
Implementation of Forward Mode AD I

In the slides, we introduce how automatic
differentiation can be implemented

A corresponding technical report showing details is
at https://www.csie.ntu.edu.tw/~cjlin/
papers/autodiff/

A sample implementation is also available at https:
//github.com/ntumlgroup/simpleautodiff

For simplicity, we consider the forward mode. The
reverse mode can be designed in a similar way

Chih-Jen Lin (National Taiwan Univ.) 1 / 50

https://www.csie.ntu.edu.tw/~cjlin/papers/autodiff/
https://www.csie.ntu.edu.tw/~cjlin/papers/autodiff/
https://github.com/ntumlgroup/simpleautodiff
https://github.com/ntumlgroup/simpleautodiff


Implementation of Forward Mode AD II

Consider a function f : Rn → R with

y = f (x) = f (x1, x2, . . . , xn)

For any given x , we show the computation of

∂y

∂x1

as an example

Chih-Jen Lin (National Taiwan Univ.) 2 / 50



Calculating Function Values I

We are calculating the derivative, so at the first
glance, function values are not needed

However, we show that it is necessary to calculate
the function value

The main reason is due to the function structure
and the use of the chain rule

Chih-Jen Lin (National Taiwan Univ.) 3 / 50



Calculating Function Values II

To explain this, we begin with knowing that the
function of a network is usually a nested composite
function

f (x) = hk(hk−1(. . . h1(x)))

due to the layered structure

To facilitate our discussion, let’s assume that f (x)
is the following general composite function

f (x) = g(h1(x), h2(x), . . . , hk(x))

Chih-Jen Lin (National Taiwan Univ.) 4 / 50



Calculating Function Values III

For example, we see that the function considered
earlier

f (x1, x2) = ln x1 + x1x2 − sin x2 (1)

can be written in the following composite function

g(h1(x1, x2), h2(x1, x2))

with

g(h1, h2) = h1 − h2
h1(x1, x2) = ln x1 + x1x2
h2(x1, x2) = sin(x2)

Chih-Jen Lin (National Taiwan Univ.) 5 / 50



Calculating Function Values IV

To calculate the derivative at x = x0 using the
chain rule, we have

∂f

∂x1

∣∣∣
x=x0

=
k∑

i=1

(
∂g

∂hi

∣∣∣
h=h(x0)

× ∂hi
∂x1

∣∣∣
x=x0

)
,

where the notation

∂g

∂hi

∣∣∣
h=h(x0)

means the derivative of g with respect to hi
evaluated at h(x0) =

[
h1(x0) · · · hk(x0)

]T
Chih-Jen Lin (National Taiwan Univ.) 6 / 50



Calculating Function Values V

Clearly, we must calculate the inner function values
h1(x0), . . . , hk(x0) first

The process of computing all hi(x0) is part of (or
almost the same as) the process of computing f (x0)

This explanation tells why for calculating the partial
derivatives, we need the function value first

Next we discuss the implementation of getting the
function value

For the function (1), recall we have a table
recording the order to get f (x1, x2):

Chih-Jen Lin (National Taiwan Univ.) 7 / 50



Calculating Function Values VI

x1 = 2
x2 = 5

v1 = ln x1 = ln 2
v2 = x1 × x2 = 2× 5
v3 = sin x2 = sin 5
v4 = v1 + v2 = 0.693 + 10
v5 = v4 − v3 = 10.693 + 0.959

y = v5 = 11.652

Chih-Jen Lin (National Taiwan Univ.) 8 / 50



Calculating Function Values VII

Also, we have a computational graph to generate
the computing order

Chih-Jen Lin (National Taiwan Univ.) 9 / 50



Calculating Function Values VIII

x1

= 2

v1

= log x1
log 2

v4

= v1 + v2
0.693 + 10

x2

= 5

v2

= x1 × x2
2× 5

v3

= sin x2
sin 5

v5
= v4 − v3

10.693− (−0959)

f (x1, x2)

Therefore, we must check how to build the graph

Chih-Jen Lin (National Taiwan Univ.) 10 / 50



Creating the Computational Graph I

A graph consists of nodes and edges

We must discuss what a node/edge is and how to
store information

From the graph shown above, we see that each
node represents an intermediate expression:

v1 = ln x1
v2 = x1 × x2
v3 = sin x2
v4 = v1 + v2
v5 = v4 − v3

Chih-Jen Lin (National Taiwan Univ.) 11 / 50



Creating the Computational Graph II

The expression in each node is produced by applying
an operation to expressions in other nodes

