
1

On the Convergence of the Decomposition Method for Support

Vector Machines

Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan

cjlin@csie.ntu.edu.tw

Abstract

The decomposition method is currently one of the major methods for solving support vector machines

(SVM). Its convergence properties have not been fully understood. The general asymptotic convergence

was first proposed by Chang et al. [3]. However, their working set selection does not coincide with existing

implementation. A later breakthrough by Keerthi and Gilbert [12] proved the finite termination for

practical cases while the size of the working set is restricted to two. In this paper, we prove the asymptotic

convergence of the algorithm used by the software SVM light [11] and other later implementation. The

size of the working set can be any even number. Extensions to other SVM formulations are also discussed.

Keywords

Support vector machines, decomposition methods, classification.

I. Introduction

The support vector machine (SVM) is a new and promising technique for classification.

Surveys of SVM are, for example, by Vapnik [27], [28] and Schölkopf et al. [23]. Given

training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl such that yi ∈

{1,−1}, the support vector technique requires the solution of the following optimization

problem:

min
1

2
αTQα− eTα

0 ≤ αi ≤ C, i = 1, . . . , l, (1)

yTα = 0,

2

where e is the vector of all ones, C is the upper bound of all variables, and Q is an l

by l positive semidefinite matrix. Training vectors xi are mapped into a higher (maybe

infinite) dimensional space by the function φ and Qij ≡ yiyjK(xi, xj) where K(xi, xj) ≡

φ(xi)
Tφ(xj) is the kernel.

The difficulty of solving (1) is the density of Q because Qij is in general not zero. In

this case, Q becomes a fully dense matrix so a prohibitive amount of memory is required

to store the matrix. Thus traditional optimization algorithms such as Newton, Quasi

Newton, etc., cannot be directly applied. Several authors (for example, Osuna et al. [18],

Joachims [11], Platt [19], and Saunders et al. [22]) have proposed decomposition methods

to conquer this difficulty. The basic concept of this method is as follows:

Algorithm I.1 (Decomposition method)

1. Given a number q ≤ l as the size of the working set. Find α1 as the initial solution.

Set k = 1.

2. If αk is an optimal solution of (1), stop. Otherwise, find a working set B ⊂ {1, . . . , l}

whose size is q. Define N ≡ {1, . . . , l}\B and αkB and αkN to be sub-vectors of αk corre-

sponding to B and N , respectively.

3. Solve the following sub-problem with the variable αB:

min
1

2
αTBQBBαB − (eB −QBNα

k
N)TαB

0 ≤ (αB)i ≤ C, i = 1, . . . , q, (2)

yTBαB = −yTNαkN ,

where
[
QBB QBN
QNB QNN

]
is a permutation of the matrix Q.

4. Set αk+1
B to be the optimal solution of (2) and αk+1

N ≡ αkN . Set k ← k+ 1 and goto Step

2.

The basic idea of the decomposition method is that in each iteration, the indices {1, . . . , l}

of the training set are separated to two sets B and N , where B is the working set and

N = {1, . . . , l}\B. The vector αN is fixed so the objective value becomes 1
2
αTBQBBαB −

(eB − QBNαN)TαB + 1
2
αTNQNNαN − eTNαN . Then a sub-problem with the variable αB,

i.e. (2), is solved. Note that B is updated in each iteration. To simplify the notation, we

simply use B instead of Bk.

3

An important issue of the decomposition method is to select the working set B in

each iteration (Step 2 of Algorithm I.1). Among existing methods, Osuna et al. [18],

and Saunders et al. [22] find the working set by choosing elements which violate the

Karush-Kuhn-Tucker (KKT) condition. Platt’s Sequential Minimal Optimization (SMO)

[19] restricts the size of the working set to be two. The advantage is that (2) becomes a

small problem so no optimization software is required in practice. His working selection

includes some heuristics. A systematic way is proposed by Joachims [11] where he restricts

q to be an even number. In his software SVM light∗, the following problem with the variable

d is solved:

min ∇f(αk)Td

yTd = 0, −1 ≤ di ≤ 1, i = 1, . . . , l, (3a)

di ≥ 0, if (αk)i = 0, di ≤ 0, if (αk)i = C, (3b)

|{di | di 6= 0}| ≤ q, (3c)

where we represent f(α) ≡ 1
2
αTQα − eTα, αk is the solution at the kth iteration, and

∇f(αk) is the gradient of f(α) at αk. Note that |{di | di 6= 0}| means the number

of components of d which are not zero. The constraint (3c) implies that a direction

d involving only q variables is obtained. Then components of αk with non-zero di are

included in the working set B which is used to construct the sub-problem (2). Note that

d is only used for identifying B but not as a search direction. In Joachims’ original paper,

|{di | di 6= 0}| = q instead of (3c) was used. Thus practically the decomposition method

always picks q elements in each iteration. It was first pointed out in [3] that in theory q

nonzero elements may not be always available so an inequality (3c) was proposed.

Joachims [11] used the following procedure to solve (3):

Algorithm I.2 (SVM light’s working set selection)

1. Sort yi∇f(αk)i in the decreasing order.

2. From the top of the sorted list sequentially set di = −yi if 0 < αki < C or (3b) is

satisfied. If di = −yi violates (3b), set di = 0 and bypass it. From the bottom of the list

∗SVM light is available at

http://www-ai.cs.uni-dortmund.de/FORSCHUNG/VERFAHREN/SVM LIGHT/svm light.eng.html

4

sequentially set di = yi if 0 < αki < C or (3b) is satisfied. If di = yi violates (3b), set di = 0

and bypass it. The assignment of di = −yi and yi is done symmetrically until either

(a) q/2 elements of d are assigned to be −yi from the top and q/2 elements of d are

assigned to be yi from the bottom; or

(b) we cannot find di = −yi from the top and di = yi from the bottom at the same time.

3. Elements of d not considered yet are assigned to be zeros.

Algorithm I.2 will be discussed in more detail later. We mention the working set selection

here because it is strongly related to the main topic of this paper: the convergence of the

decomposition method.

As the decomposition method finds an optimal solution of a sub-problem (2), the strict

decrease of the objective function holds. However, this does not imply that the sequence

{αk} converges to an optimal solution of (1). In fact the convergence issue is not easy and

has not been fully understood yet.

The first work on the convergence of the decomposition method is by Chang et al. [3].

They proved the convergence of a more generalized algorithm. However, their working set

selection is by a different problem:

min ∇f(αk)Td

0 ≤ αki + di ≤ C, i = 1, . . . , l, (4)

yTd = 0,

|{di | di 6= 0}| ≤ q.

