In the slides, we introduce how automatic differentiation can be implemented.

A corresponding technical report showing details is at https://www.csie.ntu.edu.tw/~cjlin/papers/autodiff/

A sample implementation is also available at https://github.com/ntumlgroup/simpleautodiff

For simplicity, we consider the forward mode. The reverse mode can be designed in a similar way.
Consider a function \(f : \mathbb{R}^n \to \mathbb{R} \) with
\[
y = f(x) = f(x_1, x_2, \ldots, x_n)
\]
For any given \(x \), we show the computation of
\[
\frac{\partial y}{\partial x_1}
\]
as an example
Calculating Function Values I

- We are calculating the derivative, so at the first glance, function values are not needed.
- However, we show that it is necessary to calculate the function value.
- The main reason is due to the function structure and the use of the chain rule.
Calculating Function Values II

To explain this, we begin with knowing that the function of a network is usually a nested composite function

\[f(x) = h_k(h_{k-1}(\ldots h_1(x))) \]

due to the layered structure

To facilitate our discussion, let’s assume that \(f(x) \) is the following general composite function

\[f(x) = g(h_1(x), h_2(x), \ldots, h_k(x)) \]
Calculating Function Values III

For example, we see that the function considered earlier

$$f(x_1, x_2) = \ln x_1 + x_1x_2 - \sin x_2$$ \hspace{1cm} (1)

can be written in the following composite function

$$g(h_1(x_1, x_2), h_2(x_1, x_2))$$

with

$$g(h_1, h_2) = h_1 - h_2$$
$$h_1(x_1, x_2) = \ln x_1 + x_1x_2$$
$$h_2(x_1, x_2) = \sin(x_2)$$
To calculate the derivative at $x = x_0$ using the chain rule, we have

$$\frac{\partial f}{\partial x_1} \bigg|_{x=x_0} = \sum_{i=1}^{k} \left(\frac{\partial g}{\partial h_i} \bigg|_{h=h(x_0)} \times \frac{\partial h_i}{\partial x_1} \bigg|_{x=x_0} \right),$$

where the notation

$$\frac{\partial g}{\partial h_i} \bigg|_{h=h(x_0)}$$

means the derivative of g with respect to h_i evaluated at $h(x_0) = [h_1(x_0) \cdots h_k(x_0)]^T$.
Clearly, we must calculate the inner function values $h_1(x_0), \ldots, h_k(x_0)$ first.

The process of computing all $h_i(x_0)$ is part of (or almost the same as) the process of computing $f(x_0)$.

This explanation tells why for calculating the partial derivatives, we need the function value first.

Next we discuss the implementation of getting the function value.

For the function (1), recall we have a table recording the order to get $f(x_1, x_2)$:
Calculating Function Values VI

\[
\begin{align*}
 x_1 &= 2 \\
 x_2 &= 5 \\
 v_1 &= \ln x_1 = \ln 2 \\
 v_2 &= x_1 \times x_2 = 2 \times 5 \\
 v_3 &= \sin x_2 = \sin 5 \\
 v_4 &= v_1 + v_2 = 0.693 + 10 \\
 v_5 &= v_4 - v_3 = 10.693 + 0.959 \\
 y &= v_5 = 11.652
\end{align*}
\]
Also, we have a computational graph to generate the computing order.
Calculating Function Values VIII

- Therefore, we must check how to build the graph
Creating the Computational Graph I

- A graph consists of nodes and edges
- We must discuss what a node/edge is and how to store information
- From the graph shown above, we see that each node represents an intermediate expression:

\[
\begin{align*}
\nu_1 &= \ln x_1 \\
\nu_2 &= x_1 \times x_2 \\
\nu_3 &= \sin x_2 \\
\nu_4 &= \nu_1 + \nu_2 \\
\nu_5 &= \nu_4 - \nu_3
\end{align*}
\]
Creating the Computational Graph II

- The expression in each node is produced by applying an operation to expressions in other nodes.
- Therefore, it’s natural to construct an edge $u \rightarrow v$, if the expression of a node v is based on the expression of another node u.
- We say node u is a parent node (of v) and node v is a child node (of u).
- To do the forward calculation, at node v we should store v’s parents.
Additionally, we need to record the operator applied on the node’s parents and the resulting value.

