
Supplementary Materials for “Newton Methods for
Convolutional Neural Networks”

Chien-Chih Wang, Kent Loong Tan, Chih-Jen Lin
Department of Computer Science, National Taiwan University, Taipei 10617, Taiwan

I List of Symbols

Notation Description
yi The label vector of the ith training instance.
Z1,i The input image of the ith training instance.
l The number of training instances.
K The number of classes.
θ The model vector (weights and biases) of the neural network.
ξ The loss function.
ξi The training loss of the ith instance.
f The objective function.
C The regularization parameter.
L The number of layers of the neural network.
Lc The number of convolutional layers of the neural network.
Lf The number of fully-connected layers of the neural network.
nm The number of neurons in the mth layer (Lc < m ≤ L+ 1).
n The total number of weights and biases.
am Height of the input image at the mth layer (1 ≤ m ≤ Lc).
ampad Height of the image after padding at the mth layer (1 ≤ m ≤ Lc).
amconv Height of the image after convolution at the mth layer (1 ≤ m ≤ Lc).
bm Width of the input image at the mth layer (1 ≤ m ≤ Lc).
bmpad Width of the image after padding at the mth layer (1 ≤ m ≤ Lc).
bmconv Width of the image after convolution the mth layer (1 ≤ m ≤ Lc).
dm Depth (or the number of channels) of the data at the mth layer (1 ≤ m ≤

Lc).
hm Height (width) of the filters at the mth layer (1 ≤ m ≤ Lc).
Wm The weight matrix in the mth layer.
bm The bias vector in the mth layer.
Sm,i The result of (Wm)Tφ(pad(Zm,i)) + bm1Tambm in the mth layer for the ith

instance (1 ≤ m ≤ Lc).
Zm+1,i The output matrix (element-wise application of the activation function on

Sm,i) in the mth layer for the ith instance (1 ≤ m ≤ Lc).
sm,i The result of (Wm)Tzm,i + bm in the mth layer for the ith instance (Lc <

m ≤ L).

1

Notation Description
zm+1,i The output vector (element-wise application of the activation function on

sm,i) in the mth layer for the ith instance (Lc ≤ m ≤ L).
σ The activation function.
J i The Jacobian matrix of zL+1,i with respect to θ.
I An identity matrix.
α Step size in taking a direction to update θ.
ρ The ratio between the actual and the predicted function value reduction.
λ A parameter in the Levenberg-Marquardt method.

II Implementation Details
We show that with a careful design, a Newton method for CNN can be implemented
by a simple and short program. A MATLAB implementation is given as an illustration
though modifications for other languages such as Python should be straightforward.

For the discussion in Section 3, we check each individual data. However, for practi-
cal implementations, all instances must be considered together for memory and compu-
tational efficiency. In our implementation, we store Zm,i, ∀i = 1, . . . , l as the following
matrix. [

Zm,1 Zm,2 . . . Zm,l
]
∈ Rdm×ambml. (II.1)

Similarly, we store ∂ξi/∂vec(Sm,i)T , ∀i as[
∂ξ1
∂Sm,1 . . . ∂ξl

∂Sm,l

]
∈ Rdm+1×amconvb

m
convl. (II.2)

For ∂zL+1,i/∂vec(Sm,i)T , ∀i, we consider[
∂zL+1,1

1

∂Sm,1 . . .
∂zL+1,1

nL+1

∂Sm,1 . . .
∂zL+1,l

nL+1

∂Sm,l

]
∈ Rdm+1×amconvb

m
convnL+1l (II.3)

and will explain our decision. Note that (II.1)-(II.3) are only the main setting to store
these matrices because for some operations they may need to be re-shaped.

For an easy description in some places we follow Section 2.1 to let

Z in,i and Zout,i

be the input and output images of a layer, respectively.

II.1 Details of Padding Operation
To implement zero-padding, we first capture the linear indices of the input image in the
padded image. For example, if the size of the input image is 3×3 and the output padded
image is 5× 5, we have 

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

 ,

2

Listing I: MATLAB implementation for the index of zero-padding
1 function [idx_pad] = find_index_padding(model,m)
2
3 a = model.ht_input(m);
4 b = model.wd_input(m);
5 p = model.wd_pad_added(m);
6
7 newa = 2*p + a;
8 idx_pad = reshape((p+1:p+a)' + newa*(p:p+b-1), [], 1);

where “1” values indicate positions of the input image. Based on the column-major
order, we derive

pad idx = {7, 8, 9, 11, 12, 13, 16, 17, 18}.
This index set, obtained in the beginning of the training procedure, is used in the fol-
lowing situations. First, pad idx contains row indices in Pm

pad of (14) that correspond
to the input image. We can use it to conduct the padding operation in (14). Second,
from (56) and (66) in gradient and Jacobian evaluations, we need

vTPm
pad.

