-
Implementation of Forward Mode AD |

@ In the slides, we introduce how automatic
differentiation can be implemented

@ A corresponding technical report showing details is
at https://www.csie.ntu.edu.tw/~cjlin/
papers/autodiff/

@ A sample implementation is also available at https:
//github.com/ntumlgroup/simpleautodiff

@ For simplicity, we consider the forward mode. The
reverse mode can be designed in a similar way

Chih-Jen Lin (National Taiwan Univ.) 1/50

https://www.csie.ntu.edu.tw/~cjlin/papers/autodiff/
https://www.csie.ntu.edu.tw/~cjlin/papers/autodiff/
https://github.com/ntumlgroup/simpleautodiff
https://github.com/ntumlgroup/simpleautodiff

-
Implementation of Forward Mode AD I

e Consider a function f : R" — R with
y =1f(x)="f(x,x0,..., %)
@ For any given x, we show the computation of

ay
é?)(l

as an example

2/50

-
Calculating Function Values |

@ We are calculating the derivative, so at the first
glance, function values are not needed

@ However, we show that it is necessary to calculate
the function value

@ The main reason is due to the function structure
and the use of the chain rule

Chih-Jen Lin (National Taiwan Univ.) 3/50

-
Calculating Function Values Il

@ To explain this, we begin with knowing that the
function of a network is usually a nested composite
function

f(x) = he(he—1(. .. h1(x)))

due to the layered structure

e To facilitate our discussion, let's assume that f(x)
is the following general composite function

f(x) = g(m(x), ha(x), ... hi(x))

Chih-Jen Lin (National Taiwan Univ.) 4 /50

-
Calculating Function Values Il

@ For example, we see that the function considered
earlier

f(x1,x2) = Inxy + x1% — sin x (1)
can be written in the following composite function

g(m(x1, x2), ha(x1, x2))

with

g(hi, h2) = hy — hy
hl(Xl,XQ) = Inxy + x1x

hQ(Xl, X2) = Sin(Xz)

Chih-Jen Lin (National Taiwan Univ.) 5/50

-
Calculating Function Values IV

@ To calculate the derivative at x = x(using the
chain rule, we have
)
X=Xo

_Zk:<ah

where the notation

of.
8x1

Oh;

X
h=h(x,) Ox1

X=Xp

means the derivative of g with respect to h;
evaluated at h(xo) [hl(xo) hk(xo)} T

Chih-Jen Lin (National Taiwan Un 6 /50

-
Calculating Function Values V

@ Clearly, we must calculate the inner function values
hi(xo), ..., hi(xo) first

@ The process of computing all h;(xg) is part of (or
almost the same as) the process of computing f(xo)

@ This explanation tells why for calculating the partial
derivatives, we need the function value first

@ Next we discuss the implementation of getting the
function value

@ For the function (1), recall we have a table
recording the order to get f(xy, x2):

Chih-Jen Lin (National Taiwan Univ.) 7/50

-
Calculating Function Values VI

X1 =2

X2 =5

vi =Inxg —1In2

Vo = X1 X Xop = 2x%x5

V3 = sinxp =sinb5

vi =vi+wvw =0.6934+10

vs = w3 — vz = 10.693 + 0.959

vy =Ww = 11.652

Chih-Jen Lin (National Taiwan Univ.) 8/50

-
Calculating Function Values VII

@ Also, we have a computational graph to generate
the computing order

9/50

Calculating Function Values VIII

—5 = log x1 =vi+w
- log 2 0.693 410

f(Xl, X2)

0.693 — (—0959)

@ Therefore, we must check how to build the graph

Chih-Jen Lin (National Taiwan Univ.) 10 /50

-
Creating the Computational Graph |

@ A graph consists of nodes and edges

@ We must discuss what a node/edge is and how to
store information

@ From the graph shown above, we see that each
node represents an intermediate expression:

vi =Inxg
Vo = X1 X Xp
V3 :sinX2
Vg = V1 + Vo

Ve = Vg — V3

Chih-Jen Lin (National Taiwan Univ.) 11 /50

-
Creating the Computational Graph Il

@ The expression in each node is produced by applying
an operation to expressions in other nodes