For example, the construction of the node

\[v_2 = x_1 \times x_2 \]

requires to store \(v_2 \)'s parent nodes \(\{x_1, x_2\} \), the corresponding operator “\(\times \)” and the resulting value.

Up to now, we can implement each node as a class Node with the following members.
Creating the Computational Graph IV

<table>
<thead>
<tr>
<th>member</th>
<th>data type</th>
<th>example for Node v_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>numerical value</td>
<td>float</td>
<td>10</td>
</tr>
<tr>
<td>parent nodes</td>
<td>List[Node]</td>
<td>$[x_1, x_2]$</td>
</tr>
<tr>
<td>child nodes</td>
<td>List[Node]</td>
<td>$[v_4]$</td>
</tr>
<tr>
<td>operator</td>
<td>string</td>
<td>"mul" (for ×)</td>
</tr>
</tbody>
</table>

- At this moment, it is unclear why we should store child nodes in our Node class. Later we will explain why such information is needed.
- Once the Node class is ready, starting from initial nodes (which represent x_i’s), we use nested function calls to build the whole graph.
In our case, the graph for $y = f(x_1, x_2)$ can be constructed via

$$y = \text{sub}(\text{add}(\log(x_1), \text{mul}(x_1, x_2)), \sin(x_2))$$

Let’s see this process step by step and check what each function must do
Creating the Computational Graph VI

- \(\log(x_1) \):

 ![Diagram of \(\log(x_1) \)]

 - In our \(\log \) function, a Node instance is created to store
 \(\log(x_1) \).

 This node is the \(v_1 \) node in our computational graph.
Creating the Computational Graph VII

To create this node, from the current log function and the input node x_1, we know contents of the following members:

- parent nodes: $[x_1]$
- operator: "log"
- numerical value: $\log 2$

However, we have no information about children of this node.

The reason is obvious because we have not had a graph including its child nodes yet.
Instead, we leave this member “child nodes” empty and let child nodes to write back the information.

By this idea, our log function should add v_1 to the “child nodes” of x_1.

See more discussion later about “wrapping functions”.
mul(x1, x2)
Similarly, the `mul` function generates a Node instance. However, different from $\log(x_1)$, the node created here stores two parents (instead of one).
Creating the Computational Graph XI

- add(\log(x1), \text{mul}(x1, x2))

\[
\begin{align*}
 v_1 &= \log x_1 \\
 v_2 &= x_1 \times x_2 \\
 v_4 &= \log x_1 + x_1 \times x_2
\end{align*}
\]
\(\sin(x^2) \)
Creating the Computational Graph XIII

\[
\text{sub}(\text{add}(\log(x_1), \text{mul}(x_1, x_2)), \sin(x_2))
\]

- \(x_1 \rightarrow \log \rightarrow + \)
 \(v_1 = \log x_1 \)
 \(v_4 = \log x_1 + x_1 \times x_2 \)

- \(x_1 \rightarrow \times \rightarrow - \)
 \(v_2 = x_1 \times x_2 \)
 \(v_3 = \sin x_2 \)
 \(v_5 = \log x_1 + x_1 \times x_2 - \sin x_2 \)

- \(x_2 \rightarrow - \)

\(x_1 \) and \(x_2 \) are inputs.
We can conclude that

- each function generates exactly one Node instance;
- however, the generated nodes differ in the operator, the number of parents, etc.
We mentioned that a function like “mul” does more than calculating the product of two numbers. Here we show more details.

These customized functions “add”, “mul” and “log” in the previous pages are wrapping functions.

Wrapping functions “wrap” numerical operations with additional codes.

Each must maintain the relation between the constructed node and its parents/children.