Therefore, it’s natural to construct an edge

u → v ,

if the expression of a node v is based on the
expression of another node u

We say node u is a parent node (of v) and node v
is a child node (of u)

To do the forward calculation, at node v we should
store v ’s parents

Chih-Jen Lin (National Taiwan Univ.) 12 / 50



Creating the Computational Graph III

Additionally, we need to record the operator applied
on the node’s parents and the resulting value

For example, the construction of the node

v2 = x1 × x2

requires to store v2’s parent nodes {x1, x2}, the
corresponding operator “×” and the resulting value

Up to now, we can implement each node as a class
Node with the following members

Chih-Jen Lin (National Taiwan Univ.) 13 / 50



Creating the Computational Graph IV

member data type example for Node v2
numerical value float 10
parent nodes List[Node] [x1, x2]
child nodes List[Node] [v4]
operator string "mul" (for ×)

At this moment, it is unclear why we should store
child nodes in our Node class. Later we will explain
why such information is needed

Once the Node class is ready, starting from initial
nodes (which represent xi ’s), we use nested function
calls to build the whole graph

Chih-Jen Lin (National Taiwan Univ.) 14 / 50



Creating the Computational Graph V

In our case, the graph for y = f (x1, x2) can be
constructed via

y = sub(add(log(x1), mul(x1, x2)),

sin(x2))

Let’s see this process step by step and check what
each function must do

Chih-Jen Lin (National Taiwan Univ.) 15 / 50



Creating the Computational Graph VI

log(x1):

x1

x1

log

v1 = log x1

In our log function, a Node instance is created to
store

log(x1).

This node is the v1 node in our computational graph

Chih-Jen Lin (National Taiwan Univ.) 16 / 50



Creating the Computational Graph VII

To create this node, from the current log function
and the input node x1, we know contents of the
following members

parent nodes: [x1]
operator: "log"
numerical value: log 2

However, we have no information about children of
this node

The reason is obvious because we have not had a
graph including its child nodes yet

Chih-Jen Lin (National Taiwan Univ.) 17 / 50



Creating the Computational Graph VIII

Instead, we leave this member “child nodes” empty
and let child nodes to write back the information

By this idea, our log function should add v1 to the
“child nodes” of x1

See more discussion later about “wrapping
functions”

Chih-Jen Lin (National Taiwan Univ.) 18 / 50



Creating the Computational Graph IX

mul(x1, x2)

x1

x1

x2

x2

×
v2 = x1 × x2

Chih-Jen Lin (National Taiwan Univ.) 19 / 50



Creating the Computational Graph X

Similarly, the mul function generates a Node

instance. However, different from log(x1), the node
created here stores two parents (instead of one)

Chih-Jen Lin (National Taiwan Univ.) 20 / 50



Creating the Computational Graph XI

add(log(x1), mul(x1, x2))

x1

x1

x2

x2

log

v1 = log x1

×
v2 = x1 × x2

+

v4 = log x1 + x1 × x2

Chih-Jen Lin (National Taiwan Univ.) 21 / 50



Creating the Computational Graph XII

sin(x2)

x2

x2

sin

v3 = sin x2

Chih-Jen Lin (National Taiwan Univ.) 22 / 50



Creating the Computational Graph XIII

sub(add(log(x1), mul(x1, x2)), sin(x2))

x1

x1

x2

x2

log

v1 = log x1

×
v2 = x1 × x2

+ v4 = log x1 + x1 × x2

sin

v3 = sin x2

−
v5 = log x1 + x1 × x2 − sin x2

Chih-Jen Lin (National Taiwan Univ.) 23 / 50



Creating the Computational Graph XIV

We can conclude that

each function generates exactly one Node
instance;
however, the generated nodes differ in the
operator, the number of parents, etc.

Chih-Jen Lin (National Taiwan Univ.) 24 / 50



Wrapping Functions I

We mentioned that a function like “mul” does more
than calculating the product of two numbers. Here
we show more details

These customized functions “add”, “mul” and
“log” in the previous pages are wrapping functions

Wrapping functions “wrap” numerical operations
with additional codes

Each must maintain the relation between the
constructed node and its parents/children

This way, the information of graph can be preserved

Chih-Jen Lin (National Taiwan Univ.) 25 / 50



Wrapping Functions II

For example, you may expect the following in the
source code

def mul(node1, node2):

value = node1.value * node2.value

parent_nodes = [node1, node2]

newNode = Node(value, parent_nodes, "mul")

node1.child_nodes.append(newNode)

node2.child_nodes.append(newNode)

return newNode

The created node is added to the “child nodes” lists
of the two input nodes: node1 and node2.

