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Similarly, we have |gr + HpAgllz < Z[Ag|3, which

A. APPENDIX
completes the proof.

A. Proof of Theorem ]|
To prove Theorem (1} we need the following lemma.

Lemma 1: Let Assumption [T] hold. Let Ay, = w* — wy.  Proof of Theorem ]|
Then for H* = V2 f(w*), we have
A Our proof is similar to Lemma 9 of Wang et al. [1]. But
i . - ~ _ . L
gk + H* Axlls < Ll A2 1nstf':ad of qu(Ak/V.), we use qu.(Ak) in (a.4).
2 First, from some simple calculations, we have
Similarly, for H; we have )
L ) 5 (Ak — A1) Hy (A — Appr)
g + HeArllz < 5 [ A 1 .
=-(—Ak — Apt1)” Hy(Ap — Apa)
Proof of Lemma 2 - " ’
+ ATHL(Ay — Ags) @.2)
We follow the proof of Lemma 9 of Wang et al. [1]. 1 1
First, we can write g = V f(wy,) as :§A£+1HkAk+1 - §A5HkAk
gk = Vf(wk) - Vf(W*) + Ang(Ak - Ak+1)-
1
— 2 * _ * _ *
= o VAW + 7(wp — wh))dr)(wi — w”) (a.1) Then recall the definition,
1
- _ VQ * _ * drA , 1
(/0 Sl 4 mlwe = wh))dn) A a(s) = 58" Hys + gis.
where the first equality follows from the fact that V f(w*) =
0. Substituting (a.2)) into the equation, we have
Then from (a.I)), it follows that
* qr(cuuy)
g+ H Axllz . =@ (Wr+1 — Wi) = qr(Ak — Agy1)
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0
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Data sets #£instances F#features | sparsity | logy(Chest)
epsilon_normalized 400,000 2,000 1 3
HIGGS 11,000,000 28 0.92 -6
rcvl_test 677,399 47,236 1.5e-3 3
news20 19,996 1,355,191 3.4e-4 9
webspam_trigram 350,000 16,609,143 2.2e-4 2
yahoojp 176,203 832,026 1.6e-4 3
yahookr 460,554 3,052,939 1.1e-4 5
url_combined 2,396,130 3,231,961 3.6e-5 -4
avazu-site 25,832,830 999,962 1.5e-5 -5
kdda 8,407,752 | 20,216,830 1.8e-6 -4
kddb 19,264,097 | 29,890,095 9.8e-7 -2
kdd12 149,639,105 | 54,686,452 2.0e-7 -6

TABLE I: Data set statistics ordered by sparsity (#nnz/#instances/#features). C'ges is the regularization parameter selected by
cross validation. It is worth noticing that for some sparse data sets there are large number of features not appearing in any of

the training instances.

Thus,

gr(arug) < Dgi(sk) < Ugi(Ag)
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Combing (a.3) and (a.4), we have
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where the last inequality follows from Lemma 1.

From Assumption [T] and (a.3), we then have
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Furthermore, since
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This states that when ||Ag|l2 is small enough,
%Af+1H*Ak+1 will converge linearly with rate 1 — 7,
which completes the proof.

B. Proof of Proposition [l

To solve the maximization in @, we write down the first-
order condition for a* = argmin,, gx(au),

a*u’ Hu+gfu=0.

This tells us
* _gTu 9
¢ T WTHu (29)




Plugging into g (a*u) gives us

qr(a™u) =

_ 1(g"w)?

1

ia*QuTHu +a*glu

1 (sTHu)?

2u’Hu 2 uTHu'’

where the second equality comes from (d).
Furthermore, also from @[), we have

(a.10)

1 1
qx(s) = §STHS +gls = —isTHs.

Combining and (a.10), we have

(u) = qe(a*u) (sT Hu)?
qx(s) (u"Hu)(s"Hs)’
From and (8), one can see that we have
T 174)2
5 (s" Hu) B
7-H(uv S) - (uTHu) (STHS) - :u(u)7

which completes the proof.

(a.11)

(a.12)

C. Proof of Theorem 2]
For the first part, we have

min g (op;) = min qx (Pr(ce;)) > min qr(Prt),

i, i,

where e; denotes the vector with a 1 in the ¢th coordinate and
0’s elsewhere. Since g (s) < 0, this tells us

min; gz (ap;)
qx(s)

= u(Py),

max u(pi) =
< ming gy (Pxt)
qk(s)

which completes the proof.