This way, the information of graph can be preserved.
For example, you may expect the following in the source code:

```python
def mul(node1, node2):
    value = node1.value * node2.value
    parent_nodes = [node1, node2]
    newNode = Node(value, parent_nodes, "mul")
    node1.child_nodes.append(newNode)
    node2.child_nodes.append(newNode)
    return newNode
```

The created node is added to the “child nodes” lists of the two input nodes: node1 and node2.
As we mentioned earlier, when node1 and node2 were created, their lists of child nodes were empty. Each time a child node is created, it is appended to the list of its parent(s).

The output of the function should be the created node. This setting enables the nested function call

Then, calling $y = \text{sub}(\ldots)$ finishes the function evaluation. At the same time, we build the computational graph
We want to use the information in the graph to compute $\partial v_5/\partial x_1$
\begin{align*}
x_1 &= 2 \\
v_1 &= \ln x_1 \\
v_4 &= v_1 + v_2 \\
v_2 &= x_1 \times x_2 \\
v_5 &= v_4 - v_3 \\
x_2 &= 5 \\
v_3 &= \sin x_2
\end{align*}
Recall that $\frac{\partial v}{\partial x_1}$ is denoted by \dot{v}

From chain rule,

$$\dot{v}_5 = \frac{\partial v_5}{\partial v_4} \dot{v}_4 + \frac{\partial v_5}{\partial v_3} \dot{v}_3$$ \hspace{1cm} (2)

We can see that

$$\frac{\partial v_5}{\partial v_4} \text{ and } \frac{\partial v_5}{\partial v_3}$$

can be calculated at v_5 because we have information between v_5 and its parents v_4 and v_3. We will show details later
Thus, the task we focus on now is to calculate \dot{v}_4 and \dot{v}_3

For \dot{v}_4, we further have

$$\dot{v}_4 = \frac{\partial v_4}{\partial v_1} \dot{v}_1 + \frac{\partial v_4}{\partial v_2} \dot{v}_2, \tag{3}$$

so \dot{v}_1 and \dot{v}_2 are needed

On the other hand, we have $\dot{v}_3 = 0$ since the expression for v_3

$$\sin(x_2)$$

is not a function of x_1
From this example, we find that

\[v \text{ is not reachable from } x_1 \Rightarrow \dot{v} = 0 \]

We say a node \(v \) is reachable from a node \(u \) if there exists a path from \(u \) to \(v \) in the graph.

Therefore, now we only care about nodes reachable from \(x_1 \).

From (2) and (3), we see that nodes reachable from \(x_1 \) must be properly ordered so that, for example, in (2), \(\dot{v}_4 \) and \(\dot{v}_3 \) are ready before calculating \(\dot{v}_5 \).
To consider nodes reachable from x_1, from the whole computational graph $G = \langle V, E \rangle$, where V and E are respectively sets of nodes and edges, we define

$$V_R = \{v \in V \mid v \text{ is reachable from } x_1\},$$

$$E_R = \{(u, v) \in E \mid u \in V_R, \ v \in V_R\}$$

Then,

$$G_R \equiv \langle V_R, E_R \rangle$$

is a subgraph of G.
For our example, G_R is the following subgraph

$V_R = \{x_1, v_1, v_2, v_4, v_5\}$

$E_R = \{(x_1, v_1), (x_2, v_2), (v_1, v_4), (v_2, v_4), (v_4, v_5)\}$
We aim to find a “suitable” ordering of V_R satisfying that each node $u \in V_R$ comes before all of its child nodes in the ordering. By doing so, \dot{u} can be used in the derivative calculation of its child nodes; see (3). For our example, a “suitable” ordering can be x_1, v_1, v_2, v_4, v_5. In graph theory, such an ordering is called a topological ordering of G_R.
Since G_R is a directed acyclic graph (DAG), a topological ordering must exist.

We may use depth first search (DFS) to traverse G_R to find the topological ordering.

Earlier we did not explain why a member "child nodes" is needed in the Node class. Here we see why.

To traverse G_R from x_1, we must access children of each node.
Finding the Topological Order X

Here is an implementation

```python
def topological_order(rootNode):
    def add_children(node):
        if node not in visited:
            visited.add(node)
            for child in node.child_nodes:
                add_children(child)
            ordering.append(node)
    ordering, visited = [], set()
    add_children(rootNode)
    return list(reversed(ordering))
```
The root node of G_R is x_1. We put it as the input of the `add_children` function.