@ Therefore, it's natural to construct an edge
u—v,

if the expression of a node v is based on the
expression of another node u

@ We say node u is a parent node (of v) and node v
is a child node (of u)

@ To do the forward calculation, at node v we should
store v's parents

Chih-Jen Lin (National Taiwan Univ.) 12 /50

-
Creating the Computational Graph Il

@ Additionally, we need to record the operator applied
on the node's parents and the resulting value

@ For example, the construction of the node
Vo = X1 X Xp

requires to store v,'s parent nodes {xi, x»}, the
corresponding operator “x" and the resulting value

e Up to now, we can implement each node as a class
Node with the following members

Chih-Jen Lin (National Taiwan Univ.) 13 /50

-
Creating the Computational Graph IV

member | data type | example for Node v,
numerical value float 10
parent nodes | List[Node] [x1, xo]
child nodes List [Node] [va]
operator string "mul" (for X)

@ At this moment, it is unclear why we should store
child nodes in our Node class. Later we will explain
why such information is needed

@ Once the Node class is ready, starting from initial
nodes (which represent x;'s), we use nested function
calls to build the whole graph

Chih-Jen Lin (National Taiwan Univ.) 14 /50

-
Creating the Computational Graph V

@ In our case, the graph for y = f(x1, x») can be
constructed via
y = sub(add(log(x1l), mul(xl, x2)),
sin(x2))

@ Let's see this process step by step and check what
each function must do

15 /50

-
Creating the Computational Graph VI

vi = log x1

@ log(x1):

X1

@ In our log function, a Node instance is created to
store

log(x1).

This node is the v; node in our computational graph

16 /50

-
Creating the Computational Graph VII

@ To create this node, from the current log function
and the input node x;, we know contents of the
following members

o parent nodes: [x]
e operator: "log"
e numerical value: log2

@ However, we have no information about children of
this node

@ The reason is obvious because we have not had a
graph including its child nodes yet

Chih-Jen Lin (National Taiwan Univ.) 17 /50

-
Creating the Computational Graph VIII

@ Instead, we leave this member “child nodes” empty
and let child nodes to write back the information

e By this idea, our log function should add v; to the
“child nodes” of x;

@ See more discussion later about “wrapping
functions”

18 /50

-
Creating the Computational Graph IX

e mul (x1, x2)

Vo = X1 X X2

Chih-Jen Lin (National Taiwan Univ.) 19 /50

-
Creating the Computational Graph X

@ Similarly, the mul function generates a Node
instance. However, different from log(x;), the node
created here stores two parents (instead of one)

20 /50

Creating the Computational Graph Xl

@ add(log(x1l), mul(xl, x2))

va = log x1 + x1 X X2

Chih-Jen Lin (National Taiwan Univ.) 21/50

Creating the Computational Graph Xl|

@ sin(x2)

X2 v3 = sin x2

Chih-Jen Lin (National Taiwan Univ.) 22 /50

Creating the Computational Graph Xll|

@ sub(add(log(x1), mul(xl, x2)), sin(x2))

vs = log x1 + x1 X X2

Vo = X1 X X2 vs = log x1 + x1 X X2 — sin x»

X2 V3 = sin x2

Chih-Jen Lin (National Taiwan Univ.) 23 /50

-
Creating the Computational Graph XIV

@ We can conclude that
o each function generates exactly one Node
instance;
o however, the generated nodes differ in the
operator, the number of parents, etc.

24 /50

-
Wrapping Functions |

@ We mentioned that a function like “mul” does more
than calculating the product of two numbers. Here
we show more details

@ These customized functions “add”, “mul” and
“log” in the previous pages are wrapping functions

@ Wrapping functions “wrap” numerical operations
with additional codes

@ Each must maintain the relation between the
constructed node and its parents/children

@ This way, the information of graph can be preserved

Chih-Jen Lin (National Taiwan Univ.) 25 /50

-
Wrapping Functions ||

@ For example, you may expect the following in the
source code

def mul(nodel, node2):
value = nodel.value * node2.value
parent_nodes = [nodel, node2]
newNode = Node(value, parent_nodes, "mul")
nodel.child_nodes.append (newNode)
node2.child_nodes.append (newNode)
return newNode

@ The created node is added to the “child nodes” lists
of the two input nodes: nodel and node2.

