e.g., neural networks) are also widely applied in two-tower

recommendation models [6, 22].

Through applying the two-tower structure models for 𝑦 (𝜽 ; �̂�, 𝒗),
the problem (38) can be considered as an extreme similarity learning

problem. That is, we learn the similarity between a sub-context and

an item from extremely large𝑀𝑛 (sub-context, item) pairs. Here the

similarity presents the tendency of an item being recommended by

𝜋 under a given sub-context. To avoid any O(𝑀𝑛) cost in solving

an extreme similarity learning problem, existing works in this field

[23, 24, 26] impose the following squared loss on a certain part of

the loss function. In our case, the second term in (38), which deals

with the similarity between sub-contexts and non-recommended

items, is replaced with ℓsq (�̃�𝑖 𝑗 , 𝑌𝑖 𝑗 ) = 𝜔𝑖 𝑗 (�̃�𝑖 𝑗 − 𝑌𝑖 𝑗 )2, where 𝜔𝑖 𝑗 is
a cost associated with the loss and �̃�𝑖 𝑗 is an imputed value. For each

𝜔𝑖 𝑗 and �̃�𝑖 𝑗 , it is required that they can be decomposed to multiple

parts solely related to 𝑖 or 𝑗 , respectively.

Then, the remaining issue is how to choose 𝜔𝑖 𝑗 and impute �̃�𝑖 𝑗 .

We apply the second-order Taylor expansion of ℓ−
log
(𝑌𝑖 𝑗 ) at our

chosen point 𝑦 𝑗 for each item to get the following alternative loss

function for non-recommended items.
6

1

2

∇2ℓ−
log
(𝑦 𝑗 )

(
𝑌𝑖 𝑗 +

∇ℓ−
log
(𝑦 𝑗 ) − ∇2ℓ−

log
(𝑦 𝑗 )𝑦 𝑗

∇2ℓ−
log
(𝑦 𝑗 )

)2

. (43)

By applying (43) to (38), we attain the following problem to solve.

min

𝜽

1

𝑚

∑︁𝑀

𝑖=1

𝑧𝑖

[
ℓ+
log
(𝑌𝑖𝑎𝑖 ) + 𝜔𝑖 𝑗

𝑛∑︁
𝑗=1, 𝑗≠𝑎𝑖

1

2

(�̃�𝑖 𝑗 − 𝑌𝑖 𝑗 )2
]
+ 𝜆Φ(𝜽 ),

(44)

where for all 𝑖 , 𝜔𝑖 𝑗 = 𝜇∇2ℓ−
log
(𝑦 𝑗 ), and �̃�𝑖 𝑗 =

∇2ℓ−
log
(�̃� 𝑗 ) �̃� 𝑗−∇ℓ−

log
(�̃� 𝑗 )

∇2ℓ−
log
(�̃� 𝑗 )

are pre-defined constants solely dependent to 𝑗 , and𝑌𝑖 𝑗 comes from

the two-tower structure. As deciding 𝑦 𝑗 is like to select a hyper-

parameter, we instead treat 𝜔𝑖 𝑗 and �̃�𝑖 𝑗 as two hyper-parameters

and tune them by grid search. In our experiments, this simple

transformation is found to be effective enough empirically.

A.2 Details of Data Preprocessing
For MovieLens 1M (ml1m) and 10M (ml10m) data sets, we follow

[23] to binarize ratings included in original sets. We consider pairs

6
See the detailed derivations in our supplementary materials.

with rating ≥ 4 as positive while the rest including unrated items

as negative. As original sets do not include contextual information,

we need to generate the contextual features 𝒖 and context-aware

rewards 𝒄 respectively being realizations of u and c. Specifically, for
each user, we group his/her positive items into a set and then ran-

domly divide it into two subsets equally. Positive items in the first

subset, like movies the user has watched, are used as the contextual

information to construct 𝒖 ∈ {0, 1}𝑛 where

𝑢 𝑗 =

{
1 item 𝑗 is included in the first subset,

0 otherwise.

Besides, positive items in the second subset, like movies the user is

going to watch, are used for constructing 𝒄 where

𝑐 𝑗 =

{
1 item 𝑗 is included in the second subset,

10
−3

otherwise.

We repeat the above procedure to generate ten (𝒖, 𝒄) pairs for each
user. For 𝑽 , we generate a feature vector of each item by one-hot

encoding with its identity number.

A.3 Details of Behavior Policy 𝛽
For learning 𝛽 , similar to past works [13, 19], we learn 𝑠 (·) by a

value learning approach with the fully-revealed 𝒄 included in D1.

We apply the approach in [24] for this task. With the learned 𝑠 (·),
we transform it into a policy 𝛽 defined in (19) by the PL ranking

model defined in (30) such that for each sub-context, we have

𝛽 (A𝑘 | û𝑘 ; 𝑽 ) = 𝑒
𝑠 (𝜽 ;û𝑘 ,𝒗A𝑘 )∑𝑛

𝑗=1, 𝑗∉A1:𝑘−1

𝑒𝑠 (𝜽 ;û𝑘 ,𝒗𝑗 )
. (45)

A.4 Details of Hyper-Parameter Selection
For the two-tower structure we use in all approaches, the output size

of the embeddings is set to be 128. Adaptive-RIIPS uses the Gauss-

Newton method proposed in [26], while all the other approaches

are trained by Adagrad. For Adagrad, the learning rate is initialized
to 0.05 and the batch size is set to 10% of the training data. As an

exception, for ml10m with 𝐾 = 10, the batch size of Adagrad is set

to 1% of the training data due to the size of our RAM. For Value-DR

with (8), we set ĉ𝑗 = log( CTR

1−CTR
),∀𝑗 , where CTR is the average

click-through-rate from an unbiased set collected by a uniform

behavior policy. For convenience, we directly compute CTR from

D2, which is unbiased due to fully-observed reward vectors.

We train each approach for T epochs, retain the model at the

epoch with the best validation performance, and report the test

performance by applying the model to predict the test set. For

Adagrad, T = 500 and for Gauss-Newton, T = 30.

The following hyper-parameters are selected by a grid search.

Candidates of each hyper-parameter are also listed below.

• 𝜆 ∈ {4−1, 40, ..., 44}: the 𝑙2 regularization coefficient.

• 𝛼 ∈ {0, 0.01, 0.1, 1}: the coefficient of 𝐷KL (𝛽 | | 𝜋).
• 𝛾, 𝜔 ∈ {16

−5, 16
−4, 16

−3, 16
−2}: the coefficients of the square loss

term in (8) and (44).

• 𝜁 ∈ {0.6, 0.8, 1.0, 1.2}: the Lagrange multiplier in [9].

• 𝜉 ∈ {0.1, 0.3, 0.5}: the tolerance in the relative stopping condition

for Gauss-Newton.
• 𝑝 ∈ {10, 20, 50}: the size of 𝜌 for POXM.
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