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1 DETAILED DERIVATIONS OF THE
UNBIASEDNESS OF 𝑉 𝜋IPS

From (11), (2), (3), and Assumption 1, we have

𝑉 𝜋
IPS

= E
Pr(u)E𝛽 (A |u;𝑽 )EPr(c |u;𝑽 )

[
𝜋 (A | u; 𝑽 , 𝜽 )
𝛽 (A | u; 𝑽 ) 𝑟 (c,A)

]
= E

Pr(u)EPr(c |u;𝑽 )E𝛽 (A |u;𝑽 )

[
𝜋 (A | u; 𝑽 , 𝜽 )
𝛽 (A | u; 𝑽 ) 𝑟 (c,A)

]
= E

Pr(u)EPr(c |u;𝑽 )

[ ∑︁
A∈𝐺 (A,𝐾 )
𝛽 (A |u;𝑽 )≠0

𝜋 (A | u; 𝑽 , 𝜽 )𝑟 (c,A)
]

= E
Pr(u)EPr(c |u;𝑽 )

[ ∑︁
A∈𝐺 (A,𝐾 )

𝜋 (A | u; 𝑽 , 𝜽 )𝑟 (c,A)
]

= E
Pr(u)E𝜋 (A |u;𝑽 ,𝜽 )EPr(c |u;𝑽 )

[
𝑟 (c,A)

]
= 𝑉 𝜋 .

2 DETAILED DERIVATIONS OF THEOREM 1
To prove Theorem 1, we need the following Lemma.

Lemma 1 (Hoeffding’s ineqality 𝛿-version). Assume 𝑋1, . . .
, 𝑋𝑚 to be i.i.d.with 0 mean and |𝑋𝑖 | ≤ 𝑀 almost surely. Then with
probability at least 1 − 𝛿 , we have

| 1
𝑚

𝑚∑︁
𝑖=1

𝑋𝑖 | ≤ 𝑀

√︂
2

𝑚
log

2

𝛿
.

Proof of Lemma 1.
Hoeffding’s inequality states that for every positive 𝑡 , 𝑃 ( | 1𝑚

∑𝑚
𝑖=1 𝑋𝑖 | ≥

𝑡) ≤ 2 exp(−𝑚𝑡2
2𝑀2

). Now let 𝛿 = 2 exp(−𝑚𝑡2
2𝑀2

). Solving for 𝑡 , and we

get 𝑡 = 𝑀

√︃
2

𝑚 log
2

𝛿
, which completes our proof.

Proof of Theorem 1.
Recalling the definition,

𝑉 𝜋
IPS

(𝜽 ) = 1

𝑚

𝑚∑︁
𝑖=1

w
𝑖
A𝑟 (c𝑖 ,A𝑖 ) .

Let 𝑋𝑖 = w
𝑖
A𝑟 (c𝑖 ,A𝑖 ) −𝑉

𝜋
, which are i.i.d. From (2), (4), Assump-

tions 2 and 3, we know that |𝑋𝑖 | ≤ 𝐾𝑤max. As we have E[𝑋𝑖 ] = 0,
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By taking 𝛿 ′ instead, Lemma 1 tells us that for any single 𝜋 ,

𝑃

(
|𝑉 𝜋
IPS

−𝑉 𝜋 | ≤ 𝐾𝑤max

√︂
2

𝑚
log

2

𝛿 ′

)
≥ 1 − 𝛿 ′ . (A.1)

According to the union bound, for a countable set of events

𝑆1, 𝑆2, 𝑆3, · · · , we have

𝑃 (
∞⋃
𝑖=1

𝑆𝑖 ) ≤
∞∑︁
𝑖=1

𝑃 (𝑆𝑖 ) . (A.2)

With the De Morgan’s Law, we have

𝑃 (
∞⋃
𝑖=1

𝑆𝑐𝑖 ) ≤
∞∑︁
𝑖=1

𝑃 (𝑆𝑐𝑖 ),

𝑃

(
(
∞⋂
𝑖=1

𝑆𝑖 )𝑐
)
≤

∞∑︁
𝑖=1

(
1 − 𝑃 (𝑆𝑖 )

)
,

1 − 𝑃
( ∞⋂
𝑖=1

𝑆𝑖

)
≤

∞∑︁
𝑖=1

(
1 − 𝑃 (𝑆𝑖 )

)
,

𝑃

( ∞⋂
𝑖=1

𝑆𝑖

)
≥ 1 −

∞∑︁
𝑖=1

(
1 − 𝑃 (𝑆𝑖 )