The main shortcoming is that (4) may not be useful in practice. Unlike Algorithm I.2 for

(3), we have not known any comparable method for (4). Note that Algorithm I.2 takes at

most O(l ln l) or O(lq) operations that is acceptable for practical implementation.

Then an important progress is by Keerthi and Gilbert [12] where they proved the finite

termination of a decomposition method with q = 2. In [14] the authors showed that the

original SMO may not converge so some modifications and improvements were added to

SMO. Then [12] intended to prove the finite termination of a generalized SMO algorithm.

Incidently (3) with q = 2 is a special case of the working set selection proposed in [14]

(i.e. modification 2 of SMO in that paper). Thus their proof has covered some existing

5

practical implementation.

Up to now the only available implementation using q > 2 with convergence proofs is

discussed in [10]. Instead of using the standard formulation, [10] solves

min
1

2
αT (Q+ yyT)α− eTα (5)

0 ≤ αi ≤ C, i = 1, . . . , l.

This formulation was proposed and studied by, for example, Friess et al. [9], and Mangasar-

ian and Musicant [16]. (5) is a bound-constrained problem so the working set selection is

by the following problem:

min ∇f̄(αk)Td

0 ≤ αki + di ≤ C, i = 1, . . . , l, (6)

|{di | di 6= 0}| ≤ q,

where f̄(α) ≡ 1/2αT (Q + yyT)α − eTα. The convergence follows from the framework in

[3]. An important fact is that because of the simpler constraints, (6) can be solved as

efficiently as solving (3). To be more precise, the complexity to solve (6) is similar to

Algorithm I.2. However, a direct use of (6) did not perform well so [10] finally used a

modified way whose convergence is also not clear.

Furthermore, the use of (5) lacks enough theoretical support on generalization proper-

ties. We may worry that by removing the linear constraint and adding 1/2(yTα)2 to the

objective function, the generalization property is not as good as solving (1). In addition,

as more available software follow the implementation of SVM light using (3) (e.g. [6], [21]),

the need to prove the convergence with q > 2 becomes more emergent. In this paper we

will show that Algorithm I.1 using (3) for the working set selection converges.

Next we discuss some possible obstacles while attempting to prove the convergence. In

particular, we think the decomposition method of SVM light has two major problems:

1. In each iteration, the decomposition method works only on a subset of variables. Popu-

lar optimization methods such as Newton or Quasi Newton consider all variables together

in each iteration. In fact if q is small, in each iteration only few coordinates of the variable

are updated. Hence the algorithm is like the “coordinate search” or “method of alter-

nating variables” in optimization literature. It has been shown by Powell [20] that such

6

methods may not always converge. The work in [3] focused on handling this difficulty and

a technique to construct a relationship between (4) and the following problem is utilized:

min ∇f(αk)Td

0 ≤ αki + di ≤ C, i = 1, . . . , l, (7)

yTd = 0.

2. SVM light uses (3) for the working set selection. Problem (3) follows from the method of

feasible directions by Zoutendijk [30]. The original feasible-direction method of Zoutendijk

is to consider (3) without restricting the number of nonzero elements:

min ∇f(αk)Td

yTd = 0,−1 ≤ di ≤ 1, i = 1, . . . , l, (8)

di ≥ 0, if αki = 0, di ≤ 0, if αki = C.

The difficulty arises because the convergence of Zoutendijk’s method is not generally guar-

anteed. The main reason is that αk + d may not be a feasible point of (1) so the map of

search directions is not closed. An example showing that Zoutendijk’s algorithm may not

converge is by Wolfe [29] and more discussions are in [1]. This explains why in [3], (6)

instead of (3) is considered because (6) guarantees the feasibility of αk + d. To be more

precise, The key difficulty is the problem caused by αi sitting very close to the boundary

and having large violation. Another way to see this is that the objective function of (8) is

discontinuous at the boundary. This is a rather peculiar situation not associated with tra-

ditional optimization algorithms. That is why methods such as Joachims’ decomposition

algorithm and SMO by Platt require a very different approach to the proof. The proofs

given here and the one in Keerthi and Gilbert use a non-traditional counting argument to

prove convergences.

In addition, we note that the original Zoutendijk’s method directly uses d as the search

direction for the optimization algorithm. That is, a step size λ is decided and αk + λd

becomes the next iterate αk+1. This is different from the role of (3) here as d is used only

for selecting the working set. Furthermore, in each iteration an exact solution of the sub-

problem (2) is obtained. This seems to be a nice property which the original Zoutendijk’s

7

method lacks of. In [3], such a property was not used as they considered a more general

algorithm. For the proof in this paper, we will see that it plays an important role.

The above discussion reveals that the working set selection problem (3) should be deeply

investigated. In Section II, we analyze (3) and its solution procedure: Algorithm I.2.

Readers who are interested in only the convergence proofs may skip this section. In

Section III we sketch the main convergence proof by some figures. Section IV is the main

convergence proof. Extensions of the proof to other SVM formulations such as regression

and one-class SVM are in Section V. We make conclusions and discussions in Section VI.

II. More Analysis on the Working Set Selection

Though in [11], Joachims has proposed Algorithm I.2 to solve (3), up to now there is

no rigorous discussion to justify the use of this algorithm. For example, if the case 2(b)

of Algorithm I.2 is encountered first, it is not clear what the practical situation looks like.

In this section, we will discuss the details of Algorithm I.2 and demonstrate that it really

solves (3). For readers who are interested in only the convergence proofs, you can skip

this section and directly go to Section III.

First we give a simple assumption:

Assumption II.1 C > 0.

If C = 0, the only feasible solution of (1) is αi = 0, i = 1, . . . , l. In addition, the

constraints of (8) implies di = 0. If Algorithm I.2 is used without Assumption II.1, for

0 = αki = C we may end up with di = yi(−yi) 6= 0 which is not a feasible solution

of (8). The assumption looks trivial but in our mind we consider the general situation

li ≤ αi ≤ ui, where li and ui are lower and upper bounds, respectively. If li = ui, then we

can remove the ith variable from the original problem easily.

The following theorem shows how Algorithm I.2 solves (8).

Theorem II.2 If the condition 2(a) of Algorithm I.2 is not activated (or q is selected

large enough), the algorithm will finally stop at it (from the top) and ib (from the bottom)

and one of the following will happen:

1. yit∇f(αk)it is next to yib∇f(αk)ib in the sorted list.

8

2. There is one element yi∇f(αk)i between yit∇f(αk)it and yib∇f(αk)ib with 0 < αki < C.

In addition, when the algorithm stops, d is an optimal solution of problem (8).

