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A. APPENDIX

A. Proof of Theorem 1

To prove Theorem 1, we need the following lemma.
Lemma 1: Let Assumption 1 hold. Let ∆k = w∗ − wk.

Then for H∗ ≡ ∇2f(w∗), we have

‖gk +H∗∆k‖2 ≤
L̂

2
‖∆k‖22.

Similarly, for Hk we have

‖gk +Hk∆k‖2 ≤
L̂

2
‖∆k‖22.

Proof of Lemma 1

We follow the proof of Lemma 9 of Wang et al. [1].
First, we can write gk ≡ ∇f(wk) as

gk = ∇f(wk)−∇f(w∗)

=(

∫ 1

0

∇2f(w∗ + τ(wk −w∗))dτ)(wk −w∗)

=− (

∫ 1

0

∇2f(w∗ + τ(wk −w∗))dτ)∆k,

(a.1)

where the first equality follows from the fact that ∇f(w∗) =
0.

Then from (a.1), it follows that

‖gk +H∗∆k‖2

=‖[∇2f(w∗)−
∫ 1

0

∇2f(w∗ + τ(wk −w∗))dτ)]∆k‖2

≤‖∆k‖2‖
∫ 1

0

[∇2f(w∗)−∇2f(w∗ + τ(wk −w∗))]dτ‖2

≤‖∆k‖2
∫ 1

0

‖∇2f(w∗)−∇2f(w∗ + τ(wk −w∗))‖2dτ

≤‖∆k‖2
∫ 1

0

τL̂‖wk −w∗‖2dτ

=
L̂

2
‖∆k‖22.

Similarly, we have ‖gk + Hk∆k‖2 ≤ L̂
2 ‖∆k‖22, which

completes the proof.

Proof of Theorem 1

Our proof is similar to Lemma 9 of Wang et al. [1]. But
instead of ν̄qk(∆k/ν̄), we use ν̄qk(∆k) in (a.4).

First, from some simple calculations, we have

1

2
(∆k −∆k+1)THk(∆k −∆k+1)

=
1

2
(−∆k −∆k+1)THk(∆k −∆k+1)

+ ∆T
kHk(∆k −∆k+1)

=
1

2
∆T
k+1Hk∆k+1 −

1

2
∆T
kHk∆k

+ ∆T
kHk(∆k −∆k+1).

(a.2)

Then recall the definition,

qk(s) =
1

2
sTHks + gTk s.

Substituting (a.2) into the equation, we have

qk(αkuk)

=qk(wk+1 −wk) = qk(∆k −∆k+1)

=
1

2
(∆k −∆k+1)THk(∆k −∆k+1)

+ gTk (∆k −∆k+1)

=
1

2
∆T
k+1Hk∆k+1 −

1

2
∆T
kHk∆k

+ (Hk∆k + gk)T (∆k −∆k+1).

(a.3)

Furthermore, from our assumption, we have

ν(αk,uk) =
qk(αkuk)

qk(sk)
≥ ν̄.



Data sets #instances #features sparsity log2(CBest)
epsilon normalized 400,000 2,000 1 3

HIGGS 11,000,000 28 0.92 -6
rcv1 test 677,399 47,236 1.5e-3 3
news20 19,996 1,355,191 3.4e-4 9

webspam trigram 350,000 16,609,143 2.2e-4 2
yahoojp 176,203 832,026 1.6e-4 3
yahookr 460,554 3,052,939 1.1e-4 5

url combined 2,396,130 3,231,961 3.6e-5 -4
avazu-site 25,832,830 999,962 1.5e-5 -5

kdda 8,407,752 20,216,830 1.8e-6 -4
kddb 19,264,097 29,890,095 9.8e-7 -2

kdd12 149,639,105 54,686,452 2.0e-7 -6

TABLE I: Data set statistics ordered by sparsity (#nnz/#instances/#features). CBest is the regularization parameter selected by
cross validation. It is worth noticing that for some sparse data sets there are large number of features not appearing in any of
the training instances.