)
,

(A.3)

where 𝑆𝑐
𝑖
means the complement of 𝑆𝑖 . Then, by applying (A.1) to

(A.3) over the finite policy classH , where |H | = 𝑁 , we get

𝑃

( ⋂
𝜋∈H

{
|𝑉 𝜋
IPS

−𝑉 𝜋 | ≤ 𝐾𝑤max

√︂
2

𝑚
log

2

𝛿 ′

})
≥ 1 − 𝑁𝛿 ′,

𝑃

(
sup

𝜋∈H

{
|𝑉 𝜋
IPS

−𝑉 𝜋 | ≤ 𝐾𝑤max

√︂
2

𝑚
log

2

𝛿 ′

})
≥ 1 − 𝑁𝛿 ′,

𝑃

(
sup

𝜋∈H

{
|𝑉 𝜋
IPS

−𝑉 𝜋 | ≤ 𝐾𝑤max

√︂
2

𝑚
log

2𝑁

𝛿

})
≥ 1 − 𝛿,

(A.4)

where 𝛿 ≡ 𝑁𝛿 ′. This completes our proof.

3 DETAILED DERIVATIONS OF THEOREM 2
To prove Theorem 2, we need the following Lemma.

Lemma 2. Given u, A
1:𝑘 , and cA𝑘 , we have

E𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ,cA𝑘 )

(
𝐾∏

𝑗=𝑘+1
wA𝑗

)
 = 1. (A.5)

Proof of Lemma 2.



From our assumption 𝑃𝛽 (cA𝑘 |u,A1:𝑘 ,A𝑘+1:𝐾 ) = 𝑃𝛽 (cA𝑘 |u,A1:𝑘 ),
we have

𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 , cA𝑘 )

=
𝑃𝛽 (u,A1:𝑘 ,A𝑘+1:𝐾 , cA𝑘 )

𝑃𝛽 (u,A1:𝑘 , cA𝑘 )

=
𝑃𝛽 (u,A1:𝑘 )𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 )𝑃𝛽 (cA𝑘 |u,A1:𝑘 ,A𝑘+1:𝐾 )

𝑃𝛽 (u,A1:𝑘 )𝑃𝛽 (cA𝑘 |u,A1:𝑘 )

=
𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 )𝑃𝛽 (cA𝑘 |u,A1:𝑘 ,A𝑘+1:𝐾 )

𝑃𝛽 (cA𝑘 |u,A1:𝑘 )
=𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ).

(A.6)

According to our definition in Section 2.1, 𝑃𝛽 (·) is the probability
distribution decided by the policy 𝛽 . Thus, from the structure of 𝛽

in (19), we have

𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ) = 𝛽 (A𝑘+1:𝐾 | u,A
1:𝑘 ; 𝑽 ) .

Then, from (11), we have

E𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ,cA𝑘 )

(
𝐾∏

𝑗=𝑘+1
wA𝑗

)
 (A.7)

=E𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ,cA𝑘 )

[
𝜋 (A𝑘+1:𝐾 | u,A

1:𝑘 ; 𝑽 , 𝜽 )
𝛽 (A𝑘+1:𝐾 | u,A

1:𝑘 ; 𝑽 )

]
(A.8)

=
∑︁

A𝑘+1:𝐾 ∈𝐺 (A\A1:𝑘 ,𝐾−𝑘 )
𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ,cA𝑘 )≠0

𝑃𝛽 (A𝑘+1:𝐾 | u,A
1:𝑘 , cA𝑘 )

× 𝜋 (A𝑘+1:𝐾 | u,A
1:𝑘 ; 𝑽 , 𝜽 )

𝛽 (A𝑘+1:𝐾 | u,A
1:𝑘 ; 𝑽 )

(A.9)

=
∑︁

A𝑘+1:𝐾 ∈𝐺 (A\A1:𝑘 ,𝐾−𝑘 )
𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ;𝑽 )≠0

𝛽 (A𝑘+1:𝐾 | u,A
1:𝑘 ; 𝑽 )

𝜋 (A𝑘+1:𝐾 | u,A
1:𝑘 ; 𝑽 , 𝜽 )

𝛽 (A𝑘+1:𝐾 | u,A
1:𝑘 ; 𝑽 )

(A.10)

=
∑︁

A𝑘+1:𝐾 ∈𝐺 (A\A1:𝑘 ,𝐾−𝑘 )
𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ;𝑽 )≠0