Proof: When Algorithm I.2 stops at it, if the next index in the sorted list of

yi∇f(αk)i, i = 1, . . . , l is īt, there are three possible situations:

0 < αkīt < C, or

αkīt = 0, yīt = −1, or (9)

αkīt = C, yīt = 1.

Otherwise, we can move down by assigning dīt = 0. Then consider going up from ib,

if the next īb is not īt or it, it can not satisfy 0 < αkīb < C, or αkīb = 0, yīb = 1, or

αkīb = C, yīb = −1. Otherwise, (9) implies that it can move down to īt and then ib could

move up. Hence īb must satisfy αkīb = 0, yīb = −1 or αkīb = C, yīb = 1. However, for this

situation, ib could move up by setting dīb = 0. Hence we are sure that there is at most

one element between it and ib. If there is one such element īt and αkīt = 0, yi = −1, or

αkīt = C, yi = 1 , ib could move up again by assigning dīt = 0. Therefore, from (9) the only

possible situation is to have an element i between it and ib with 0 < αki < C.

Thus we have clarified the situation when the algorithm terminates. Next we will show

that when the algorithm stops, the following KKT condition is satisfied so d is an optimal

solution:

∇f(αk) = −by + λi − ξi, (10)

yTd = 0,

λi(di + 1) = 0, if 0 < αki ≤ C,

λidi = 0, if αki = 0,

ξi(1− di) = 0, if 0 ≤ αki < C,

ξidi = 0, if αki = C,

λi ≥ 0, ξi ≥ 0, i = 1, . . . , l.

If there is an īt between it and ib, we select b such that

yīt∇f(αk)īt + b = 0.

9

Otherwise, we pick b such that

yi∇f(αk)i + b ≥ 0 for the elements before (include) it (11)

yi∇f(αk)i + b ≤ 0 for the elements after (include) ib (12)

Let us consider the case in (11). If di = −yi and yi = 1, by selecting ξi ≡ 0 and

λi ≡ ∇f(αk)i + byi ≥ 0, (10) is satisfied. The situation is similar for yi = −1. If di = 0,

there are two possibilities: yi = 1, αki = 0 or yi = −1, αki = C. For the first case,

λi ≡ ∇f(αk)i + byi ≥ 0, λidi = 0 and ξ ≡ 0 satisfy (10). The argument for the second

case is similar. Furthermore, the same proof can be applied for indices which satisfy

di = yi. Thus we have shown that Algorithm I.2 obtains a KKT point. Since (8) is a

linear program, a KKT point is an optimal solution.

After the procedure of Algorithm I.2 without activating condition 2(a) for solving (8),

we assume that i1, . . . , imk/2 are indices of elements with di = −yi (in the decreasing order

of {yi∇f(αk)i}) and j1, . . . , jmk/2 are indices of elements with di = yi (in the increasing

order of {yi∇f(αk)i}). Then

yi∇f(αk)i + b = pi ≥ 0, i = i1, . . . , imk/2,

yi∇f(αk)i + b = ni ≤ 0, i = j1, . . . , jmk/2.

We have

pi1 ≥ pi2 . . . ≥ pimk/2
≥ 0 ≥ njmk/2

≥ . . . ≥ nj1 . (13)

Since di = −yi, i = i1, . . . , imk/2 and di = yi, i = j1, . . . , jmk/2,

∇f(αk)idi = (b− pi), i = i1, . . . , imk/2,

∇f(αk)idi = (−b+ ni), i = j1, . . . , jmk/2.

Therefore, the optimal objective value of (8) is∑
i=i1,...,imk/2

−pi +
∑

i=j1,...,jmk/2

ni.

Now we are ready to work on problem (3). We will show that by selecting

di ≡


−yi, i = i1, . . . , imin(q,mk)/2,

yi, i = j1 . . . , jmin(q,mk)/2,

0, otherwise,

(14)

10

an optimal solution of (3) is obtained. When q ≥ mk, the solution we just obtained for

(8) is a feasible solution of (3). As (3) has a smaller feasible region than (8), its objective

value is not smaller. Thus d defined by (14) is an optimal solution of (3). On the other

hand, if q < mk, we consider the following problem:

min ∇f(αk)Td

yTd = 0,−1 ≤ di ≤ 1, i = 1, . . . , l, (15)

di ≥ 0, if αki = 0, di ≤ 0, if αki = C,

di = 0, if i /∈ B̄,

where B̄ is any subset of {1, . . . , l} containing q̄ elements with q̄ ≤ q. Now B̄ is fixed so

(15) is reduced to a form of (8) whose number of variables is q̄. Hence the same procedure

of Algorithm I.2 without Step 2(a) could be applied to solve (15). If an optimal solution

is di = −yi, i = r1, . . . , rq̂/2, di = yi, i = s1, . . . , sq̂/2 (q̂ ≤ q̄), and di = 0 otherwise, then

the optimal objective value of (15) is

(−
∑

i=r1,...,rq̂/2

yi∇f(αk)i +
∑

i=s1,...,sq̂/2

yi∇f(αk)i),

which is greater or equal to

(−
∑

i=i1,...,iq̂/2

yi∇f(αk)i +
∑

i=j1,...,jq̂/2

yi∇f(αk)i).

as we sort yi∇f(αk)i in a decreasing order. Since q̂ ≤ q̄ ≤ q, d defined in (14) is an optimal

solution of (3). The following theorem concludes the validity of Algorithm I.2 for (3):

Theorem II.3 If q is an even positive integer, Algorithm I.2 returns an optimal solution

of (3) and

l

q
(optimal objective value of (3)) ≤ optimal objective value of (8). (16)

We then show the relation between the working set selection problem (3) and the original

optimization problem (1):

Theorem II.4 The optimal objective value of (3) is zero if and only if α is an optimal

solution of (1).

11

Proof: A basic property of Zoutendijk’s method is that the optimal objective value

of (8) is zero if and only if α is an optimal solution of (1) (see, for example, [1]). Since

(3) has a smaller feasible region than (8), if the optimal objective value of (3) is zero, the

optimal solution of (8) is also zero. Therefore, α is an optimal solution of (1).

On the other hand, if α is an optimum of (1), with Lemma II.3, the optimal objective

value of (3) is zero.

There are different methods for the analysis in this section. For example, in [4], the

authors modified (3) to ν-SVM problems [25] where they used a recursive approach to

show the validity of Algorithm I.2.

III. Outline of The Convergence Proof

The convergence of Algorithm I.1 using problem (3) is the main result of this paper. As

the proof involves with several complicated lemmas and theorems, in this section we give

an outline of the proof. Using some informal terms and figures, we explain some key ideas

behind the proof.

