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Abstract—The common-directions method is an optimization
method recently proposed to utilize second-order information. It
is especially efficient on large-scale linear classification problems,
and it is competitive with state-of-the-art optimization methods
like BFGS, LBFGS, and Nesterov’s accelerated gradient method.
The main idea of the method is to minimize the local quadratic
approximation within the selected subspace. Regarding the selec-
tion of the subspace, the original authors only focused on the span
of current and past gradient directions. In this work, we analyze
the impact of subspace selection, and point out that the lack of
direction diversity can be a potential weakness for using gradients
as directions. To address this problem, we propose the use of
subsampled Newton directions, which always possess diversity
unless they are already close to the true Newton direction. Our
experiments on large-scale linear classification problems show
that our proposed methods are generally better than subsampled
Newton methods and the original common-directions method.

I. INTRODUCTION

The common-directions method was proposed by Wang
et al. [[1] as an interpolation between first- and second-order
methods for regularized empirical risk minimization problems.
The main idea of the method is to minimize the local quadratic
approximation within the selected subspace. Their experiments
on large-scale linear classification problems show that it is
competitive with state-of-the-art optimization methods like
BFGS [2] and Nesterov’s accelerated gradient method [3]].

The limited-memory version of the common-directions
method was then developed by Lee et al. [4]]. Their theoretical
results show that it has global linear convergence for convex
problems and converges to stationary points for non-convex
problems. A similar method called the subspace Newton
method was later proposed by Gower et al. [5].

Regarding the selection of the subspace, Gower et al. [5]
simply use some randomly chosen vectors. On the other hand,
inspired by the heavy-ball method and the BFGS method,
Wang et al. [1] and Lee et al. [4] considered the span of current
and past gradient directions.

In this work, we assume the loss function to be twice-
differentiable, Lipschitz smooth, and strictly convex. We then
analyze the impact of subspace selection, and point out that
the lack of direction diversity can be a potential weakness
for using gradients as directions. To address this problem, we
propose the use of subsampled Newton directions [6], which
always possess diversity unless they are already close to the
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true Newton direction. Our experiments on large-scale linear
classification problems show that our proposed methods are
generally better than subsampled Newton methods and the
original common-directions method.

The paper is organized as follows. In Section [lI, we intro-
duce the common-directions method. In Section we ana-
lyze the impact of subspace selection and point out the lack of
direction diversity can be a potential weakness for the original
common-directions method. In Section V] we propose to use
subsampled Newton directions with the common-directions
method, which does not possess the same weakness. We
discuss the convergence of our proposed method in Section
We put some other algorithmic considerations in Section [VI}
Empirical comparisons are conducted in Section Finally,
Section [VIII] concludes our work.

We put the code for our experiments and the additional ex-
periment results at https://www.csie.ntu.edu.tw/~cjlin/papers/
commdir_subsampled.

II. REVIEW OF LINEAR CLASSIFICATION AND THE
COMMON-DIRECTIONS METHOD

Given a set of training instances (y;,x;),%7 = 1,...,l, where
y; is a label and x; € R™ is a feature vector, a supervised
learning problem can be formulated as the following regular-
ized empirical risk minimization problem

l
1 T

min f(w) =
w
where WTW/ 2 is the L2-regularization term, & is a loss
function parametrized by a weight vector w € R", and C' > 0
is a parameter to balance the two terms.
In this work, we assume £ to be twice-differentiable, Lip-
schitz smooth, and strictly convex. In particular, we consider
the logistic loss

é1r = log(1 4 exp(—yw’x))

for large-scale linear classification problems, where the num-
ber of instances [ and/or the number of features n are large.
The common-directions method was proposed by Wang
et al. [1]] as an interpolation between first- and second-order
methods for solving (I). The limited-memory version was later
developed by Lee et al. [4], which is the focus of this work.
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2
be the quadratic approximation at the current iterate wy,, where
gr = Vf(wg) and Hy = V?f(wy). The common-directions
method first chooses a set of directions

ar(s) = ss"Hys+gis ~ f(wi +s) — f(wi)

Pk’: [pla"'apm/]a

and then computes the update direction
uy = Pty

where t;, is the solution of
. 1
min qr(Pit) = i(Pkt)THk(Pkt) +gl(Pt). ()

After a suitable step size oy, was decided by line search, the
next iterate is then computed by

Wgt1 = Wg + QpUg.
To solve (@), we consider its first-order condition,
(PEHePo)ti + P g = 0. (3)

After we compute and store P! Hy Py, and P['gy,, we can then
solve the linear system (@) in O(m3).