This can be considered as the inverse of the padding operation: we would like to remove
zeros and get back the original image. We give details of finding pad idx below.

Assume the input image is
Z ∈ Ra×b.

We would like to add p zeros on each dimension so that the resulting image is as Figure
II.1. We notice that Z corresponds to the following elements in the output image:

(p+ 1, p+ 1) . . . (p+ 1, p+ b)
...

(p+ a, p+ 1) . . . (p+ a, p+ b)

The size of the new image is

(2p+ a)× (2p+ b).

The linear indices in the new matrix are

pā+

p+ 1
...

p+ a

 , (p+ 1)ā+

p+ 1
...

p+ a

 , . . . , (p+ b− 1)ā+

p+ 1
...

p+ a

 ,
where

ā = 2p+ a. (II.4)

Together they can be obtained by applying MATLAB’s ‘+’ operator on the following
two arrays: p+ 1

...
p+ a

 and ā
[
p · · · p+ b− 1

]
.

3

An input
image

0 · · · 0...
0 · · · 0

...
...

· · ·

· · ·
0 · · · 0...
0 · · · 0

0· · ·0 ...
0· · ·0

0· · ·0 ...
0· · ·0

p

p

p

p

a

b

Figure II.1: A padding example.

II.2 Generation of φ(pad(Zm,i))

MATLAB has a built-in function im2col that can generate φ(pad(Zm,i)) for s = 1 and
s = h. For general s, we notice that φ(pad(Zm,i)) is a sub-matrix of the output matrix
of using MATLAB’s im2col under s = 1. Therefore, we can apply MATLAB’s
im2colwith s = 1 and extract a sub-matrix as φ(pad(Zm,i)). See a detailed procedure
in Section II.2.1.

The above setting is not ideal because first in other languages a subroutine like
MATLAB’s im2col may not be available, and second, generating a larger matrix un-
der s = 1 causes extra time and memory. Therefore, here we show an efficient im-
plementation without relying on a subroutine like MATLAB’s im2col. For an easy
description we follow Section 2.1 to consider

pad(Zm,i) = Z in,i → Zout,i = φ(Z in,i).

Consider the following linear indices1 (i.e., counting elements in a column-oriented
way) of Z in,i: 

1 din + 1 . . . (binain − 1)din + 1
2 din + 2 . . . (binain − 1)din + 2
...

...
din 2din . . . (binain)din

 ∈ Rdin×ainbin
. (II.5)

Because every element in
φ(Z in,i) ∈ Rhhdin×aoutbout

,

is extracted from Z in,i, the task is to find the mapping between a linear index of Z in,i

and each element in φ(Z in,i). Consider the following example.

ain = 3, bin = 2, din = 1, s = 1, h = 2.

1Linear indices refer to the sequence of how elements in a matrix are stored. Here we consider a
column-oriented setting.

4

Because din = 1, we omit the channel subscript. In addition, we omit the instance index
i, so the image is z11 z12

z21 z22
z31 z32

 .
By our representation in (5),

Z in =
[
z11 z21 z31 z12 z22 z32

]
and the linear indices from (II.5) are[

1 2 3 4 5 6
]
.

From (9),

φ(Z in) =


z11 z21
z21 z31
z12 z22
z22 z32

 .
Thus we store the following vector to indicate the mapping between linear indices of
Z in and elements in φ(Z in). [

1 2 4 5 2 3 5 6
]T
. (II.6)

It also corresponds to column indices of non-zero elements in Pm
φ .

To have a general setting we begin with checking how linear indices of Z in,i can
be mapped to the first column of φ(Z in,i). For simplicity, we consider only channel j.
From (9) and (II.5), we have

j zin
1,1,j

din + j zin
2,1,j

...
...

(h− 1)din + j zin
h,1,j

aindin + j zin
1,2,j

...
...

((h− 1) + ain)din + j zin
h,2,j

...
...

((h− 1) + (h− 1)ain)din + j zin
h,h,j


, (II.7)

where the left column gives the linear indices in Z in,i, while the right column shows the

5

corresponding values. We rewrite linear indices in (II.7) as

0 + 0ain

...
(h− 1) + 0ain

0 + 1ain

...
(h− 1) + 1ain

...
0 + (h− 1)ain

...
(h− 1) + (h− 1)ain



din + j. (II.8)

Clearly, every linear index in (II.8) can be represented as

(p+ qain)din + j, where p, q ∈ {0, . . . , h− 1} (II.9)

correspond to the pixel position in the convolutional filter.2

Next we consider other columns in φ(Z in,i) by still fixing the channel to be j. From
(9), similar to the right column in (II.7), each column contains the following elements
from the jth channel of Z in,i.

zin,i
1+p+as,1+q+bs,j , a = 0, 1, . . . , aout − 1,

b = 0, 1, . . . , bout − 1, (II.10)

where (1 + as, 1 + bs) denotes the top-left position of a sub-image in the channel j of
Z in,i. From (II.5), the linear index of each element in (II.10) is

((1 + p+ as− 1) + (1 + q + bs− 1)ain)din + j

= (a+ bain)sdin + (p+ qain)din + j︸ ︷︷ ︸
see (II.9)

. (II.11)

Listing II shows our implementation about finding the mapping of the linear indices
of each element and Listing IV shows the generation of φ(pad(Zm,i)). First, we com-
pute elements in (II.8) with j = 1 by applying MATLAB’s ‘+’ operator, which has the
implicit expansion behavior, to compute the outer sum of the following two arrays.