Chih-Jen Lin (National Taiwan Univ.) 26 / 50



Wrapping Functions III

As we mentioned earlier, when node1 and node2

were created, their lists of child nodes were empty.
Each time a child node is created, it is appended to
the list of its parent(s).

The output of the function should be the created
node. This setting enables the nested function call

Then, calling y = sub(...) finishes the function
evaluation. At the same time, we build the
computational graph

Chih-Jen Lin (National Taiwan Univ.) 27 / 50



Finding the Topological Order I

We want to use the information in the graph to
compute ∂v5/∂x1

Chih-Jen Lin (National Taiwan Univ.) 28 / 50



Finding the Topological Order II

x1

=2

v1

= ln x1

v4

=v1 + v2

x2

=5

v2

=x1 × x2

v3

=sin x2

v5

=v4 − v3

Chih-Jen Lin (National Taiwan Univ.) 29 / 50



Finding the Topological Order III

Recall that ∂v/∂x1 is denoted by v̇

From chain rule,

v̇5 =
∂v5
∂v4

v̇4 +
∂v5
∂v3

v̇3 (2)

We can see that

∂v5
∂v4

and
∂v5
∂v3

can be calculated at v5 because we have information
between v5 and its parents v4 and v3. We will show
details later

Chih-Jen Lin (National Taiwan Univ.) 30 / 50



Finding the Topological Order IV

Thus, the task we focus on now is to calculate v̇4
and v̇3
For v̇4, we further have

v̇4 =
∂v4
∂v1

v̇1 +
∂v4
∂v2

v̇2, (3)

so v̇1 and v̇2 are needed

On the other hand, we have v̇3 = 0 since the
expression for v3

sin(x2)

is not a function of x1
Chih-Jen Lin (National Taiwan Univ.) 31 / 50



Finding the Topological Order V

From this example, we find that

v is not reachable from x1 ⇒ v̇ = 0

We say a node v is reachable from a node u if there
exists a path from u to v in the graph

Therefore, now we only care about nodes reachable
from x1
From (2) and (3), we see that nodes reachable from
x1 must be properly ordered so that, for example, in
(2), v̇4 and v̇3 are ready before calculating v̇5

Chih-Jen Lin (National Taiwan Univ.) 32 / 50



Finding the Topological Order VI

To consider nodes reachable from x1, from the whole
computational graph G = ⟨V ,E ⟩, where V and E
are respectively sets of nodes and edges, we define

VR = {v ∈ V | v is reachable from x1},

ER = {(u, v) ∈ E | u ∈ VR , v ∈ VR}
Then,

GR ≡ ⟨VR ,ER⟩
is a subgraph of G

Chih-Jen Lin (National Taiwan Univ.) 33 / 50



Finding the Topological Order VII

For our example, GR is the following subgraph

x1 v1 v4

v2 v5

VR = {x1, v1, v2, v4, v5}
ER = {(x1, v1), (x2, v2), (v1, v4), (v2, v4), (v4, v5)}

Chih-Jen Lin (National Taiwan Univ.) 34 / 50



Finding the Topological Order VIII

We aim to find a “suitable” ordering of VR

satisfying that each node u ∈ VR comes before all
of its child nodes in the ordering

By doing so, u̇ can be used in the derivative
calculation of its child nodes; see (3)

For our example, a “suitable” ordering can be

x1, v1, v2, v4, v5

In graph theory, such an ordering is called a
topological ordering of GR

Chih-Jen Lin (National Taiwan Univ.) 35 / 50



Finding the Topological Order IX

Since GR is a directed acyclic graph (DAG), a
topological ordering must exist

We may use depth first search (DFS) to traverse GR

to find the topological ordering

Earlier we did not explain why a member “child
nodes” is needed in the Node class. Here we see why

To traverse GR from x1, we must access children of
each node

Chih-Jen Lin (National Taiwan Univ.) 36 / 50



Finding the Topological Order X

Here is an implementation

def topological_order(rootNode):

def add_children(node):

if node not in visited:

visited.add(node)

for child in node.child_nodes:

add_children(child)

ordering.append(node)

ordering, visited = [], set()

add_children(rootNode)

return list(reversed(ordering))

Chih-Jen Lin (National Taiwan Univ.) 37 / 50



Finding the Topological Order XI

The root node of GR is x1. We put it as the input of
the add children function

The subroutine recursively explores all nodes
reachable from the input node and appends the
input node to the end

Also, we must maintain a set of visited nodes to
ensure that each node is included in the ordering
exactly once