Chih-Jen Lin (National Taiwan Univ.) 26 /50

-
Wrapping Functions lI

@ As we mentioned earlier, when nodel and node?2
were created, their lists of child nodes were empty.
Each time a child node is created, it is appended to
the list of its parent(s).

@ The output of the function should be the created
node. This setting enables the nested function call

@ Then, calling y = sub(...) finishes the function
evaluation. At the same time, we build the
computational graph

Chih-Jen Lin (National Taiwan Univ.) 27 /50

-
Finding the Topological Order |

@ We want to use the information in the graph to
compute Jvs/0x;

28 /50

Finding the Topological Order |l

=5 =sinxp

Chih-Jen Lin (National Taiwan Univ.) 29 /50

-
Finding the Topological Order Il

@ Recall that dv/0x; is denoted by v
@ From chain rule,

B 8V5 . 8v5 .
= — — 2
V5 aV4V4-|- 8V3 V3 ()
@ We can see that
3V5 and 8V5
8V4 @Vg

can be calculated at vs because we have information
between vs5 and its parents v4 and v3. We will show
details later

Chih-Jen Lin (National Taiwan Univ.) 30/50

-
Finding the Topological Order IV

@ Thus, the task we focus on now is to calculate va
and V3

@ For vy, we further have
(9V4 . 8V4

Vg =—vi+ —
8V2

= S+ i, ©

so v; and v, are needed
@ On the other hand, we have vz = 0 since the
expression for v3
Sin(Xz)
is not a function of x;

Chih-Jen Lin (National Taiwan Univ.) 31/50

-
Finding the Topological Order V

@ From this example, we find that
v is not reachable from x; = v =20

@ We say a node v is reachable from a node v if there
exists a path from v to v in the graph

@ Therefore, now we only care about nodes reachable
from x;

e From (2) and (3), we see that nodes reachable from
x; must be properly ordered so that, for example, in
(2), v4 and v3 are ready before calculating vs

Chih-Jen Lin (National Taiwan Univ.) 32/50

-
Finding the Topological Order VI

@ To consider nodes reachable from xj, from the whole
computational graph G = (V, E), where V and E
are respectively sets of nodes and edges, we define

Vg = {v € V| v is reachable from x },

ER:{(U,V)EE‘UE Vg, VEVR}

@ Then,
GR = <VR, ER>

is a subgraph of G

Chih-Jen Lin (National Taiwan Univ.) 33/50

Finding the Topological Order VII

@ For our example, G is the following subgraph

Vi = {x1, v1, vo, v4, v5}
Er = {(X17 V1)7 (Xz, V2)7 (V1> V4); (V2, V4)7 (V47 V5)}

Chih-Jen Lin (National Taiwan Univ.) 34 /50

-
Finding the Topological Order VIII

@ We aim to find a “suitable” ordering of Vg
satisfying that each node u € Vi comes before all
of its child nodes in the ordering

@ By doing so, u can be used in the derivative
calculation of its child nodes; see (3)

@ For our example, a “suitable” ordering can be
X1, V1, V2, V4, V5

@ In graph theory, such an ordering is called a
topological ordering of Gg

Chih-Jen Lin (National Taiwan Univ.) 35 /50

-
Finding the Topological Order IX

@ Since Gp is a directed acyclic graph (DAG), a
topological ordering must exist

@ We may use depth first search (DFS) to traverse Gg
to find the topological ordering

o Earlier we did not explain why a member “child
nodes” is needed in the Node class. Here we see why

@ To traverse Ggr from x;, we must access children of
each node

Chih-Jen Lin (National Taiwan Univ.) 36 /50

-
Finding the Topological Order X

@ Here is an implementation

def topological_order (rootNode) :
def add_children(node):
if node not in visited:
visited.add(node)
for child in node.child_nodes:
add_children(child)
ordering.append (node)
ordering, visited = [], set()
add_children(rootNode)
return list(reversed(ordering))

Chih-Jen Lin (National Taiwan Univ.) 37/50

-
Finding the Topological Order XI

@ The root node of Gy is x;. We put it as the input of
the add_children function

@ The subroutine recursively explores all nodes
reachable from the input node and appends the
input node to the end

@ Also, we must maintain a set of visited nodes to
ensure that each node is included in the ordering
exactly once

Chih-Jen Lin (National Taiwan Univ.) 38/50

-
Finding the Topological Order XII

@ For our example, the depth-first search has
X1 — V1 — Vg — Vs,

so vs is added first. In the end, we get the following
list

[V5, Vg, V1, V2,X1]

@ Then, by reversing the list, a node always comes
before its children

@ Methods based on the topological ordering are
called tape-based methods

Chih-Jen Lin (National Taiwan Univ.)