Thus,

qk(αkuk) ≤ ν̄qk(sk) ≤ ν̄qk(∆k)

=ν̄(
1

2
∆T
kHk∆k + gTk ∆k)

=
ν̄

2
(Hk∆k + gk)T∆k +

ν̄

2
gTk ∆k

=
ν̄ − 1

2
(Hk∆k + gk)T∆k +

ν̄ − 1

2
gTk ∆k

+ (Hk∆k + gk)T∆k −
1

2
∆T
kHk∆k.

(a.4)

Combing (a.3) and (a.4), we have

1

2
∆T
k+1Hk∆k+1

≤1

2
∆T
kHk∆k − (Hk∆k + gk)T (∆k −∆k+1)

+
ν̄ − 1

2
(Hk∆k + gk)T∆k +

ν̄ − 1

2
gTk ∆k

+ (Hk∆k + gk)T∆k −
1

2
∆T
kHk∆k

=(Hk∆k + gk)T∆k+1 +
ν̄ − 1

2
(Hk∆k + gk)T∆k

+
ν̄ − 1

2
gTk ∆k

=
1− ν̄

2
∆T
kH
∗∆k +

ν̄ − 1

2
(Hk∆k + gk)T∆k

+
ν̄ − 1

2
(H∗∆k + gk)T∆k + (Hk∆k + gk)T∆k+1

≤1− ν̄
2

∆T
kH
∗∆k +

(1− ν̄)

2

L̂

2
‖∆k‖32

+
(1− ν̄)

2

L̂

2
‖∆k‖32 +

L̂

2
‖∆k‖22‖∆k+1‖2,

(a.5)

where the last inequality follows from Lemma 1.

From Assumption 1 and (a.5), we then have
1

2
∆T
k+1H

∗∆k+1

≤1

2
∆T
k+1Hk∆k+1 +

L̂

2
‖∆k‖2‖∆k+1‖22

≤1− ν̄
2

∆T
kH
∗∆k +

(1− ν̄)L̂

2
‖∆k‖32

+
L̂

2
‖∆k‖22‖∆k+1‖2 +

L̂

2
‖∆k‖2‖∆k+1‖22.

(a.6)

Furthermore, since

‖∆k‖2‖∆k+1‖2 ≤
1

2
‖∆k‖22 +

1

2
‖∆k+1‖22,

we have

‖∆k‖22‖∆k+1‖2 ≤
1

2
‖∆k‖32 +

1

2
‖∆k‖2‖∆k+1‖22. (a.7)

From (a.6) and (a.7), it follows that
1

2
∆T
k+1H

∗∆k+1

≤1− ν̄
2

∆T
kH
∗∆k +

(1− ν̄)L̂

2
‖∆k‖32

+
L̂

4
‖∆k‖32 +

3L̂

4
‖∆k‖2‖∆k+1‖22

≤1− ν̄
2

∆T
kH
∗∆k +

(3− 2ν̄)L̂

4λmin(H∗)
3
2

(∆T
kH
∗∆k)

3
2

+
3L̂

4λmin(H∗)
3
2

(∆T
kH
∗∆k)

1
2 (∆T

k+1H
∗∆k+1).

(a.8)

This states that when ‖∆k‖2 is small enough,
1
2∆T

k+1H
∗∆k+1 will converge linearly with rate 1 − ν̄,

which completes the proof.

B. Proof of Proposition 1

To solve the maximization in (6), we write down the first-
order condition for α∗ ≡ argminα qk(αu),

α∗uTHu + gTu = 0.