For the second part, we first define
M = (PL'HP,). (a.13)

By our assumption, the columns of Py are linearly indepen-
dent, so we have Pru # O for all u # 0. This combined with
the fact that H is positive definite tells us that

u’ Mu =u" (P HP,)u = (u"Pl'YH(P,u) > 0.

This means M is also positive definite, and thus invertible.
For t* = argmin, qx(Pt), it should satisfy the first-order
condition
(PFHP)t" + Plg=0.

As a result, we have
ar(Pit”) = —%(PE &) M\ (Plg). (14
Similarly, for of = argmin,, ¢i(ap;), we have
(P Hpi)o] +pg =0,
and 1
min g, (ap;) = —§(PiTg)T(Mz',i)71(p¢Tg)-

As a result, we have

1(Plg)"D"'(Pl'g)

i O] = — . @ls
m%an[mofn qr(ap;)] 5 - (a.15)
where D = diag(M).
From and (a.13)), it follows that
Qi (Pt™)
mean; [ming, g (ap;)]
(D~2PTg)T(DzM~'D3)(D~2Plg)
= m
(D~:Plg)"(D~%Plg)
ZmAmin(G_l) = m/)\max(G)a (a.16)
where G =D 2 MD" 3.
By the definition of G, D, M, and (8)), we have
M; ; p; Hp;
Gij = = 7 =71(Pi, Pj)-

T _ 1 - I I =
MzMz [zl H 2]

Especially, we have G; ; = 1. The Gershgorin circle theorem
and the definition of ¢ in (TI) give us

Amax(G) < max E;‘nzllGiﬂ
=1+ (m — 1) maxmean(|Gi;|] = 1+ (m — 1)¢.
) Ji)F

This combined with gives us

qr(Pit") > m T @17)
mean;[min,, gx(ap;)] — 1+ (m —1)¢ ' '
As a result,
min Pt P t*
(P = e ae(Pit) e (Pit”)
qk(s) qk(s)
>T me_an[%k(api)] = I"mean u(p;),
7 C]k(S) 7

where the first equality comes from g¢x(s) < 0 and the
inequality comes from (a.17). This completes our proof.

D. Proof of Theorem 3|

To prove Theorem [3] we need the following lemma and its
corollary.

Lemma 2: Given 0 < 8 < 1 and a,b,c € R"™, which
satisfy

1
a;b; >0 and ci = (a.18)
B/ai+ (1 —5)/b;
for all 7, we have
laTb| . la”c| [bT'c|
o < min{ ) }. (a.19)
[all2[®ll2 lall2llcll2" [[bl2]lcll2



Proof of Lemma [2]

First, we show that it is sufficient to prove the result for
rational a;, b;, ¢; and §. For real a;, b;, ¢;, and f3, since they
are respectively limits of rational a;, b;, ¢;, and 3, by the fact
that all the math components used are continuous, the result
in still holds.

We can further assume that c; are integers, as multiplying
a, b and c with a constant does not affect the result.

Next, we show that we can further assume

1

Fava-pp @2
for all 7 without loss of generality. We prove this by showing
that if there exists a counterexample a,b,c which satisfies
but not (a.19), then we can construct a counterexample
a, b, ¢ which also satisfies (a.20).

Assume that a,b,c is a counterexample, where c¢; are
integers for all ¢. We can define a helper function h
{0,...,n} — Z (the set of integers),

h(z) = i:ﬂ}i-

a; >0, b;>0 and ¢

and a matrix Q € RM™*" where

1/c;, if h(j—1)<i<h(j
Qi — /¢ G—=1) () (@21)
0, otherwise.

We then construct a = Qa, b= @b, c = Qc.

We will show that this construction satisfies (a.20). From
(a.T8), we know that a;, b; and ¢; should have the same sign.
Thus from and (@.21), we know that

a;

a; = — >0,
Gy
Ei:ﬁ>0,
Cj
and
G = L =1= !
Cog/e cj(B/aj + (1 —B)/b;)
1

Blai+(1—p)/b;’
5o a, b, & satisfy (a.20).
Furthermore, from (a.21)), we have

RTQ=1
Thus for any vectors u and v, we have
u’v = (Qu)" (Qv),

which means we have ||al| = ||al|2, |a7b| = |a”b], etc.