39 /50

-
Finding the Topological Order XIlI

@ They are used in some real-world implementations
such as Tensorflow

@ The ordering is regarded as a tape. We're going to
read the nodes one by one from the beginning of
the sequence (tape) to calculate the derivative value

@ Based on the obtained ordering, let's see how to
compute each v

Chih-Jen Lin (National Taiwan Univ.) 40 /50

-
Computing the Partial Derivative |

@ By the chain rule, we have

vzz%u

UEV's parents

o If we calculate the derivative according to the
topological order, the second term

ou

= —
8x1

should be readily available when we're computing v

41/50

-
Computing the Partial Derivative |l

@ Therefore, all we need is to check the calculation of
the first term
ov

du
@ At v, we know that u is one of its parent(s). We
further know the operation involving v's parent(s)

@ For example, we have v4 = vy X v, so

8V4 8V4
=wand — =v;

(9_\/1 8V2

These values can be computed and stored when we
construct the computational graph

Chih-Jen Lin (National Taiwan Univ.) 42 /50

-
Computing the Partial Derivative |lI

@ Therefore, we add a member
“gradient w.r.t. parents” to our Node class

@ Also we add a member “partial derivative” to store
the partial derivative with respect to x;

member | data type | example for Node v,
numerical value float 10
parent nodes List [Node] [x1, x0]
child nodes List [Node] [va]
operator string "mul"
gradient List[float] [5,2]
w.r.t parents
partial derivative float 5

Chih-Jen Lin (National Taiwan Univ.) 43 /50

-
Computing the Partial Derivative IV

@ We update the mul function accordingly

def mul(nodel, node2):
value = nodel.value * node2.value
parent_nodes = [nodel, node2]
newNode = Node(value, parent_nodes, "mul")

nodel.child_nodes.append (newNode)
node2.child_nodes.append (newNode)
return newNode

Chih-Jen Lin (National Taiwan Univ.) 44 /50

Computing the Partial Derivative V

@ As shown above, we must compute

0 newNode
0 parentNode

for each parent node in constructing a new child
node

@ Here are some examples other than the mul
function

45 /50

-
Computing the Partial Derivative VI

o add(nodel, node2): we have

0 newNode B O newNode
O nodel O node2

=1,

so the red line is replaced by

newNode.grad wrt parents = [1., 1.]

46 /50

-
Computing the Partial Derivative VII

o log(node): we have

0 newNode 1

O node node.value’

so the red line becomes

newNode.grad wrt_parents = [1/node.value]

47 /50

-
Computing the Partial Derivative VIII

@ Now, we know how to get each term in the chain
rule for calculating v:

\'/:Z%u

u€v's parents

@ Therefore if we follow the topological ordering, all v
(i.e., partial derivatives with respect to x;) can be
calculated

48 /50

-
Computing the Partial Derivative IX

@ An implementation to compute the partial
derivatives is as follows

def forward(rootNode) :
rootNode.partial_derivative = 1
ordering = topological_order(rootNode)
for node in ordering[1:]:
partial_derivative = 0
for i in range(len(node.parent_nodes)):
dnode_dparent = node.grad_wrt_parents[i]
dparent_droot = node.parent_nodes[i].partial_derivative
partial_derivative += dnode_dparent * dparent_droot
node.partial_derivative = partial_derivative

@ We store the resulting value in the member
partial derivative of each node

Chih-Jen Lin (National Taiwan Univ.) 49 /50

-
Summary |

@ The procedure for forward mode includes three
steps:
@ Create the computational graph
@ Find a topological order of the graph
associated with xy
© Compute the partial derivative with respect to
x; along the topological order
@ We discuss not only how to run each step but also
what information we should store
@ This is a minimal implementation to show you all
details of the forward mode

Chih-Jen Lin (National Taiwan Univ.) 50 /50