This tells us

α∗ =
−gTu

uTHu
. (a.9)



Plugging (a.9) into qk(α∗u) gives us

qk(α∗u) =
1

2
α∗2uTHu + α∗gTu

=− 1

2

(gTu)2

uTHu
= −1

2

(sTHu)2

uTHu
,

(a.10)

where the second equality comes from (4).
Furthermore, also from (4), we have

qk(s) =
1

2
sTHs + gT s = −1

2
sTHs. (a.11)

Combining (a.11) and (a.10), we have

µ(u) =
qk(α∗u)

qk(s)
=

(sTHu)2

(uTHu)(sTHs)
. (a.12)

From (a.12) and (8), one can see that we have

τH(u, s)2 =
(sTHu)2

(uTHu)(sTHs)
= µ(u),

which completes the proof.

C. Proof of Theorem 2

For the first part, we have

min
i,α

qk(αpi) = min
i,α

qk(Pk(αei)) ≥ min
t
qk(Pkt),

where ei denotes the vector with a 1 in the ith coordinate and
0’s elsewhere. Since qk(s) < 0, this tells us

max
i
µ(pi) =

mini,α qk(αpi)

qk(s)

≤mint qk(Pkt)

qk(s)
= µ(Pk),

which completes the proof.
For the second part, we first define

M ≡ (PTk HPk). (a.13)

By our assumption, the columns of Pk are linearly indepen-
dent, so we have Pku 6= 0 for all u 6= 0. This combined with
the fact that H is positive definite tells us that

uTMu = uT (PTk HPk)u = (uTPTk )H(Pku) > 0.

This means M is also positive definite, and thus invertible.
For t∗ = argmint qk(Pkt), it should satisfy the first-order

condition
(PTk HPk)t∗ + PTk g = 0.

As a result, we have

qk(Pkt
∗) = −1

2
(PTk g)TM−1(PTk g). (a.14)

Similarly, for α∗i = argminα qk(αpi), we have

(pTi Hpi)α
∗
i + pTi g = 0,

and
min
α
qk(αpi) = −1

2
(pTi g)T (Mi,i)

−1(pTi g).

As a result, we have

mean
i

[min
α
qk(αpi)] = −1

2

(PTk g)TD−1(PTk g)

m
, (a.15)

where D ≡ diag(M).
From (a.14) and (a.15), it follows that

qk(Pkt
∗)

meani[minα qk(αpi)]

=
(D−

1
2PTk g)T (D

1
2M−1D

1
2 )(D−

1
2PTk g)

(D−
1
2PTk g)T (D−

1
2PTk g)

m

≥mλmin(G−1) = m/λmax(G), (a.16)

where G ≡ D− 1
2MD−

1
2 .

By the definition of G,D,M , and (8), we have

Gi,j =
Mi,j

M
1
2
i,iM

1
2
j,j

=
pTi Hpj

‖H 1
2 pi‖2‖H

1
2 pj‖2

= τH(pi,pj).

Especially, we have Gi,i = 1. The Gershgorin circle theorem
and the definition of ζ in (11) give us

λmax(G) ≤ max
i

Σmj=1|Gij |

=1 + (m− 1) max
i

mean
j:j 6=i

[|Gij |] = 1 + (m− 1)ζ.

This combined with (a.16) gives us

qk(Pkt
∗)

meani[minα qk(αpi)]
≥ m

1 + (m− 1)ζ
= Γ. (a.17)

As a result,

µ(Pk) =
mint qk(Pkt)

qk(s)
=
qk(Pkt

∗)

qk(s)

≥Γ mean
i

[
minα qk(αpi)

qk(s)
] = Γ mean

i
µ(pi),

where the first equality comes from qk(s) < 0 and the
inequality comes from (a.17). This completes our proof.

D. Proof of Theorem 3

To prove Theorem 3, we need the following lemma and its
corollary.