First we discuss some observations which help to prove the convergence. If α̂ is an

optimal solution of (1), it satisfies the following KKT condition: there is a number b such

that

∇f(α̂)i + byi ≥ 0 if α̂i = 0,

∇f(α̂)i + byi ≤ 0 if α̂i = C, (17)

∇f(α̂)i + byi = 0 if 0 < α̂i < C.

For any scalar αi, we can consider two situations

0 < αi < C or (αi = C and yi = 1) or (αi = 0 and yi = −1), (18)

0 < αi < C or (αi = C and yi = −1) or (αi = 0 and yi = 1). (19)

Then the KKT condition (17) can be rewritten as

yi∇f(α̂)i + b ≥ 0 if α̂i satisfies (19),

yi∇f(α̂)i + b ≤ 0 if α̂i satisfies (18).
(20)

12

Note that (18) ((19)) is the condition in Algorithm I.2 where αki can be a candidate for

selection from the top (bottom) of the sorted list of yi∇f(αk)i, i = 1, . . . , l. In the following

we shall refer a variable αi as a

“top” candidate: if it satisfies (18),

“top only” candidate: if it satisfies (αi = C and yi = 1) or (αi = 0 and yi = −1),

“bottom” candidate: if it satisfies (19), or

“bottom only” candidate: if it satisfies (αi = C and yi = −1) or (αi = 0 and yi = 1).

From Assumption II.1, C > 0 so the following two statements are equivalent:

αi is a “top only” candidate ≡ αi is not a “bottom” candidate.

Therefore, once αki is a “top only” candidate, next time when it is selected, in Algorithm

I.2, it must be picked from the top of the sorted list.
αk

b i2(bottom)

b i1(top)

. . .

αk+s

b i2(bottom)

b i1(top)

99K

ᾱ

b i2(bottom)

b i1(top)

(a)A convergent subsequence (Lemmas IV.3 and

IV.4(a))

αk̄

b i2 ∈ B

b i1 ∈ B

αk̄+1

b i2(bottom)

b i1(top)

99K

ᾱ

b i2
b i1

(b)An impossible situation (Lemma

IV.4(b))

Fig. 1. yi∇f(α)i in the order of the sorted list of yi∇f(ᾱ)i, i = 1, . . . , l

It can be clearly seen that the KKT condition (20) implies that all “top” candidates

have the same or smaller yi∇f(α̂)i than “bottom” candidates. Therefore, when applying

Algorithm I.2 to problem (3) of an optimal solution, except those elements with yi∇f(α̂)+

b = 0, we cannot do any selection.

For free variables, their yi∇f(α̂)i are equal. On the other hand, if α̂i are at bounds,

their yi∇f(α̂)i are usually different. This leads us to suspect that in final iterations,

all bounded αi’s associated yi∇f(α)i are already in correct places of the sorted list of

yi∇f(α̂)i, i = 1, . . . , l.

Of course it is possible that ∇f(α̂)i + byi = 0 even if α̂i is at a bound. This is the

so called “degenerate” case in optimization terminology. For degenerate or free variables,

13

αk

I2

b i2(bottom)

I1b i1(top)

. . .

αk̄

I2(top only)

b i2(bottom)∈ B

I1(bottom only)b i1(top)∈ B

αk̄+1

b i2(bottom)

b i1(top)

. . .

αk+2l+1

99K

ᾱ

I2

b i2(bottom)

I1b i1(top)

Fig. 2. A counting process on I1 and I2 (Theorem IV.5)

yi∇f(α̂)i are all equal. We will focus on analyzing this group of variables. Indeed we will

show that for any limit point of a convergent subsequence, only indices from this particular

group are still under consideration.

Next we outline the proof. We consider any convergent subsequence {αk}, k ∈ K

and ᾱ ≡ lim
k→∞,k∈K α

k. We prove that for any given positive integer s, the sequence

{αk+s}, k ∈ K converges to ᾱ. Therefore, if ᾱi is a “top” (“bottom”) candidate, then after

k ∈ K is large enough, αki , α
k+1
i , · · · , αk+s

i are all “top” (“bottom”) candidates. These re-

sults will be proved in Lemmas IV.3 and IV.4(a). An illustration is in Figure 1(a), where

the vertical line on the right represents the sorted list yi∇f(ᾱ)i, i = 1, . . . , l (in the de-

creasing order) and lines on the left are corresponding values of yi∇f(αk)i to yi∇f(αk+s)i.

We then prove that a situation like Figure 1(b) cannot happen. That is, if

yi1∇f(ᾱ)i1 > yi2∇f(ᾱ)i2 ,

then after k ∈ K is large enough, for any k̄ ∈ {k, k+ 1, . . . , k+ s− 1}, if i1 and i2 are both

in the working set of the k̄th iteration, it is impossible to have αk̄+1
i1

and αk̄+1
i2

are “top”

and “bottom” candidates at the same time.

The final part of the proof comes from Figure 2 (Theorem IV.5). Assume i1(i2) is the

first “top”(“bottom”) candidate of the sorted list of yi∇f(ᾱ)i, i = 1, . . . , l and I1(I2) is

the set not lower (higher) than i1(i2). If

yi1∇f(ᾱ)i1 > yi2∇f(ᾱ)i2 , (21)

we prove that after k ∈ K is large enough, there is a k̄ ∈ {k, k+1, . . . , k+2l} such that αk̄I1

(αk̄I2) has only “bottom only” (“top only”) elements. Therefore, at the k̄th iteration, both

14

i1 and i2 must be selected as they are the first “top” and “bottom” elements, respectively

(from Figure 1(a)). However, at the (k̄+ 1)st iteration, from Figure 1(a), we know that i1

and i2 are “top” and “bottom” elements again. This violates the results in Figure 1(b).

Therefore, the assumption (21) is wrong so at ᾱ, elements selected by (3) have the same

yi∇f(ᾱ)i. With this result we can show that the working set selection problem at ᾱ has

zero optimal objective value. Then from Theorem II.4, ᾱ is an optimal solution of (1).

Thus the main effort of Theorem IV.5 is on a counting process to show that in at most

2l iterations, all elements in I1 and I2 become “bottom only” and “top only,” respectively.