To make the computation of PkT H P, more efficient, Lee
et al. [4]] showed that the convergence results will still hold if
we replace the Hessian matrix Hj with any positive definite
matrix By,.

Furthermore, Lee et al. [4]] showed that for linear classifica-
tion problems, where £ in can be represented as a function
of wl'x, we can compute P Hy, Py exactly with efficiency if
Py, consists of a search direction S and m — 1 past directions.

The search direction S; can be the subsampled Newton
direction as in this work or the gradient gj as proposed by
Wang et al. [I]. For the m — 1 past directions, they can be
past search and/or past update directions. In this work, we use
the Mixed strategy proposed by Lee et al. [4], where half of
the past directions are past search directions and the other half
are past update directions.

III. WEAKNESS FOR USING GRADIENTS AS DIRECTIONS

In this section, we analyze the original common-directions
method and point out that the lack of direction diversity can
be a potential weakness for using gradients as directions. We
put the proofs of the theorems in the appendix.

A. Notation
For convenience, we first define some notations which will
be used in our analysis. We use
-1
S = —11;, 8k “)

to denote the Newton direction, which is the minimizer of
qx(s). Furthermore, we omit the subscript k& when there is no
confusion. In particular,

gk—>g,Hk—>H,sk—>s.

We use the math operator
mean] |
7

to denote taking the average over ¢, where ¢ belongs to a finite
set.
For each iteration with g # 0, we define

_ qx(au)
v(a,u) = e )

and |
p(u) = maxv(a,u) = min, g (au) ©

o qr(s)
to measure the strength of an arbitrary direction u against the
Newton direction s. Since g, (0) = 0, we always have

min g (cu) < 0.
«

Furthermore, since s is the minimizer of g, which is strongly
convex, and we have g # 0, it follows that

1
qr(s) = —igTH_lg <0 and 0<p(u) <1

We generalize p to a set of directions Py as
ming g (Pxt)
ar(s) '

For vectors u,v # 0 and a positive definite matrix A, we
define

1(Py)

)

|vT Aul
1Az ]| AZ v ]2
to measure their similarity. Due to the Cauchy inequality, we
always have

(®)

Ta(,v)

0<74(u,v) <1

Furthermore, since A is positive definite, we have 74 (u,v) =
1 if and only if u = v up to a scale factor.

We also define A, = w* — wy, and H* = V2f(w*) to
prove some convergence properties, where w* is the global
minimum of f.

B. Interpretation for v, u, and T

Wang et al. [[7] prove that v is strongly related to conver-
gence under the following assumption.

Assumption 1: The Hessian matrix V2 f(w) is Lipschitz
continuous with parameter ﬁ, ie.,

IV2f(w) = V2F(W)l2 < Lilw —w'[|2

and f is strongly convex.
More specifically, Lemma 9 of Wang et al. 7] indicates that
for an arbitrary optimization method, if the update direction
u and the step size « satisfy v(a,u) > 7 for every iteration,
then AT H* A}, converges linearly locally with rate (1—7)/.
To ensure (1 — 7))/ < 1, one must have 7 > 1/2. We
improve their result and give the following theorem, which
has a smaller convergence rate and only requires v > 0.
Theorem 1: Let Assumption [1| hold and 7 € (0,1) be a
fixed constant. If at every iteration, we have v(a,u) > 7,
then AT H* Ay, converges linearly locally with rate 1 — .



It is worth noticing that the purpose of this theorem is to
show that v and p are good measures for the strength of
our update directions. Our proposed method does not rely on
this theorem to obtain convergence guarantees, so we do not
require Assumption [T}

To connect 1 and 7, we give the following proposition.