Lemma 2: Given 0 ≤ β ≤ 1 and a,b, c ∈ Rn, which
satisfy

aibi > 0 and ci =
1

β/ai + (1− β)/bi
(a.18)

for all i, we have

|aTb|
‖a‖2‖b‖2

≤ min{ |a
T c|

‖a‖2‖c‖2
,
|bT c|
‖b‖2‖c‖2

}. (a.19)



Proof of Lemma 2

First, we show that it is sufficient to prove the result for
rational ai, bi, ci and β. For real ai, bi, ci, and β, since they
are respectively limits of rational ai, bi, ci, and β, by the fact
that all the math components used are continuous, the result
in (a.19) still holds.

We can further assume that ci are integers, as multiplying
a,b and c with a constant does not affect the result.

Next, we show that we can further assume

ai > 0, bi > 0 and ci =
1

β/ai + (1− β)/bi
= 1 (a.20)

for all i without loss of generality. We prove this by showing
that if there exists a counterexample a,b, c which satisfies
(a.18) but not (a.19), then we can construct a counterexample
ã, b̃, c̃ which also satisfies (a.20).

Assume that a,b, c is a counterexample, where ci are
integers for all i. We can define a helper function h :
{0, . . . , n} → Z (the set of integers),

h(x) = Σxk=1c
2
k.

and a matrix Q ∈ Rh(n)×n, where

Qij =

{
1/cj , if h(j − 1) < i ≤ h(j)

0, otherwise.
(a.21)

We then construct ã = Qa, b̃ = Qb, c̃ = Qc.
We will show that this construction satisfies (a.20). From

(a.18), we know that aj , bj and cj should have the same sign.
Thus from (a.18) and (a.21), we know that

ãi =
aj
cj
> 0,

b̃i =
bj
cj
> 0,

and

c̃i =
1

cj/cj
= 1 =

1

cj(β/aj + (1− β)/bj)

=
1

β/ãi + (1− β)/b̃i
,

so ã, b̃, c̃ satisfy (a.20).
Furthermore, from (a.21), we have

QTQ = I.

Thus for any vectors u and v, we have

uTv = (Qu)T (Qv),

which means we have ‖ã‖2 = ‖a‖2, |ãT b̃| = |aTb|, etc.
Consequently, if a,b, c is a counterexample for Lemma 2,

then ã, b̃, c̃ should also be a counterexample for Lemma 2.
Therefore, in the rest of the proof, we can assume that (a.20)
holds.

From (a.20), we have

ci =
1

β/ai + (1− β)/bi
= 1,

which means if ai are sorted in the ascending order, then bi
are sorted in the descending order.

As a result, according to the rearrangement inequality, for
any permutation σ, we have

Σiaσ(i)bi ≥ Σiaibi.

This gives us

(Σiai)(Σibi)

n
=

ΣiΣjag(i,j)bj

n
≥ Σiaibi, (a.22)

where g(i, j) = ((i+ j) mod n) + 1.
Furthermore, since x2 is a convex function, we have√

Σib2i
n
≥ Σibi

n
,

which implies √
n

Σibi
≥ 1√

Σib2i
. (a.23)

We then have

|aT c|
‖a‖2‖c‖2

=
Σiai√
Σia2

i

√
n

=
1√
Σia2

i

(
ΣiaiΣibi

n
)(

√
n

Σibi
)

≥ Σiaibi√
Σia2

i

√
Σib2i

=
|aTb|
‖a‖2‖b‖2

,

where the inequality follows from (a.22) and (a.23).
Similarly, we have

|bT c|
‖b‖2‖c‖2

≥ |aTb|
‖a‖2‖b‖2

,

so the proof is complete.
Corollary 1: Lemma 2 can be extended to cases where ai =

bi = ci = 0 for some i is allowed since we can reduce them
to lower-dimensional cases by removing these dimensions.