IV. Convergence Proofs

In this section we prove the convergence of Algorithm I.1 using problem (3) for the

working set selection (i.e. the algorithm used by SVM light). If Algorithm I.1 stops in finite

number of iterations, from Step 2, αk is already an optimum. Hence here we consider the

case where Algorithm I.1 takes infinite iterations. First we make an assumption:

Assumption IV.1 The matrix Q satisfies

min
I

(min(eig(QII))) > 0,

where I is any subset of {1, . . . , l} with |I| ≤ q, QII is a square sub-matrix of Q, and

min(eig(·)) is the smallest eigenvalue of a matrix.

If Q is positive definite, then Assumption IV.1 is true. For example, if the RBF kernel

K(xi, xj) = e‖xi−xj‖
2

is used and all xi 6= xj, from [17], Q is positive definite. Since practi-

cally q is selected as a small number (≤ 100), if data are mapped into higher dimensional

spaces, Q tends to be positive definite so in general Assumption IV.1 holds.

The following lemma shows the sufficient decrease of f(α):

Lemma IV.2

f(αk+1) ≤ f(αk)− σ

2
‖αk+1 − αk‖2, (22)

where σ = minI(min(eig(QII))).

15

Proof: Assume B is the working set at the kth iteration and N ≡ {1, . . . , l}\B. If

we define s ≡ αk+1 − αk, then sN = 0 and

f(αk+1)− f(αk)

=
1

2
sTQs+ sTQαk − eT s

=
1

2
sTBQBBsB + sTB(Qαk)B − eTBsB. (23)

That is, in the kth iteration, we solve the following problem with the variable sB:

min
1

2
sTBQBBsB + sTB(Qαk)B − eTBsB

0 ≤ (αk + s)i ≤ C, i ∈ B, (24)

yTBsB = 0,

which is a different representation of (2). The KKT condition of (24) shows that there is

a bk+1 such that

(Q(αk + s))i − 1 + bk+1yi = 0 if 0 < αki + si < C, i ∈ B, (25)

(Q(αk + s))i − 1 + bk+1yi ≥ 0 if αki + si = 0, i ∈ B, (26)

(Q(αk + s))i − 1 + bk+1yi ≤ 0 if αki + si = C, i ∈ B. (27)

Define F ≡ {i | 0 < αki + si < C, i ∈ B} and A ≡ {i | αki + si = 0 or C, i ∈ B}. We have

B = F ∪ A and from (27),

(Qαk)F = −(Qs)F + eF − bk+1yF

= −QFF sF −QFAsA + eF − bk+1yF (28)

With (28), the last two terms of (23) become

sTB(Qαk)B − eTBsB

= sTF (Qαk)F − eTF sF + sTA((Q(αk + s))A + bk+1yA − eA)− sTA(Qs)A − bk+1yTAsA

= sTF (Qαk)F − eTF sF + sTA((Q(αk + s))A + bk+1yA − eA)− sTA(QAF sF +QAAsA)−

bk+1yTAsA

= −sTFQFF sF − sTFQFAsA − bk+1yTBsB + sTA((Q(αk + s))A + bk+1yA − eA)− (29)

sTA(QAF sF +QAAsA).

16

If αki + si = 0, then si ≤ 0 and if αki + si = C, then si ≥ 0. Hence from (26) and (27)

sTA((Q(αk + s))A + bk+1yA − eA) ≤ 0. (30)

With (29), (30),

1

2
sTBQBBsB =

1

2
sTFQFF sF + sTFQFAsA +

1

2
sTAQAAsA,

and yTBsB = 0, (23) becomes

−1

2
sTFQFF sF −

1

2
sTAQAAsA − sFQFAsA + sTA((Q(αk + s))A + bk+1yA − eA)

≤ −1

2

[
sTF s

T
A

]QFF QFA

QAF QAA

sF
sA


≤ −σ

2
‖sB‖2 = −σ

2
‖s‖2. (31)

From now on we consider any convergent subsequence {αk}, k ∈ K and lim
k→∞,k∈K α

k =

ᾱ. We then have the following lemma:

Lemma IV.3 For any given positive integer s, the sequence {αk+s}, k ∈ K converges to

ᾱ. In addition, {yi∇f(αk+s)i} converges to yi∇f(ᾱ)i, for i = 1, . . . , l.

Proof: First we know that {f(αk)} is a decreasing sequence. Since 0 ≤ αi ≤ C, i =

1, . . . , l, the feasible region of (1) is a compact set. Thus we know that {f(αk)} converges

to a finite number.

Then for the subsequence {αk+1}, k ∈ K, from Lemma IV.2 we have

lim
k→∞
‖αk+1 − ᾱ‖

≤ lim
k→∞

(‖αk+1 − αk‖+ ‖αk − ᾱ‖)

≤ lim
k→∞

(

√
2

σ
(f(αk)− f(αk+1)) + ‖αk − ᾱ‖)

= 0.

Thus

lim
k→∞,k∈K

αk+1 = ᾱ.

17

From {αk+1} we can prove lim
k→∞,k∈K α

k+2 = ᾱ too. Therefore, lim
k→∞,k∈K α

k+s = ᾱ

for any given s.

The results on {yi∇f(αk+s)i} follows from the continuity of ∇f(α).

We then need a technical lemma:

Lemma IV.4 Let ᾱ be as in Lemma IV.3.

(a) If ᾱi satisfies (18) ((19)), then for any given positive integer s, after k ∈ K is large

enough, αki , α
k+1
i , · · · , αk+s

i all satisfy (18) ((19)). In other words, if ᾱi is a “top” (“bot-

tom”) candidate, then after k ∈ K is large enough, αki , α
k+1
i , · · · , αk+s

i are all “top” (“bot-

tom”) candidates.

(b) In addition, if

yi1∇f(ᾱ)i1 > yi2∇f(ᾱ)i2 , (32)

then after k ∈ K is large enough, for any k̄ ∈ {k, k+ 1, . . . , k+ s− 1}, if i1 and i2 are both

in the working set of the k̄th iteration, it is impossible to have αk̄+1
i1

and αk̄+1
i2

satisfy (18)

and (19), respectively. In other words, αk̄+1
i1

and αk̄+1
i2

cannot be top and bottom candidates

at the same time.

Proof: The first result immediately follows from Assumption II.1, Lemma IV.3, and

the definition of (18) and (19).

For the second result of this lemma, we assume that it is possible that both αk̄+1
i1

and

αk̄+1
i2

satisfy (18) and (19), respectively. Since αk̄+1
B is an optimal solution of (2), from the

KKT condition of the sub-problem (2) and a similar form of (20), if αk̄+1
i1

satisfies (18),

there is a bk̄+1 such that

yi1∇f(αk̄+1)i1 + bk̄+1 ≤ 0. (33)

On the other hand, if αk̄+1
i2

satisfies (19), then

yi2∇f(αk̄+1)i2 + bk̄+1 ≥ 0. (34)

Thus (33) and (34) imply

yi1∇f(αk̄+1)i1 ≤ yi2∇f(αk̄+1)i2

which contradicts to (32) when k̄ is large enough.