Proposition 1: For vector u, Hessian H, Newton direction
s, we have 7 (u,s)? = p(u).

Therefore, a direction u more similar to the Newton direction
s under 7 leads to a larger u(u), and by (6), this u should
be a better direction.

C. Effectiveness of the Common-Directions Method

To analyze the performance of the common-directions
method, we demonstrate some of its most important properties
in the following theorem.

Theorem 2: Let P, = [p1, ...
dent directions. We have

, Pm] be m linearly indepen-

p(Py) = max p(p;)

and
pu(Py) = I'mean p(pi), )
where m
= ——M—, 10
1+ (m—1)¢ (10)
and

(1)

¢ = maxmean 7y (pi, P;)-
(3

i g

The first result simply states that the common-directions
method should always perform better than any of its individual
directions.

The second result gives a lower bound on the usefulness
of the common-directions method. We find it hard to give
a meaningful upper bound of p(Py) due to the following
example. Let u be a direction orthogonal to gi. We have
min, gx(ou) = 0, and thus p(u) = 0. For p; = u+es
and po = u — es, we have p(p; — p2) = u(s) = 1, while
wu(p1) and pu(p2) can be arbitrarily small.

The second result states that there are three determining
factors for the lower bound

1) The average strength of selected directions mean; p(p;).

2) The number of directions m.

3) The similarity of the selected directions (.

Since in Theorem [2| we assume the directions to be linearly
independent, and H is positive definite, we have

0 < 7u(pi,pj) <1
for j # 4. Thus, we always have
0<(¢<1.

From (@), (I0), and (TT)), one can see that the improvement
of the common-directions method over the average strength
of the directions becomes larger as the selected directions
[P1,--.,Pm] become less similar to each other, resulting in a
decrease in (.

Besides, if ( does not change much, then I' slowly increases
as m becomes larger. In other words, when the number of
directions increases, the common-directions method should
perform better.

D. The Lack of Direction Diversity for Gradient Directions

From Theorem [2| we can see that for a fixed number of
directions, the average strength of the selected directions and
their similarity determine the performance of the common-
directions method. Now we will show that under some cases,
the lack of direction diversity for gradient directions can make
them both weak and similar to each other, thus leading to a
poor performance.

Assume that at some iteration, the combination of our
selected directions [p1, . . ., Prn] from past gradient and update
directions is weak and gives us a very small update u. Since
we assume the gradient to be Lipschitz continuous, the change
in the gradient will also be small after we apply our update.

Consequently, our new gradient direction g, which is also
our newly added search direction, will be very close to the
previous gradient direction, and thus our next update will also
be small. Repeating the above process for several iterations,
our selected directions will now become not only weak but
also very similar to each other. From Theorem [2| we can see
that this will lead to a poor performance.

IV. BENEFIT OF SUBSAMPLED NEWTON DIRECTIONS

In this section, we introduce subsampled Newton directions
and show that they cannot be both weak and similar to each
other. Thus, we believe that subsampled Newton directions
are better than gradient directions when used in the common-
directions method.

A. Subsampled Newton Directions

From (@), one can see that the computation of the Newton
direction requires the use of the full Hessian Hj. One can
instead use the subsampled Hessian [6]

- Cl
Hy =T+ Z V2E(w;xi, i)
|Sk| 1€Sk
to approximate the true Hessian, where S, C {1,...,1}

is a training subset. We can then derive the subsampled
Newton direction S; by minimizing the subsampled quadratic
approximation

. 1 5~
Gr(s) = isTHks + g,{s. (12)

For large-scale problems, -H N 1gk, the exact minimizor
of (I2) could be too expensive to compute. Furthermore,
the subsampled Hessian matrix H, € R™ ™ may be too
large to be stored. Thus, we would use the conjugate gra-
dient (CG) method instead to approximately minimize (12).
The conjugate gradient method is an iterative process which
involves a sequence of Hessian-vector products. Past works
such as Keerthi et al. [8] and Lin et al. [9] have shown
that for linear classification problems, the special form of the



Hessian allows us to conduct Hessian-vector products without
explicitly forming the matrix.