𝜋 (A𝑘+1:𝐾 | u,A
1:𝑘 ; 𝑽 , 𝜽 ) (A.11)

=
∑︁

A𝑘+1:𝐾 ∈𝐺 (A\A1:𝑘 ,𝐾−𝑘 )
𝜋 (A𝑘+1:𝐾 | u,A

1:𝑘 ; 𝑽 , 𝜽 ), (A.12)

where (A.10) comes from (A.6), and the equation (A.12) comes from

Assumption 1. Finally, we have

∑
A𝑘+1:𝐾 ∈𝐺 (A\A1:𝑘 ,𝐾−𝑘 ) 𝜋 (A𝑘+1:𝐾 |

u,A
1:𝑘 ; 𝑽 , 𝜽 ) = 1, which follows from the fact that 𝜋 is a probability

distribution. This completes our proof.

Proof of Theorem 2.

From (11), (20), and Lemma 2, we have

𝑉 𝜋
IPS

=E𝑃𝛽

[ 𝐾∑︁
𝑘=1

wAcA𝑘

]
(A.13)

=

𝐾∑︁
𝑘=1

E𝑃𝛽

[
wAcA𝑘

]
(A.14)

=

𝐾∑︁
𝑘=1

E𝑃𝛽 (u,A1:𝑘 ,cA𝑘 )E𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ,cA𝑘 )

[
(
𝑘∏
𝑗=1

wA𝑗
)

× (
𝐾∏

𝑗=𝑘+1
wA𝑗

)cA𝑘

]
(A.15)

=

𝐾∑︁
𝑘=1

E𝑃𝛽 (u,A1:𝑘 ,cA𝑘 )

[
(
𝑘∏
𝑗=1

wA𝑗
)cA𝑘

× E𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ,cA𝑘 )

[
(

𝐾∏
𝑗=𝑘+1

wA𝑗
)
] ]

(A.16)

=

𝐾∑︁
𝑘=1

E𝑃𝛽 (u,A1:𝑘 ,cA𝑘 )

(
𝑘∏
𝑗=1

wA𝑗
)cA𝑘

 (A.17)

=

𝐾∑︁
𝑘=1

E𝑃𝛽 (u,A1:𝑘 ,cA𝑘 )E𝑃𝛽 (A𝑘+1:𝐾 |u,A1:𝑘 ,cA𝑘 )

(
𝑘∏
𝑗=1

wA𝑗
)cA𝑘


(A.18)

=

𝐾∑︁
𝑘=1

E𝑃𝛽

(
𝑘∏
𝑗=1

wA𝑗
)cA𝑘

 , (A.19)

=E𝑃𝛽


𝐾∑︁
𝑘=1

(
𝑘∏
𝑗=1

wA𝑗
)cA𝑘

 , (A.20)

where (A.14), (A.16), and (A.20) rely on the linearity of expectation

E[X + Y] = E[X] + E[Y] and E[𝑎X] = 𝑎E[X].

4 DETAILED DERIVATIONS OF THE
SECOND-ORDER APPROXIMATION AS
SQUARED LOSS

Let 𝑇 (𝑌𝑖 𝑗 , 𝑦 𝑗 ) be the second-order approximation of ℓ−
log

(𝑌𝑖 𝑗 ) at 𝑦 𝑗 .
By denoting ℓ−

log
(𝑦 𝑗 ) as 𝐸 𝑗0, ∇ℓ−

log
(𝑦 𝑗 ) as 𝐸 𝑗1 and ∇2ℓ−

log
(𝑦 𝑗 )) as 𝐸 𝑗2,

we have

𝑇 (𝑌𝑖 𝑗 , 𝑦 𝑗 ) =𝐸 𝑗0 + 𝐸 𝑗1 (𝑌𝑖 𝑗 − 𝑦 𝑗 ) +
𝐸 𝑗2

2

(𝑌𝑖 𝑗 − 𝑦 𝑗 )2

=
1

2

𝐸 𝑗2 (𝑌𝑖 𝑗 +
𝐸 𝑗1 − 𝐸 𝑗2𝑦 𝑗

𝐸 𝑗2
)2

+ (𝐸 𝑗0 − 𝐸 𝑗1𝑦 𝑗 +
1

2

𝐸 𝑗2𝑦
2

𝑗 −
1

2

(𝐸 𝑗1 − 𝐸 𝑗2𝑦 𝑗 )2

𝐸 𝑗2
),

(A.21)

where the fist part is a squared loss and the second part can be

omitted as a constant for 𝑌𝑖 𝑗 .
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