18

Finally, the main theorem is as follows:

Theorem IV.5 Any limit point of {αk} is a global minimum of (1).

Proof: Assume ᾱ is the limit point of any convergent subsequence {αk}, k ∈ K. If ᾱ

is not an optimal solution of (1), from Theorem II.4, the following problem has a nonzero

solution:

min ∇f(ᾱ)Td

−1 ≤ di ≤ 1, yTd = 0,

di ≥ 0, if ᾱi = 0, di ≤ 0, if ᾱi = C, (35)

|{di | di 6= 0}| ≤ q.

If we can prove that only elements with the same yi∇f(ᾱ)i can have nonzero di, by

assuming B contains such indices, then

∇f(ᾱ)Td =
∑
i∈B

y2
i∇f(ᾱ)idi = (yi∇f(ᾱ)i)y

T
BdB = 0.

This contradicts to the assumption that (35) has a nonzero solution. Hence ᾱ is an optimal

solution.

Therefore, in the rest of this proof we will show that when solving (35), only elements

with the same yi∇f(ᾱ)i can have nonzero di. Assume i1 (i2) is the first element selected

from the top (bottom) of the sorted list of yi∇f(ᾱ)i, i = 1, . . . , l. We claim that

yi1∇f(ᾱ)i1 = yi2∇f(ᾱ)i2 .

If the result is wrong, then

yi1∇f(ᾱ)i1 > yi2∇f(ᾱ)i2 . (36)

Define

I1 ≡ {i | yi∇f(ᾱ)i ≥ yi1∇f(ᾱ)i1}

and

I2 ≡ {i | yi∇f(ᾱ)i ≤ yi2∇f(ᾱ)i2}.

19

From (36), I1 ∩ I2 = ∅.

Since i1 (i2) is the first element selected from the top (bottom) of the sorted list, ᾱi1 (ᾱi2)

satisfies (18) ((19)). After k ∈ K is large enough, from Lemma IV.4, αki1 , α
k+1
i1

, · · · , αk+2l
i1

are all “top” candidates, where l is the length of each vector α (i.e. the number of variables

of (1)). In addition, αki2 , α
k+1
i2

, · · · , αk+2l
i2

are all “bottom” candidates. Then in each k̄ of

kth, (k + 1)st, . . . , (k + 2l − 1)st iterations, i1 and i2 can not both be selected because of

(36) and Lemma IV.4.

We then claim that if i1 is not selected at the k̄th iteration, then all “top” candidates

selected are from I1. Since k̄ is large enough, for any αk̄i , i /∈ I1, which is a “top” candidate,

yi∇f(ᾱ)i < yi1∇f(ᾱ)i1

implies that i can not be chosen earlier then i1. Similarly, if i2 is not selected at the k̄th

iteration, then all “bottom” candidates selected are from I2.

Now for the k̄th iteration, we consider three situations:

Case 1: Neither i1 nor i2 is selected: Then all “top” (“bottom”) candidates selected are

in I1(I2). For any i ∈ I1 and j ∈ I2 selected in the k̄th iteration, from Lemma IV.4 (b), at

the next iteration, either αk̄+1
i becomes a “bottom only” element or αk̄+1

j becomes a “top

only” element. Therefore, there are two cases to consider:

Case 1-1: All elements selected from I1 become “bottom only:” Then the number of

“bottom only” variables in I1 is increased by at least one. On the other hand, since

I1 ∩ I2 = ∅ and from the assumption of case 1, all variables selected from I2 are “bottom”

elements. Hence the number of “top only” variables in I2 is at least the same.

Case 1-2: All elements selected from I2 become “top only:” Similarly, the number of

“top only” variables in I2 is increased by at least one, while the number of “bottom only”

variables in I1 is at least the same.

Case 2: Only i1 is selected: As i2 is not selected, all “bottom” elements selected are in

I2. Since i1 is selected and αk̄+1
i1

is a “top” candidate, all “bottom” elements selected in

I2 become “top only.” Therefore, the number of “top only” variables in I2 increases by at

least one. On the other hand, the number of “bottom only” variables in I1 is at least the

same.

20

Case 3: Only i2 is selected: Similar to case 2, the number of “bottom only” variables in

I1 increases at least one and the number of “top only” variables in I2 is at least the same.

Therefore, in at most l iterations, either all elements in I1 become “bottom only” or

all elements in I2 become “top only.” If I1 reaches “bottom only” first, from Assumption

II.1, for later iterations, elements in I1 are not “top” candidates so i1 must be selected.

Therefore, we only have case 2 left. Then after at most another l iterations, all I2 are “top

only.” Therefore, we must have a k̄ ∈ {k, k + 1, . . . , k + 2l} such that both i1 and i2 are

selected. This contradicts to Lemma IV.4. Hence the proof is complete.

Under some conditions (for example, Q is positive definite), (1) has a unique solution.

Hence {αk} is a globally convergent sequence whose limit point is this unique solution. In

Burges and Crisp [2], there are discussions on conditions under which the SVM solution

is unique.

V. Extensions

Consider a general problem with the following form:

min
1

2
αTQα + pTα

yTα = ∆, (37)

li ≤ αi ≤ ui, i = 1, . . . , l,

where −∞ < li < ui < ∞, i = 1, . . . , l, Q is any symmetric positive semi-definite matrix

satisfying Assumption IV.1, and yi = ±1, i = 1, . . . , l. The convergence proof described in

the previous section is still valid if Algorithm I.1 with the following generalized working

set selection is used for solving (37):

min ∇f(αk)Td

yTd = 0, −1 ≤ di ≤ 1, i = 1, . . . , l, (38)

di ≥ 0, if (αk)i = li, di ≤ 0, if (αk)i = ui,

|{di | di 6= 0}| ≤ q.

It can be seen that yi = ±1 plays an important role here. Algorithm I.2 is not valid

for solving (38) if this condition does not hold. In addition, in the convergence proof we

21

specifically utilize many properties of Algorithm I.2 (e.g. we consider the sorted list of

yi∇f(ᾱ)i) so the condition yi = ±1 is also used. In [12], the authors handled a more

generalized problem where the only restriction on yi is yi 6= 0.