1
din + 1

...
(h− 1)din + 1

 and
[
0 aindin . . . (h− 1)aindin

]
.

The result is the following matrix
1 aindin + 1 . . . (h− 1)aindin + 1

din + 1 (1 + ain)din + 1 . . . (1 + (h− 1)ain)din + 1
...

... . . .
...

(h− 1)din + 1 ((h− 1) + ain)din + 1 . . . ((h− 1) + (h− 1)ain)din + 1

 ,
(II.12)

2More precisely, p+ 1 and q + 1 are the pixel position.

6

Listing II: MATLAB implementation for finding the mapping between the linear indices
of Zm,i and elements in φ(Z in,i)

1 function idx = find_index_phiZ(a,b,d,h,s)
2
3 first_channel_idx = ([0:h-1]*d+1)' + [0:h-1]*a*d;
4 first_col_idx = first_channel_idx(:) + [0:d-1];
5 a_out = floor((a - h)/s) + 1;
6 b_out = floor((b - h)/s) + 1;
7 column_offset = ([0:a_out-1]' + [0:b_out-1]*a)*s*d;
8 idx = column_offset(:)' + first_col_idx(:);
9 idx = idx(:);

whose columns, if concatenated, lead to values in (II.8) with j = 1; see line 3 of the
code. To get (II.9) for all channels j = 1, . . . , din, we compute the outer sum of the
vector form of (II.12) and [

0 1 . . . din − 1
]
,

and then vectorize the resulting matrix; see line 4.
To obtain other columns in φ(Z in,i), we first calculate aout and bout by (4) in lines

5-6. In the linear indices in (II.11), the second term corresponds to indices of the first
column, while the first term is the following column offset

(a+ bain)sdin, ∀a = 0, 1, . . . , aout − 1,

b = 0, 1, . . . , bout − 1.

This is the outer sum of the following two arrays. 0
...

aout − 1

× sdin and
[
0 . . . bout − 1

]
× ainsdin;

see line 7 in the code. Finally, we compute the outer sum of the column offset and the
linear indices in the first column of φ(Z in,i); see line 8. In the end what we keep is the
following vector [

Column index of non-zero
in each row of Pm

φ

]
hhdinaoutbout

. (II.13)

Note that each row in the 0/1 matrix Pm
φ contains exactly only one non-zero element.

We also see that (II.6) is an example of (II.13).
The obtained linear indices are independent of the values of Z in,i. Thus the above

procedure only needs to be run once in the beginning. For anyZ in,i, we apply the indices
in (II.13) to extract φ(Z in,i); see line 6-7 in Listing IV.

For the pooling operation φ(Z in,i) is needed in (15). The same implementation can
be used.

7

Listing III: An alternative implementation by using MATLAB’s im2col for finding
the mapping between the linear indices from Zm,i and elements in φ(Z in,i)

1 function output_idx = find_index_phiZ(a,b,d,h,s)
2
3 input_idx = reshape(([1:a*b]-1)*d+1,a,b);
4 output_idx = im2col(input_idx,[h,h],'sliding');
5 a_bar = a-h+1;
6 b_bar = b-h+1;
7 a_idx = 1:s:a_bar;
8 b_idx = 1:s:b_bar;
9 select_idx = a_idx'+a_bar*(b_idx-1);

10 output_idx = output_idx(:,select_idx)';
11 output_idx = reshape(output_idx(:)+[0:d-1],[],h*h*d)';

Listing IV: MATLAB implementation for generating φ(Z in,i)

1 function phiZ = padding_and_phiZ(model, net, m)
2
3 num_data = net.num_sampled_data;
4 phiZ = padding(model, net, m);
5 % Calculate phiZ
6 phiZ = reshape(phiZ, [], num_data);
7 phiZ = phiZ(net.idx_phiZ{m}, :);
8
9 h = model.wd_filter(m);

10 d = model.ch_input(m);
11 phiZ = reshape(phiZ, h*h*d, []);

II.2.1 Generation of φ(Z in,i) with MATLAB’s im2col

For the alternative method here, we use MATLAB’s im2col with s = 1 and extract a
sub-matrix as φ(Z in,i). The program is presented in Listing III.