Chih-Jen Lin (National Taiwan Univ.) 38 / 50



Finding the Topological Order XII

For our example, the depth-first search has

x1 → v1 → v4 → v5,

so v5 is added first. In the end, we get the following
list

[v5, v4, v1, v2, x1]

Then, by reversing the list, a node always comes
before its children

Methods based on the topological ordering are
called tape-based methods

Chih-Jen Lin (National Taiwan Univ.) 39 / 50



Finding the Topological Order XIII

They are used in some real-world implementations
such as Tensorflow

The ordering is regarded as a tape. We’re going to
read the nodes one by one from the beginning of
the sequence (tape) to calculate the derivative value

Based on the obtained ordering, let’s see how to
compute each v̇

Chih-Jen Lin (National Taiwan Univ.) 40 / 50



Computing the Partial Derivative I

By the chain rule, we have

v̇ =
∑

u∈v ’s parents

∂v

∂u
u̇

If we calculate the derivative according to the
topological order, the second term

u̇ =
∂u

∂x1

should be readily available when we’re computing v̇

Chih-Jen Lin (National Taiwan Univ.) 41 / 50



Computing the Partial Derivative II

Therefore, all we need is to check the calculation of
the first term

∂v

∂u

At v , we know that u is one of its parent(s). We
further know the operation involving v ’s parent(s)

For example, we have v4 = v1 × v2, so

∂v4
∂v1

= v2 and
∂v4
∂v2

= v1

These values can be computed and stored when we
construct the computational graph

Chih-Jen Lin (National Taiwan Univ.) 42 / 50



Computing the Partial Derivative III

Therefore, we add a member
“gradient w.r.t. parents” to our Node class

Also we add a member “partial derivative” to store
the partial derivative with respect to x1

member data type example for Node v2
numerical value float 10
parent nodes List[Node] [x1, x2]
child nodes List[Node] [v4]
operator string "mul"

gradient
w.r.t parents

List[float] [5, 2]

partial derivative float 5

Chih-Jen Lin (National Taiwan Univ.) 43 / 50



Computing the Partial Derivative IV

We update the mul function accordingly

def mul(node1, node2):

value = node1.value * node2.value

parent_nodes = [node1, node2]

newNode = Node(value, parent_nodes, "mul")

newNode.grad_wrt_parents = [node2.value,node1.value]

node1.child_nodes.append(newNode)

node2.child_nodes.append(newNode)

return newNode

Chih-Jen Lin (National Taiwan Univ.) 44 / 50



Computing the Partial Derivative V

As shown above, we must compute

∂ newNode

∂ parentNode

for each parent node in constructing a new child
node

Here are some examples other than the mul
function

Chih-Jen Lin (National Taiwan Univ.) 45 / 50



Computing the Partial Derivative VI

add(node1, node2): we have

∂ newNode

∂ node1
=

∂ newNode

∂ node2
= 1,

so the red line is replaced by

newNode.grad wrt parents = [1., 1.]

Chih-Jen Lin (National Taiwan Univ.) 46 / 50



Computing the Partial Derivative VII

log(node): we have

∂ newNode

∂ node
=

1

node.value
,

so the red line becomes

newNode.grad wrt parents = [1/node.value]

Chih-Jen Lin (National Taiwan Univ.) 47 / 50



Computing the Partial Derivative VIII

Now, we know how to get each term in the chain
rule for calculating v̇ :

v̇ =
∑

u∈v ’s parents

∂v

∂u
u̇

Therefore if we follow the topological ordering, all v̇
(i.e., partial derivatives with respect to x1) can be
calculated

Chih-Jen Lin (National Taiwan Univ.) 48 / 50



Computing the Partial Derivative IX

An implementation to compute the partial
derivatives is as follows
def forward(rootNode):

rootNode.partial_derivative = 1

ordering = topological_order(rootNode)

for node in ordering[1:]:

partial_derivative = 0

for i in range(len(node.parent_nodes)):

dnode_dparent = node.grad_wrt_parents[i]

dparent_droot = node.parent_nodes[i].partial_derivative

partial_derivative += dnode_dparent * dparent_droot

node.partial_derivative = partial_derivative

We store the resulting value in the member
partial derivative of each node

Chih-Jen Lin (National Taiwan Univ.) 49 / 50



Summary I

The procedure for forward mode includes three
steps:

1 Create the computational graph
2 Find a topological order of the graph

associated with x1
3 Compute the partial derivative with respect to

x1 along the topological order

We discuss not only how to run each step but also
what information we should store

This is a minimal implementation to show you all
details of the forward mode

Chih-Jen Lin (National Taiwan Univ.) 50 / 50