Similarly, we can conduct the conjugate gradient method to
minimize (I2) without forming the subsampled Hessian, as it
shares a similar form with the full Hessian matrix.

When Sy, is chosen uniformly and all the training samples
(yi,x;) are from the same distribution, we have

E[H}] = H.
However, one should notice that we have
E[—H; 'gi] # —H g,

which means the subsampled Newton direction is not an
unbiased estimator of the Newton direction.

Our proposal is to use subsampled Newton directions in
the common-directions method. Just as the gradient descent
method is a special case of the original common-directions
method, the subsampled Newton method [|6] is a special case
of our proposed method, where the number of directions used
is one. Another special case of our proposed method is the
work of Wang et al. [10]], where the current subsampled New-
ton direction is combined with the previous update direction
ui—1 to produce the current update direction uy.

B. Relation Between Strength and Similarity

To show that subsampled Newton directions cannot be both
weak and similar to each other, we consider the case where g
barely changes, as intuitively subsampled Newton directions
will be very different when the gradient g changes a lot.

The intuition behind the use of subsampled Newton direc-
tions is that even though they are not unbiased estimators, they
should still be very close to the Newton direction if multiple
of them are close to each other, and the Newton direction is
the strongest direction in terms of .

To show this, we prove the following theorem.

Theorem 3: Given subsampled Hessian H; and H;, sub-
sampled Newton directions §; = —Hi_lg and §; = —ﬁj_lg,
we have

771(84,85) < min{r(s;,8), 771 (85, 8) } (13)
foralls=—-H g, H=3H;+(1-8)H;,0< 3 <1.
This theorem states that §; and s; are both closer to s than to
each other. That is to say when §; ~ §;, we have

Si%szé.

This implies that for multiple subsampled Newton direc-

tions, where mean;[H;| ~ H, we should have

S; &~ s
if §; ~ 8, for every 1, j.
This means the subsampled Newton directions should be
strong whenever they are similar to each other. Therefore, they
do not possess the same weakness as the gradient directions.

V. CONVERGENCE

To apply results in [4]], we need some conditions.

Assumption 2: The objective f is Lipschitz smooth and
strongly convex.

Assumption 3: For all k, at least one of the directions in
Py is a sufficient descent direction; see the explanation below.

Since we assume & to be Lipschitz smooth and strictly
convex, and we adopt regularization, Assumption [2] holds.
Additionally, the subsampled Newton direction s, is always a
sufficient descent direction. That is for all k£, we have

T T -1
g} Sk g 11, Bk >5>0,

= o > (14)
lgxllzlISkllz  llgn ||l H; " gxll2

where § is a fixed constant. Because by our design s is
included in Py, Assumption [3| also holds.

Furthermore, we adopt the backtracking line search, so the
following theorem holds.

Theorem 4 (Lee et al. [4)] Theorem 3.2): If Assumption
and Assumption [3| hold, and we use the solution of the
common-directions method as the update direction uj and
adopt the backtracking line search, then the function value
converges linearly.

This ensures our proposed method has global linear conver-
gence.

VI. OTHER ALGORITHMIC CONSIDERATIONS

To determine the maximum number of directions m, we pro-
pose the following heuristic: We select m such that the extra
cost induced by the common-directions method is O(#nnz),
where #nnz is the number of non-zero elements in the data
set. Since the cost to compute the gradient and the function
value are both O(#nnz), this makes our computational cost
comparable to a single iteration of most optimization methods.

The extra cost for the common-directions method is O(m?+
m?2l + mn) time and O(m? 4+ ml + mn) space. As a result,
we propose to choose

m = O(\/#nnz/l).

Under the assumption that n = O(1), this makes both the extra
time and space O(#nnz). In our experiment, we pick

m if m is odd
m =
m+ 1 otherwise,

where . = | y/#nnz/l|. In other words, we choose the closest
odd number to \/#nnz/l, as the Mixed strategy mentioned
in Section |lI| requires the number of directions to be odd.