We now explain each line of the program. To find Pm
φ , from (9) what we need is

to extract elements in Z in,i. In line 3, we start with obtaining the linear indices of the
first row of Z in,i, which corresponds to the first channel of the image. In line 4, we use
im2col to build φ(Z in,i) under s = din = 1, though contents of the input matrix are
linear indices of Z in,i rather than values. For φ(Z in,i) under s = din = 1, the matrix size
is

hh× āb̄,

where from (4),
ā = ain − h+ 1, b̄ = bin − h+ 1.

From (9), when a general s is considered, we must select some columns, whose column

8

indices are the following subset of {1, . . . , āb̄}:

1bout ⊗


 0

...
aout − 1

 s+ 1aout

+


 0

...
bout − 1

 s
⊗

ā...
ā


aout×1

, (II.14)

where aout and bout are defined in (4). More precisely, (II.14) comes from the following
mapping between the first row of φ(Z in,i) in (9) and {1, . . . , āb̄}:

(1, 1)
(1 + s, 1)

...
(1 + (aout − 1)s, 1)

(1, 1 + s)
(1 + s, 1 + s)

...
(1 + (aout − 1)s, 1 + s)

...


−→



 0
...

aout − 1

 s+ 1aout + 0aoutsā

 0
...

aout − 1

 s+ 1aout + 1aoutsā

...


Next we discuss how to extend the linear indices of the first channel to others. From

(5), each column of Z in,i contains values of the same pixel in different channels. There-
fore, because we consider a column-major order, indices in Z in,i for a given pixel are a
continuous segment. Then in (9) for φ(Z in,i), essentially we have din segments ordered
vertically and elements in two consecutive segments are from two consecutive rows in
Z in,i. Therefore, the following index matrix can be used to extract all needed elements
in Z in,i for φ(Z in,i).

1din ⊗
[

linear indices of Z in,i for
1st channel of φ(Z in,i)

]
hh×aoutbout

+


 0

...
din − 1

⊗ 1hh

⊗ 1Taoutbout . (II.15)

The implementation is in line 11. Since OCTAVE does not have the function repelem,3

we use different approach to calculate (II.15). First we calculate

vec(

[
linear indices of Z in,i for
1st channel of φ(Z in,i)

]T
) +

[
0 . . . din − 1

]
∈ Raoutbouthh×din

. (II.16)

Then, to obtain the desired matrix, we reshape (II.16) into Raoutbout×hhdin and transpose
it.

Similar to the previous section, we apply the indices in line 11 to extract φ(Z in,i);

II.3 Construction of Pm,i
pool

Following (18), we use Z in,i and Zout,i to represent the input

σ(Sm,i) ∈ Rdm+1×amconvb
m
conv

3The repelem in MATLAB is syntax incompatible with the repelems in OCTAVE.

9

and the output

Zm+1,i ∈ Rdm+1×am+1bm+1

of the pooling operation, respectively. We need to store Pm,i
pool because, besides function

evaluations, it is used in gradient and Jacobian evaluations; see (54) and (65).4 From
(19), we need both Pm,i

φ and Wm,i. Because Pm,i
φ is for partitioning each image to non-

overlapping sub-regions in (15) and (16), it is iteration independent. We obtain it in the
beginning of the training procedure by the method in Section II.2.

For Wm,i, it is iteration dependent because the maximal value of each sub-image is
not a constant. Therefore, we construct

Pm,i
pool = Wm,iPm,i

φ ∈ Rdm+1am+1bm+1×dm+1amconvb
m
conv

at the beginning of each Newton iteration.
In Section II.3, we have discussed why Pm,i

pool is needed to be constructed. Here we
give Listing V with explanation in details. To begin, we get

Z in,i, i = 1, . . . , l, (II.17)

which are stored as a matrix in (II.1). Because (16) may not hold with aout and bout

being integers, we consider a setting the same as (4). In line 11, we extract the linear
indices of Z in,i to appear in vec(φ(Z in,i)), which as we mentioned has been generated
in the beginning of the training procedure. The resulting vector P contains

hhdm+1am+1bm+1

elements and each element is in the range of

1, . . . , dm+1amconvb
m
conv.

In line 12-13, we use P to generate[
vec(φ(Z in,1)) · · · vec(φ(Z in,l))

]
∈ Rhhdm+1am+1bm+1×l. (II.18)

Next we rewrite the above matrix so that each column contains a sub-region:z
m,1
1,1,1 zm,11,1,2 . . . zm,l1+(am+1−1)×s,1+(bm+1−1)×s,dm+1

...
...

zm,1h,h,1 zm,1h,h,2 . . . zm,lh+(am+1−1)×s,h+(bm+1−1)×s,dm+1

 ∈ Rhh×dm+1am+1bm+1l. (II.19)

We apply a max function to get the largest value of each column and its index in the
range of 1, . . . , hh. The resulting row vector has dm+1am+1bm+1l elements; see line 14.
In line 15, we reformulate it to be

dm+1 × am+1bm+1l

4Note that we do not really generate a sparse matrix Pm,i
pool in (18). We only store column indices of

non-zeros in Pm,i
pool .

