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1 DETAILED DERIVATIONS OF THE

UNBIASEDNESS OF Vi,

From (11), (2), (3), and Assumption 1, we have
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2 DETAILED DERIVATIONS OF THEOREM 1
To prove Theorem 1, we need the following Lemma.

LEMMA 1 (HOEFFDING’S INEQUALITY J-VERSION). Assume X1, ...
, Xm to be i.i.d.with 0 mean and |X;| < M almost surely. Then with
probability at least 1 — 8, we have

|—ZX,| <M,/ log—

Proof of Lemma 1.

Hoeffding’s inequality states that for every positive t, P(| 5 L m 2 Xil 2

) < 2exp(— ) Now let § = 2 exp(— ) Solving for t, and we

gett=M % log 2 %, which completes our proof.

Proof of Theorem 1.
Recalling the definition,

. 13 .
Vigs(0) = — > war(ei Ay).
i=1
Let X; = Wgr(ci, A;) — V7, which are i.i.d. From (2), (4), Assump-
tions 2 and 3, we know that |X;| < Kwmax. As we have E[X;] =0,
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By taking ¢’ instead, Lemma 1 tells us that for any single x,
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P(lVﬁ.fs—V”| Smeamlglog 5) >1-4. (A1)

According to the union bound, for a countable set of events

S1, S2, 83, - - -, we have
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With the De Morgan’s Law, we have
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where S{ means the complement of S;. Then, by applying (A.1) to

(A.3) over the finite policy class H, where |H| = N, we get
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where § = N§’. This completes our proof.
3 DETAILED DERIVATIONS OF THEOREM 2
To prove Theorem 2, we need the following Lemma.

LEMMA 2. Givenu, Ay, and ca,, we have
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Proof of Lemma 2.



From our assumption Pg(ca, [0, Ay, Agt1:x)
we have
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According to our definition in Section 2.1, Pg(-) is the probability
distribution decided by the policy S. Thus, from the structure of
in (19), we have
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Then, from (11), we have
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where (A.10) comes from (A.6), and the equation (A.12) comes from

Assumption 1. Finally, we have Y5, ceG(a\A o K—k) T(Aks1:K |
u,Ay;V, 0) = 1, which follows from the fact that r is a probability
distribution. This completes our proof.

Proof of Theorem 2.

From (11), (20), and Lemma 2, we have
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where (A.14), (A.16), and (A.20) rely on the linearity of expectation

E[X +Y] = E[X] + E[Y] and E[aX] = aE[X].

4 DETAILED DERIVATIONS OF THE
SECOND-ORDER APPROXIMATION AS
SQUARED LOSS

Let T(Y; j>7;) be the second-order approximation of t’l;g(f/i 7) at gj.

By denoting £_ (yj) as Ejo, V¢ log(yj) as Ejj and szl;g(gj)) as Ej,

we have
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where the fist part is a squared loss and the second part can be
omitted as a constant for Yj;.
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