VII. EXPERIMENTS

The binary classification data sets we used are listed in the
supplementary material. All data sets except yahookr can be
downloaded from the publicly available LIBSVM Data Sets
We modify the publicly available software LIBLINEAR [11]
to compute subsampled Newton directions and incorporate the

Uhttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

use of the common-directions method. To decide the step size,
we use the backtracking line search method with the Armijo
condition. That is to say, given ¢,3 € (0,1), we find the
smallest nonnegative integer i such that the step size ay = f3°
satisfies

f(Wk —+ akuk) < f(Wk) —+ cozkgguk.

In our experiments, we use ¢ = 0.01 and g = 0.5.

To compute the subsampled Newton directions, we first
shuffle and partition the data set into fixed training subsets.
We then use these subsets in a cyclic manner to form the
subsampled Hessian matrices. This increases the locality for
us to compute the subsampled Hessian vector product. We
follow Byrd et al. [[6] to limit the number of CG steps (#CG)
for each iteration. For simplicity, we do not consider other
more complex inner stopping conditions for the CG procedure.

We conduct a detailed investigation by checking the rela-
tionship between the running time and the following relative
function-value reduction (f(wy)— f(w*))/f(w*), where w*
is obtained by LIBLINEAR under a very strict stopping
condition. LIBLINEAR uses the following stopping condition,

V7wl < R EPR TN gy,
where [ is the total number of instances, #pos and #neg are the
numbers of positive and negative instances, wq is the weight
initialization, which is O in our setting, and ¢ is the specified
tolerance. Horizontal lines in our figures show when (I3)
with tolerances 10~!, 10~2 (default), and 10~ (the bottom
of the figure) are reached by LIBLINEAR; such information
indicates when the training algorithm should stop.

Regarding the regularization parameter C', we consider C' =
Cgest X {1,64}, where Cpey for each data set is the value
leading to the best cross validation accuracy. We only show
the figures for C' = Cpey due to the space limit.

5)

A. Comparison With Other Methods

In this section, we compare our proposed method with other
related optimization methods. Specifically, we compare

o SubNewtonMixed: The Mixed strategy under the
common-directions framework with subsampled Newton
directions as search directions.

o SubNewton: Subsampled Newton methods without the
common-directions framework.

o GradientMixed: The Mixed strategy under the common-
directions framework with gradients as search directions,
which is proposed by Lee et al. [4].

o Newton: The preconditioned full Newton solver [12] in
LIBLINEAR.

Subsampled Newton directions are computed using 5% of the
training data and the number of CG steps is set to be 20.
Due to the space limit, here we do not show the results of
some optimization methods which seem to be less competitive
in past comparisons. For the comparison between the original
common-directions method and LBFGS [13], one can see the
work of Lee et al. [4]. For the comparison between Newton

and first-order methods like SAG [14] and SAGA [15]], one
can see the work of Galli et al. [|[12]].

From Figure [ we can see that for C = Cpgeg, Sub-
NewtonMixed is in general better than SubNewton and
GradientMixed. The only exception is news20, which is a
smaller data set. The results are similar for C' = 64Cges. This
demonstrates the effectiveness of our proposed method.

From Figure we can also see that for C = Cgeg,
SubNewtonMixed performs better than Newton. However,
we observe that for C' = 64Cges, SubNewtonMixed could
perform slightly worse than Newton on sparse data sets like
kdda and kddb. This is because when the data set is sparse and
the choice of C' is large, the problem is more ill-conditioned
and the strength of subsampled Newton directions is weaker.
The full Newton method can be useful in such cases.

To conclude, our proposed method is an improvement upon
the original common-directions method. While it can be slower
than Newton under specific settings, its overall performance
is competitive across sparse and dense data sets and different
choices of C.

VIII. CONCLUSIONS

In this work, we analyze the impact of subspace selection
for the common-directions method, and we point out that
the lack of direction diversity can be a potential weakness
for using gradients as directions. To address this problem,
we propose the use of subsampled Newton directions, which
always possess diversity unless they are already close to the
true Newton direction. Our experiments on large-scale linear
classification problems show that our proposed methods are
generally better than the original common-directions method.
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