10

as the output Zout,i, ∀i.
Next we find linear indices that correspond to the largest elements obtained from

(II.19). Because of operations discussed in Section II.4.3 and II.4.4, we decide to record
linear indices in each Z in,i corresponding to the selected elements, rather than linear
indices in the whole matrix (II.1) of all Zm,i, ∀i. We begin with obtaining the following
vector of linear indices of Z in,i:  1

...
dm+1amconvb

m
conv

 . (II.20)

Then we generate
φ((II.20)), (II.21)

which has hhdm+1am+1bm+1 elements; see line 22. Next, we mentioned that in line 14,
not only the maximal value in each sub-region is obtained, but also the corresponding
index in {1, . . . , hh} is derived. Therefore, for the selected max values of all instances,
their positions in the range of

1, . . . , hhdm+1am+1bm+1

are

mat
([

row indices of
max values in (II.19)

])
dm+1am+1bm+1×l

+ hh


 0

...
dm+1am+1bm+1 − 1

⊗ 1Tl

 ;

(II.22)
see line 19. Next in line 23 we use (II.22) to extract values in (II.21) and obtain linear
indices of the selected max values in each Z in,i. To be more precise, the resulting matrix
is [

Column index of non-zero
in each row of Pm,1

pool
. . .

Column index of non-zero
in each row of Pm,l

pool

]
∈ Rdm+1am+1bm+1×l.

(II.23)
The reason is that because Pm,i

pool is a 0/1 matrix and each row contains exactly only one
value “1” to indicate the selected entry by max pooling, we collects the column index
of the non-zero at each row to be a vector for future use.

II.4 Evaluation of (vi)TPm
φ and (vi)TPm,i

pool in Gradient and Jaco-
bian Evaluations

We show that several operations in gradient and Jacobian evaluations are either

(vi)TPm
φ or (vi)TPm,i

pool,

where vi is a vector. Here we give Listing VI with details explained.

11

Listing V: MATLAB implementation for Pm,i
pool

1 function [Zout, idx_pool] = maxpooling(model, net, m)
2
3 a = model.ht_conv(m);
4 b = model.wd_conv(m);
5 d = model.ch_input(m+1);
6 h = model.wd_subimage_pool(m);
7
8 % Z input: sigma(S_m)
9 Z = net.Z{m+1};

10
11 P = net.idx_phiZ_pool{m};
12 Z = reshape(Z, d*a*b, []);
13 Z = Z(P, :);
14 [Z, max_id] = max(reshape(Z, h*h, []));
15 Zout = reshape(Z, d, []);
16
17 outa = model.ht_input(m+1);
18 outb = model.wd_input(m+1);
19 max_id = reshape(max_id, d*outa*outb, []) + h*h*[0:d*outa*outb

-1]';
20
21 idx_pool = [1:d*a*b];
22 idx_pool = idx_pool(P);
23 idx_pool = idx_pool(max_id);

II.4.1 Evaluation of (vi)TPm
φ in Gradient Evaluations

For (56) and (66), the following operation is applied.

(vi)TPm
φ , (II.24)

where

vi = vec
(

(Wm)T
∂ξi
∂Sm,i

)
for (56) and

viu = vec
(

(Wm)T
∂zL+1,i

u

∂Sm,i

)
, u = 1, . . . , nL+1 (II.25)

for (66).
Consider the same example in Section II.2. We note that

(Pm
φ)Tvi = [v1 v2 + v5 v6 v3 v4 + v7 v8]T , (II.26)

which is a kind of “inverse” operation of φ(pad(Zm,i)): we accumulate elements in
φ(pad(Zm,i)) back to their original positions in pad(Zm,i). In MATLAB, given indices
in (II.6), a function accumarray can directly generate the vector (II.26).

12

To calculate (56) over a batch of instances, we aim to have(Pm
φ)Tv1

...
(Pm

φ)Tvl


T

. (II.27)

We can manage to apply MATLAB’s accumarray on the vectorv
1

...
vl

 , (II.28)

by giving the following indices as the input.
(II.13)

(II.13) + ampadb
m
padd

m1hmhmdmamconvb
m
conv

(II.13) + 2ampadb
m
padd

m1hmhmdmamconvb
m
conv

...
(II.13) + (l − 1)ampadb

m
padd

m1hmhmdmamconvb
m
conv

 , (II.29)

where from Section 2.1.3,

ampadb
m
padd

m is the size of pad(Zm,i), and

hmhmdmamconvb
m
conv is the size of φ(pad(Zm,i)) and vi.