Problem (37) covers most SVM formulations. For example, given a set of data points

{(x1, z1), . . . , (xl, zl)} such that xi ∈ Rn is an input and zi ∈ R1 is a target output, the

usual form of support vector regression is as follows:

min
1

2
(α− α∗)TQ(α− α∗) + ε

l∑
i=1

(αi + α∗i) +
l∑

i=1

zi(αi − α∗i)

l∑
i=1

(αi − α∗i) = 0, 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l, (39)

where Qij = φ(xi)
Tφ(xj).

We can rewrite (39) as

min
1

2

[
αT , (α∗)T

] Q −Q

−Q Q

 α
α∗

+
[
εeT + zT , εeT − zT

] α
α∗


yT

 α
α∗

 = 0, 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l, (40)

where y is a 2l by 1 vector with yi = 1, i = 1, . . . , l and yi = −1, i = l + 1, . . . , 2l. (40) is

in the form of (37) so Algorithms I.1 and I.2 can be applied.

However, using Algorithms I.1 and I.2 for (40) is a little different from existing decom-

position methods for regression. Note that though (39) is a problem with 2l variables, it

has very special structures. For example, the KKT condition implies that at an optimal

solution of (39), αiα
∗
i = 0. Early work on SVM regression (e.g. [26], [13], [15], [8]) all

tried to take advantage of these structures and focused on problem (39). Except [15]

they mainly consider selecting two elements as the working set in each iteration. Some

characteristics of their methods are:

1. In each iteration, two indices i1 and i2 are selected from {1, . . . , l}.

2. To keep αki (α
∗)ki = 0, they solve a sub-problem with four variables αi1 , αi2 , α

∗
i1

, and α∗i2 .

That is, it is like that they use q = 4 in Algorithm I.1 with a different working set selection

from Algorithm I.2.

22

If Algorithms I.1 and I.2 with q = 2 are directly used for (40), two indices are selected

from {1, . . . , 2l} and a sub-problem (2) with two variables is solved. The advantage of

working on (40) is that a generalized implementation can be directly used for both classi-

fication and regression. However, a possible shortcoming is that special structures of (39)

are not considered so there may have computational overheads. Surprisingly we will show

that αki (α
∗)ki = 0 still holds if Algorithms I.1 and I.2 are directly applied to solve (40).

Another issue is on the Hessian Q̄ =
[
Q −Q
−Q Q

]
of the objective function of (40). Now Q̄

is only positive semidefinite so it is unlikely that Assumption IV.1 can be true. In the

following theorem we will show that if only Q instead of Q̄ satisfies Assumption IV.1, the

convergence for solving (40) follows.

Theorem V.1 If Algorithms I.1 and I.2 are used for solving (40) and the initial solution

is zero, then αki (α
∗)ki = 0, i = 1, . . . , l for all k. In addition, if Q satisfies Assumption

IV.1,
[

αk

(α∗)k

]
converges to an optimal solution of (39).

Proof:

We prove the first result by the mathematical induction. It is true that if the initial

solution is zero, for the first iteration, α1
i (α
∗)1
i = 0, i = 1, . . . , l. Assume the result is true

for the kth iteration and we will prove αk+1
i (α∗)k+1

i = 0, i = 1, . . . , l.

We consider three situations in the kth iteration:

1. In Algorithm I.2, both i and i+ l are selected in the working set: Then from the KKT

condition of the sub-problem (2), αk+1
i (α∗)k+1

i = 0.

2. Only i but not i+ l is selected in the working set and αki = 0: For this case, di = 1 after

solving (3). Since yidi = 1, we realize that in Algorithm I.2, the index i is selected from

the bottom of the sorted list of yi∇f(αk, (α∗)k)i, i = 1, . . . , 2l. However, we also have

yi∇f(αk, (α∗)k)i = (Q(αk − (α∗)k))i + ε+ zi

≥ (Q(αk − (α∗)k))i − ε+ zi = yi+l∇f(αk, (α∗)k)i+l.

In other words, index i + l is closer than i to the bottom of the sorted list. Therefore, if

i+ l is not selected, index i+ l is not a “bottom” candidate so (α∗)ki does not satisfy (19).

As yi+l = −1, (α∗)ki = 0. Since i+l is not selected in the kth iteration, (α∗)k+1
i = (α∗)ki = 0

so αk+1
i (α∗)k+1

i = 0.

23

3. Only i but not i+ l is selected in the working set and αki > 0: Then αki (α
∗)ki = 0 implies

(α∗)ki = 0. Therefore, (α∗)k+1
i = 0 and αk+1

i (α∗)k+1
i = 0.

When only i+ l but not i is selected, the situation is similar. Thus we have finished the

proof that αki (α
∗)ki = 0, i = 1, . . . , l, for all k.

Next we switch to the second goal of this theorem. Now the Hessian of the objective

function of (40) is Q̄ =
[
Q −Q
−Q Q

]
. We remember that Assumption IV.1 is needed near Eq.

(31) in the proof of Lemma IV.2. If we can prove

−1

2
sTBQ̄BBsB ≤ −

σ

2
‖sB‖2, (41)

where σ is related only to Q, then a condition on Q instead of Q̄ is sufficient for the

convergence. Thus the main task is to prove that (41) is true.

We define the following disjoint index sets:

B1 = {i | 1 ≤ i ≤ l, i ∈ B and i+ l ∈ B}, B∗1 = {i+ l | i ∈ B1},

B2 = {i | 1 ≤ i ≤ l, i ∈ B and i+ l /∈ B},

B∗3 = {i+ l | 1 ≤ i ≤ l, i /∈ B and i+ l ∈ B}, B3 = {i | i+ l ∈ B∗3}.

Then

B = B1 ∪B∗1 ∪B2 ∪B∗3 .

Thus

sTBQ̄BBsB

= [sB1 − sB∗
1
, sB2 , sB∗

3
]


QB1B1 QB1B2 −QB1B3

QB2B1 QB2B2 −QB2B3

−QB3B1 −QB3B2 QB3B3



sB1 − sB∗

1

sB2

sB∗
3

 . (42)

Since

[
QB1B1

QB1B2
−QB1B3

QB2B1
QB2B2

−QB2B3
−QB3B1

−QB3B2
QB3B3

]
has the same eigenvalues as

[
QB1B1

QB1B2
QB1B3

QB2B1
QB2B2

QB2B3
QB3B1

QB3B2
QB3B3

]
, which is

24

a square sub-matrix of Q, and |B1 ∪B2 ∪B3| ≤ q, we have

−1

2
sTBQ̄BBsB

≤ −σ
2
‖


sB1 − sB∗

1

sB2

sB∗
3

 ‖2 ≤ −σ
2
‖


sB1

sB∗
1

sB2

sB∗
3

 ‖2 = −σ
2
‖sB‖2,

where σ = minI(min(eig(QII))), and I is any subset of {1, . . . , l} with |I| ≤ q. Note that

‖sB1 − sB∗
1
‖2 ≥ ‖

[
sB1
sB∗

1

]
‖2 is because of the following reasons: Since αk+1

i (α∗)k+1
i = 0, we

consider two situations:

1. αk+1
i = 0: Then if αki = 0, si = 0 so sisi+l ≤ 0. On the other hand, if αki > 0, (α∗)ki = 0.