Consequently, if a, b, c is a counterexample for Lemma 2}
then é,f), ¢ should also be a counterexample for Lemma
Therefore, in the rest of the proof, we can assume that
holds.

From (a.20), we have

! =1
(L=B)/bi ~

“7 Blai+

which means if a; are sorted in the ascending order, then b;
are sorted in the descending order.

As a result, according to the rearrangement inequality, for
any permutation o, we have

Yias(5)bi = Xiaib;.
This gives us
(Ziai)(Bibs) _ Bi%jagi5)b;
n n

where g(i,7) = ((i + 7) mod n) + 1.
Furthermore, since 22 is a convex function, we have

(a.22)

> Yiaib;,

Sib? _ Sibs
Z —

)

which implies

(a.23)

We then have

|aTC| _ Yia;
lall2llcllz \/SiaZv/n

1 (ZlalZlbl)( \/’E )
VEa? n ibs
> Elalbz |aTb\

T V/EiaZyE? lallzlbll2’

where the inequality follows from and (a.23).

Similarly, we have

[bTc| |a”b|
[bllzllcllz ~ llall2/bll2’

so the proof is complete.

Corollary 1: Lemma[2)can be extended to cases where a; =
b; = ¢; = 0 for some 7 is allowed since we can reduce them
to lower-dimensional cases by removing these dimensions.

Proof of Theorem [3]
From the definition of H, we have
BH zH,H = + (1-— ﬁ)ﬁ[‘é 7jﬁ_% =1,
so we know that H~>H;H~> and H~>H;H "% share the

same set of eigenvectors.
In addition, since they are both positive definite, we can
write their eigendecomposition as

H*H,H * =UNU"

Nl

(a.24)

and

A *H,A : =UNU, (a.25)

where U is an orthogonal matrix, and A; and A; are diagonal
matrices satisfying

BA; + (1—B)A; =1. (2.26)



Let
a=A Uy,
b =AU, (@.27)
c=U"1v,

where v is any non-zero vector. Since
ar = (A7 k(U™ V)1,
by = (Afl)k,k(U_lv)k,
= (U_lv)k,
and
arbe = (A7 k(A
from (a.26), we know that they either satisfy a, = by, = ¢ =
0 or (a.I8). As a result, Corollary [I] gives us

|a”b| [bT'c|

)k,k‘cia

la’c|

O ing , 1. (2.28)
l[all2[[bll2 lall2l[cllz" [Ibl[2[[c[|2

From and (a.23), we have
H>H, 'H? =UA;'U! (a.29)

and .
O, 'H? =UA;'U (a.30)
In addition, since U~! = UT, we have
= (Ux)"(Uy).

Thus from (a.27), (a.29), and (a.30), we know that for
a=Ua=HzH, 'Hiv,
b=Ub=H>H, “hev, (a31)
c=Uc=v,

we have ||alls = |al|2, |a”b| = |aTb|, etc. Consequently,

a,b, and ¢ should also satisfy (a.28).
Picking v = —H ~zg, then from ( and the definition
of §;,8;,8 in Theorem [3| we have

a=-H:H 'g=H?s,
¢=-H 2g=Ms.

As a result, now becomes
TH(S“ SJ) < mln{TH(Su ) TH(S]’ S)}v
which completes our proof.

E. Further Connections

We can further connect the average strength of the subsam-
pled Newton directions mean; y(S;) with their similarity ¢, as
long as we are willing to make more assumptions.

As one can see, a noteworthy analogy to (T3) is

Tr(8:,5;) < min{~/u(s;), \/1(5;)},

where H is replaced by H and Proposition [1] is applied.

(a.32)

If one believes will hold on average, or, to be more
precise, for every ¢ we have

mean 7y (8;, §;) < mean 4/ 4(S;),
Jij#i Jij#i
then we have
¢ < max mean \/u (§5) max mean ((S,)

i Al i AL

<=~ )

mean p(S;).
e R

As a result, whenever the directions are close to each other
so the similarity ¢ is large, the average strength mean; (S;)
should also be large, which means the directions are strong.
This avoids the weakness of gradient directions, where the
directions can be both weak and similar.
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