That is, by using the offset (i − 1)ampadb
m
padd

m, accumarray accumulates vi to the
following positions:

(i− 1)ampadb
m
padd

m + 1, . . . , iampadb
m
padd

m. (II.30)

To obtain (II.28), we can do a matrix-matrix multiplication as follows.

(II.28) = vec
(
(Wm)T

[
∂ξ1
∂Sm,1 . . . ∂ξl

∂Sm,l

])
. (II.31)

From (II.31), we can see why ∂ξi/∂vec(Sm,i)T over a batch of instances are stored in
the form of (II.2). In line 26, the indices shown in (II.29) are generated and the variable
V(:) in line 31 is the vector (II.28) calculated by (II.31).

II.4.2 Evaluation of (vi)TPm
φ in Jacobian Evaluations

To calculate (66) over a batch of instances, similar to (II.27) we conduct
(Pm

φ)Tv11
...

(Pm
φ)Tv1nL+1

...
(Pm

φ)TvlnL+1



T

, where viu = vec
(

(Wm)T
∂zL+1,i

u

∂Sm,i

)
∈ Rhmhmdmamconvb

m
conv×1, u = 1, . . . , nL+1.

(II.32)

13

Similar to (II.31), we can calculate the vector
v11
...

v1nL+1

...
vlnL+1

 (II.33)

by
vec
(

(Wm)T
[
∂zL+1,1

1

∂Sm,1 . . .
∂zL+1,1

nL+1

∂Sm,1 . . .
∂zL+1,l

nL+1

∂Sm,l

])
. (II.34)

The formulation in (II.34) leads us to store

∂zL+1,i

∂vec(Sm,i)
, ∀i

in the form of (II.3).
From (II.32), because each vector viu is accumulated to the following positions:

((i− 1)nL+1 + (u− 1))ampadb
m
padd

m + 1, . . . , ((i− 1)nL+1 + u)ampadb
m
padd

m,

we can apply accumarray on the vector (II.33) with the following input indices.
(II.13)

...
(II.13) + (nL+1 − 1)dmampadb

m
pad1hmhmdmamconvb

m
conv

...
(II.13) + (nL+1l − 1)dmampadb

m
pad1hmhmdmamconvb

m
conv

 . (II.35)

The implementation is the same as that for evaluating (56), except that (II.32) involves
nL+1l vectors rather than l.

II.4.3 Evaluation of (vi)TPm,i
pool in Gradient Evaluations

Similar to (II.27), we calculate(Pm,1
pool)

Tv1

...
(Pm,l

pool)
Tvl


T

∈ Rdm+1amconvb
m
convl×1 (II.36)

to have (82). In Section II.3 we have obtained the linear indices of (II.1) that correspond
to the max values without considering the instance offset

(dm+1amconvb
m
conv)i.

14

By adding the instance offset, we have the correct mapping to the linear indices of (II.1)
for the selected max values. In other words, similar to (II.29), we calculate

vec
(
(II.23) + 1dm+1am+1bm+1 ×

[
0, dm+1amconvb

m
conv, . . . , (l − 1)dm+1amconvb

m
conv

])
=vec ((II.23)) +


01dm+1am+1bm+1

dm+1amconvb
m
conv1dm+1am+1bm+1

...
(l − 1)dm+1amconvb

m
conv1dm+1am+1bm+1

 (II.37)

before applying accumarray. Note that in Listing VI we use matrix operations in
line 14 to perform the summation in (II.37) and then produce the whole vector in line
31.

II.4.4 Evaluation of vTPm,i
pool in Jacobian Evaluations

We would like to have (65) by calculating
(Pm,1

pool)
Tv11

...
(Pm,1

pool)
Tv1nL+1

...
(Pm,l

pool)
TvlnL+1



T

∈ Rdm+1amconvb
m
convnL+1l×1, (II.38)

where

(viu)
T =

(
∂zL+1,i

∂vec(Zm+1,i)T
�
(
1nL+1

vec(I[Zm+1,i])T
))

u,:

∈ R1×dm+1am+1bm+1

,

i = 1, . . . , l, u = 1, . . . , nL+1,

and the subscript “u, :” indicates the uth row of the matrix. The calculation of (II.38)
is the same as the calculation of (II.32). Thus, similar to (II.35), we need the following
indices as input of accumarray:

1nL+1
⊗ vec((II.23)) +



0dm+1am+1bm+1

dm+1amconvb
m
conv1dm+1am+1bm+1

...
(nL+1 − 1)dm+1amconvb

m
conv1dm+1am+1bm+1

...
(nL+1l − 1)dm+1amconvb

m
conv1dm+1am+1bm+1


.