Hence si ≤ 0 and si+l ≥ 0 imply sisi+l ≤ 0.

2. (α∗)k+1
i = 0: Similarly, sisi+l ≤ 0.

Therefore, we have −sTB1
sB∗

1
≥ 0 so

‖sB1 − sB∗
1
‖2 = ‖

sB1

sB∗
1

 ‖2 − 2sTB1
sB∗

1
≥ ‖

sB1

sB∗
1

 ‖2.

Recent implementation using Algorithms I.1 and I.2 with q = 2 for (40) are LIBSVM [5]

and SVMTorch [6].

Note that it may be possible to extend convergence results in this section for algorithms

used in [13], [15], [26] but here we will not get into details.

We then briefly discuss two other SVM formulations: one-class SVM and ν-SVM. For

one-class SVM [24], the formulation is already in the form of (37). For ν-SVM [25], it has

two linear constraints so is not covered by the algorithm and proof here.

The last formulation which we will consider is the support vector classification with

quadratic penalty functions [7]. The required optimization problem is as follows:

min
1

2
αT (Q+ I/C)α− eTα

0 ≤ αi, i = 1, . . . , l, (43)

yTα = 0,

25

where I is the identity matrix.

As the upper bound of α is∞ so the feasible region of (43) seems to be unbounded. This

is a difficulty since we need the bounded property in order to have convergent subsequences.

For any feasible point α of (43), since Q is positive semidefinite,

1

2C
αTα− eTα ≤ −1

2
αTQα ≤ 0.

Therefore,

1

2C

l∑
i=1

(αi − C)2 ≤ l

2C
· C2 =

lC

2

implies that

αi − C ≤
√
lC.

Thus all feasible α are in fact in a compact set. Then the convergence proof follows.

VI. Conclusions and Discussions

In this section we give some notes about the convergence proof. The property that (2)

is exactly solved is used both in Lemmas IV.2 and IV.4. This confirms the conjectures

in Section I where we think that an optimal solution of (2) makes a difference from the

original Zoutendijk’s method.

It is unfortunate that we need Assumption IV.1 for the proof. We hope that this gap

can be filled sometime in the future.

The convergence proof also suggests a possible way to improve the implementation. In

final iterations, as the order of sorting yi∇f(α∗)i, i = 1, . . . , l is about fixed, it might be

possible to consider fewer elements on the working set selection.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via the grant

NSC 89-2213-E-002-013. The author thanks Sathiya Keerthi for many helpful comments.

References

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming : theory and algorithms. Wiley,

second edition, 1993.

[2] C. J. C. Burges and D. J. Crisp. Uniquness of the SVM solution. In NIPS99, 1999.

26

[3] C.-C. Chang, C.-W. Hsu, and C.-J. Lin. The analysis of decomposition methods for support vector machines.

IEEE Transactions on Neural Networks, 11(4):1003–1008, 2000.

[4] C.-C. Chang and C.-J. Lin. Training ν-support vector classifiers: Theory and algorithms. Neural Computation,

13(9):2119–2147, 2001.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent

Systems and Technology, 2(3):27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

[6] R. Collobert and S. Bengio. SVMTorch: A support vector machine for large-scale regression and classification

problems. Journal of Machine Learning Research, 1:143–160, 2001.

[7] C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273–297, 1995.

[8] G. W. Flake and S. Lawrence. Efficient SVM regression training with SMO. Machine Learning, 46:271–290,

2002.

[9] T.-T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: a fast and simple learning

procedure for support vector machines. In Proceedings of 15th Intl. Conf. Machine Learning. Morgan Kaufman

Publishers, 1998.

[10] C.-W. Hsu and C.-J. Lin. A simple decomposition method for support vector machines. Machine Learning,

46:291–314, 2002.

[11] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola,

editors, Advances in Kernel Methods – Support Vector Learning, pages 169–184, Cambridge, MA, 1998. MIT

Press.

[12] S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design.

Machine Learning, 46:351–360, 2002.

[13] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to SMO algorithm for

SVM regression. IEEE Transactions on Neural Networks, 11(5):1188–1193, 2000.

[14] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt’s SMO algorithm

for SVM classifier design. Neural Computation, 13:637–649, 2001.

[15] P. Laskov. An improved decomposition algorithm for regression support vector machines. Machine Learning,

46:315–350, 2002.

[16] O. L. Mangasarian and D. R. Musicant. Successive overrelaxation for support vector machines. IEEE Trans-

actions on Neural Networks, 10(5):1032–1037, 1999.

[17] C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions.

Constructive Approximation, 2:11–22, 1986.

[18] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),

pages 130–136, 1997.

[19] J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf,

C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge,

MA, 1998. MIT Press.

[20] M. J. D. Powell. On search directions for minimization. Mathematical Programming, 4:193–201, 1973.

[21] S. Rüping. mySVM - another one of those support vector machines, 2000. Software available at

http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

[22] C. Saunders, M. O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A. Smola. Support vector machine

27

reference manual. Technical Report CSD-TR-98-03, Royal Holloway, University of London, Egham, UK,

1998.

[23] B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods - Support Vector

Learning. MIT Press, Cambridge, MA, 1998.

[24] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a

high-dimensional distribution. Neural Computation, 13(7):1443–1471, 2001.

[25] B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural

Computation, 12:1207–1245, 2000.

[26] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14(3):199–

222, 2004.

[27] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, NY, 1995.

[28] V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.

[29] P. Wolfe. On the convergence of gradient methods under constraint. IBM J. Research and Development,

16:407–411, 1972.

[30] G. Zoutendijk. Methods of feasible directions. Elsevier, 1960.

28

Chih-Jen Lin received his B.S. degree in Mathematics from National Taiwan University in

1993. From 1995 to 1998 he studied at the Department of Industrial and Operations En-

gineering at the University of Michigan and received his M.S. and Ph.D. degrees. Since

September 1998, he has been an assistant professor in the Department of Computer Science

and Information Engineering at National Taiwan University. His research interests include

machine learning, numerical optimization, and various applications of Operations Research.