Proof of Theorem 3

From the definition of H̄ , we have

βH̄−
1
2 H̄iH̄

− 1
2 + (1− β)H̄−

1
2 H̄jH̄

− 1
2 = I,

so we know that H̄−
1
2 H̄iH̄

− 1
2 and H̄−

1
2 H̄jH̄

− 1
2 share the

same set of eigenvectors.
In addition, since they are both positive definite, we can

write their eigendecomposition as

H̄−
1
2 H̄iH̄

− 1
2 = UΛiU

−1 (a.24)

and
H̄−

1
2 H̄iH̄

− 1
2 = UΛjU

−1, (a.25)

where U is an orthogonal matrix, and Λi and Λj are diagonal
matrices satisfying

βΛi + (1− β)Λj = I. (a.26)



Let
a = Λ−1

i U−1v,

b = Λ−1
j U−1v,

c = U−1v,

(a.27)

where v is any non-zero vector. Since

ak = (Λ−1
i )k,k(U−1v)k,

bk = (Λ−1
j )k,k(U−1v)k,

ck = (U−1v)k,

and
akbk = (Λ−1

i )k,k(Λ−1
j )k,kc

2
k,

from (a.26), we know that they either satisfy ak = bk = ck =
0 or (a.18). As a result, Corollary 1 gives us

|aTb|
‖a‖2‖b‖2

≤ min{ |a
T c|

‖a‖2‖c‖2
,
|bT c|
‖b‖2‖c‖2

}. (a.28)

From (a.24) and (a.25), we have

H̄
1
2 H̄i

−1
H̄

1
2 = UΛ−1

i U−1 (a.29)

and
H̄

1
2 H̄j

−1
H̄

1
2 = UΛ−1

j U−1. (a.30)

In addition, since U−1 = UT , we have

xTy = (Ux)T (Uy).

Thus from (a.27), (a.29), and (a.30), we know that for

ã ≡ Ua = H̄
1
2 H̄i

−1
H̄

1
2 v,

b̃ ≡ Ub = H̄
1
2 H̄j

−1
H̄

1
2 v,

c̃ ≡ Uc = v,

(a.31)

we have ‖ã‖2 = ‖a‖2, |ãT b̃| = |aTb|, etc. Consequently,
ã, b̃, and c̃ should also satisfy (a.28).

Picking v = −H̄− 1
2 g, then from (a.31) and the definition

of s̄i, s̄j , s̄ in Theorem 3, we have

ã = −H̄ 1
2 H̄i

−1
g = H̄

1
2 s̄i,

b̃ = −H̄ 1
2 H̄j

−1
g = H̄

1
2 s̄j ,

c̃ = −H̄− 1
2 g = H̄

1
2 s̄.

As a result, (a.28) now becomes

τH̄(s̄i, s̄j) ≤ min{τH̄(s̄i, s̄), τH̄(s̄j , s̄)},

which completes our proof.

E. Further Connections

We can further connect the average strength of the subsam-
pled Newton directions meani µ(s̄i) with their similarity ζ, as
long as we are willing to make more assumptions.

As one can see, a noteworthy analogy to (13) is

τH(s̄i, s̄j) ≤ min{
√
µ(s̄i),

√
µ(s̄j)}, (a.32)

where H̄ is replaced by H and Proposition 1 is applied.

If one believes (a.32) will hold on average, or, to be more
precise, for every i we have

mean
j:j 6=i

τH(s̄i, s̄j) ≤ mean
j:j 6=i

√
µ(s̄j),

then we have

ζ ≤ max
i

mean
j:j 6=i

√
µ(s̄j) ≤

√
max
i

mean
j:j 6=i

µ(s̄j)

≤
√

m

m− 1
mean
i

µ(s̄i).

As a result, whenever the directions are close to each other
so the similarity ζ is large, the average strength meani µ(s̄i)
should also be large, which means the directions are strong.
This avoids the weakness of gradient directions, where the
directions can be both weak and similar.


	Appendix
	Proof of th:convergencebymu
	Proof of pr:mutau
	Proof of th:usefulnessofcommondirection
	Proof of th:anglebetweendirections
	Further Connections