II.5 Evaluation of Gauss-Newton Matrix-Vector Products
From (72), we conduct the Gauss-Newton matrix-vector products in two subroutines.
The first subroutine is to evaluate (75). The second subroutine is to evaluate

l∑
i=1

(Jm,i)Tqi. (II.39)

15

II.5.1 Details of Evaluating (75)

To take advantage of the fast computation in matrix form, we arrange (75) of all in-
stances into 

∑L
m=1 J

m,1vm

...∑L
m=1 J

m,lvm

 ∈ RnL+1l×1. (II.40)

From (74), for a particular m, we have

J
m,1vm

...
Jm,lvm

 =


∂zL+1,1

∂vec(Sm,1)T
vec
(

mat(vm)

[
φ(pad(Zm,1))
1Tamconvb

m
conv

])
...

∂zL+1,l

∂vec(Sm,l)T
vec
(

mat(vm)

[
φ(pad(Zm,l))
1Tamconvb

m
conv

])


=


∂zL+1,1

∂vec(Sm,1)T
pm,1

...
∂zL+1,l

∂vec(Sm,l)T
pm,l

 , (II.41)

where
mat(vm) ∈ Rdm+1×(hmhmdm+1)

and

pm,i = vec
(

mat(vm)

[
φ(pad(Zm,i))
1Tamconvb

m
conv

])
. (II.42)

We present our MATLAB implementation in Listing VII and explain the details
here. Given vm, we calculate

mat(vm)

[
φ(pad(Zm,1)) · · · φ(pad(Zm,l))
1Tamconvb

m
conv

· · · 1Tamconvb
m
conv

]
∈ Rdm+1×amconvb

m
convl; (II.43)

see line 24. Next, we calculate

Jm,ivm =
∂zL+1,i

∂vec(Sm,i)T
pm,i, i = 1, . . . , l. (II.44)

Because (II.44) involves l independent matrix-vector products, we consider the fol-
lowing trick to avoid a for loop in a MATLAB script. We note that (II.44) can be
calculated by summing up all rows of the following matrix[

∂zL+1,i
1

∂vec(Sm,i)
· · ·

∂zL+1,i
nL+1

∂vec(Sm,i)

]
dm+1amconvb

m
conv×nL+1

�
[
pm,i · · ·pm,i

]
dm+1amconvb

m
conv×nL+1

.

(II.45)
The result will be a row vector of 1×nL+1, which is the transpose of Jm,ivm. To do the
above operation on all instances together, we reformulate (II.3) and (II.43) respectively
to the following three-dimensional matrices:

dm+1amconvb
m
conv × nL+1 × l and dm+1amconvb

m
conv × 1× l.

16

We then apply the .* operator in MATLAB and sum results along the first dimension;
see line 25. The resulting matrix has the size

1× nL+1 × l

and can be aggregated to the vector in (II.41); see line 26.

II.5.2 Details of Evaluating (II.39)

After deriving (II.40), from (76), we must calculate

q =

q
1

...
ql

 =

B
1
∑L

m=1 J
m,1vm

...
Bl
∑L

m=1 J
m,lvm

 . (II.46)

From (77), (II.46) can be derived by multiplying every element of (II.40) by two.
Next, for each layer m, from (72) and (78) we calculate (II.39) by

l∑
i=1

vec

mat

((
∂zL+1,i

∂vec(Sm,i)T

)T
qi

)
dm+1×amconvb

m
conv

[
φ(pad(Zm,i))T 1amconvb

m
conv

]
= vec

[mat(um,1)dm+1×amconvb
m
conv

. . . mat(um,l)dm+1×amconvb
m
conv

] φ(pad(Zm,1))T 1amconvb
m
conv

...
...

φ(pad(Zm,l))T 1amconvb
m
conv


 ,

(II.47)

where

um,i =

(
∂zL+1,i

∂vec(Sm,i)T

)T
qi.

A MATLAB implementation is shown in Listing VIII. To begin, we have the matrix
(II.3) and the vector q in (II.46). We reshape (II.3) to[

∂zL+1,1
1

∂vec(Sm,1)
. . .

∂zL+1,1
nL+1

∂vec(Sm,1)
. . .

∂zL+1,l
nL+1

∂vec(Sm,l)

]
∈ Rdm+1amconvb

m
conv×nL+1l. (II.48)

Then we calculate [
um,1 . . . um,l

]
(II.49)

together by reshaping[
(II.48)

]
�
(
1dm+1amconvb

m
conv
qT
)
∈ Rdm+1amconvb

m
conv×nL+1l (II.50)

to
Rdm+1amconvb

m
conv×nL+1×l

and summing along the second dimension; see line 26-27. After having (II.49), we
reshape it to

Rdm+1×amconvb
m
convl

and calculate (II.47) by a matrix multiplication in line 28.

17

Listing VI: MATLAB implementation to evaluate (vi)TPm
φ and (vi)TPm,i

pool

1 function vTP = vTP(param, model, net, m, V, op)
2 % output vTP: a row vector, where mat(vTP) is with dimension $

d_prev a_prev b_prev \times num_v$.
3
4 nL = param.nL;
5 num_data = net.num_sampled_data;
6
7 switch op
8 case {'pool_gradient', 'pool_Jacobian'}
9 a_prev = model.ht_conv(m);

10 b_prev = model.wd_conv(m);
11 d_prev = model.ch_input(m+1);
12 if strcmp(op, 'pool_gradient')
13 num_v = num_data;
14 idx = net.idx_pool{m} + [0:num_data-1]*d_prev*

a_prev*b_prev;
15 else
16 num_v = nL*num_data;
17 idx = reshape(net.idx_pool{m}, [], 1, num_data)

+ reshape([0:nL*num_data-1]*d_prev*a_prev*
b_prev, 1, nL, num_data);

18 end
19 case {'phi_gradient', 'phi_Jacobian'}
20 a_prev = model.ht_pad(m);
21 b_prev = model.wd_pad(m);
22 d_prev = model.ch_input(m);
23
24 if strcmp(op, 'phi_gradient'); num_v = num_data; else;

num_v = nL*num_data; end
25
26 idx = net.idx_phiZ{m}(:) + [0:num_v-1]*d_prev*a_prev*

b_prev;
27 otherwise
28 error('Unknown operation in function vTP.');
29 end
30
31 vTP = accumarray(idx(:), V(:), [d_prev*a_prev*b_prev*num_v 1])

';

18

Listing VII: MATLAB implementation for Jv
1 function Jv = Jv(param, model, net, v)
2
3 nL = param.nL;
4 L = param.L;
5 LC = param.LC;
6 num_data = net.num_sampled_data;
7 var_ptr = model.var_ptr;
8 Jv = zeros(nL*num_data, 1);
9

10 for m = L : -1 : LC+1
11 var_range = var_ptr(m) : var_ptr(m+1) - 1;
12 n_m = model.full_neurons(m-LC);
13
14 p = reshape(v(var_range), n_m, []) * [net.Z{m}; ones(1,

num_data)];
15 p = sum(reshape(net.dzdS{m}, n_m, nL, []) .* reshape(p,

n_m, 1, []),1);
16 Jv = Jv + p(:);
17 end
18
19 for m = LC : -1 : 1
20 var_range = var_ptr(m) : var_ptr(m+1) - 1;
21 ab = model.ht_conv(m)*model.wd_conv(m);
22 d = model.ch_input(m+1);
23
24 p = reshape(v(var_range), d, []) * [net.phiZ{m}; ones

(1, ab*num_data)];
25 p = sum(reshape(net.dzdS{m}, d*ab, nL, []) .* reshape(p

, d*ab, 1, []),1);
26 Jv = Jv + p(:);
27 end

19

Listing VIII: MATLAB implementation for JTq
1 function u = JTq(param, model, net, q)
2
3 nL = param.nL;
4 L = param.L;
5 LC = param.LC;
6 num_data = net.num_sampled_data;
7 var_ptr = model.var_ptr;
8 n = var_ptr(end) - 1;
9 u = zeros(n, 1);

10
11 for m = L : -1 : LC+1
12 var_range = var_ptr(m) : var_ptr(m+1) - 1;
13
14 u_m = net.dzdS{m} .* q';
15 u_m = sum(reshape(u_m, [], nL, num_data), 2);
16 u_m = reshape(u_m, [], num_data) * [net.Z{m}' ones(

num_data, 1)];
17 u(var_range) = u_m(:);
18 end
19
20 for m = LC : -1 : 1
21 a = model.ht_conv(m);
22 b = model.wd_conv(m);
23 d = model.ch_input(m+1);
24 var_range = var_ptr(m) : var_ptr(m+1) - 1;
25
26 u_m = reshape(net.dzdS{m}, [], nL*num_data) .* q';
27 u_m = sum(reshape(u_m, [], nL, num_data), 2);
28 u_m = reshape(u_m, d, []) * [net.phiZ{m}' ones(a*b*

num_data, 1)];
29 u(var_range) = u_m(:);
30 end

20

	List of Symbols
	Implementation Details
	Details of Padding Operation
	Generation of (pad(Zm,i))
	Generation of (Zin,i) with MATLAB's im2col

	Construction of Pm,ipool
	Evaluation of (bold0mu mumu vvunitsvvvvi)T Pm and (bold0mu mumu vvunitsvvvvi)T Pm,ipool in Gradient and Jacobian Evaluations
	Evaluation of (bold0mu mumu vvunitsvvvvi)T Pm in Gradient Evaluations
	Evaluation of (bold0mu mumu vvunitsvvvvi)T Pm in Jacobian Evaluations
	Evaluation of (bold0mu mumu vvunitsvvvvi)T Pm,ipool in Gradient Evaluations
	Evaluation of bold0mu mumu vvunitsvvvvT Pm,ipool in Jacobian Evaluations

	Evaluation of Gauss-Newton Matrix-Vector Products
	Details of Evaluating (75)
	Details of Evaluating (II.39)