The subroutine recursively explores all nodes reachable from the input node and appends the input node to the end.

Also, we must maintain a set of visited nodes to ensure that each node is included in the ordering exactly once.
For our example, the depth-first search has

\[x_1 \rightarrow v_1 \rightarrow v_4 \rightarrow v_5, \]

so \(v_5 \) is added first. In the end, we get the following list

\[[v_5, v_4, v_1, v_2, x_1] \]

Then, by reversing the list, a node always comes before its children.

Methods based on the topological ordering are called \textit{tape-based} methods.
They are used in some real-world implementations such as Tensorflow.

The ordering is regarded as a tape. We’re going to read the nodes one by one from the beginning of the sequence (tape) to calculate the derivative value.

Based on the obtained ordering, let’s see how to compute each \dot{v}.

By the chain rule, we have

\[\dot{v} = \sum_{u \in v's \ parents} \frac{\partial v}{\partial u} \dot{u} \]

If we calculate the derivative according to the topological order, the second term

\[\dot{u} = \frac{\partial u}{\partial x_1} \]

should be readily available when we’re computing \(\dot{v} \)
Therefore, all we need is to check the calculation of the first term
\[\frac{\partial v}{\partial u} \]

At \(v \), we know that \(u \) is one of its parent(s). We further know the operation involving \(v \)’s parent(s)

For example, we have \(v_4 = v_1 \times v_2 \), so
\[\frac{\partial v_4}{\partial v_1} = v_2 \text{ and } \frac{\partial v_4}{\partial v_2} = v_1 \]

These values can be computed and stored when we construct the computational graph.
Therefore, we add a member “gradient w.r.t. parents” to our Node class.

Also we add a member “partial derivative” to store the partial derivative with respect to x_1.

<table>
<thead>
<tr>
<th>member</th>
<th>data type</th>
<th>example for Node v_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>numerical value</td>
<td>float</td>
<td>10</td>
</tr>
<tr>
<td>parent nodes</td>
<td>List[Node]</td>
<td>$[x_1, x_2]$</td>
</tr>
<tr>
<td>child nodes</td>
<td>List[Node]</td>
<td>$[v_4]$</td>
</tr>
<tr>
<td>operator</td>
<td>string</td>
<td>"mul"</td>
</tr>
<tr>
<td>gradient w.r.t parents</td>
<td>List[float]</td>
<td>$[5, 2]$</td>
</tr>
<tr>
<td>partial derivative</td>
<td>float</td>
<td>5</td>
</tr>
</tbody>
</table>
We update the `mul` function accordingly

```python
def mul(node1, node2):
    value = node1.value * node2.value
    parent_nodes = [node1, node2]
    newNode = Node(value, parent_nodes, "mul")
    newNode.grad_wrt_parents = [node2.value, node1.value]
    node1.child_nodes.append(newNode)
    node2.child_nodes.append(newNode)
    return newNode
```
As shown above, we must compute

$$\frac{\partial \text{ newNode}}{\partial \text{ parentNode}}$$

for each parent node in constructing a new child node.

Here are some examples other than the \textit{mul} function.
Computing the Partial Derivative VI

- \text{add}(\text{node1}, \text{node2}): we have

\[
\frac{\partial \text{newNode}}{\partial \text{node1}} = \frac{\partial \text{newNode}}{\partial \text{node2}} = 1,
\]

so the red line is replaced by

\text{newNode.\text{grad_wrt_parents}} = [1., 1.]
Computing the Partial Derivative VII

- \(\log(\text{node}) \): we have

\[
\frac{\partial \ \text{newNode}}{\partial \ \text{node}} = \frac{1}{\text{node.value}},
\]

so the red line becomes

\[
\text{newNode}.\text{grad}_\text{wrt}_\text{parents} = \left[\frac{1}{\text{node.value}}\right]
\]
Now, we know how to get each term in the chain rule for calculating \dot{v}:

$$\dot{v} = \sum_{u \in v \text{'s parents}} \frac{\partial v}{\partial u} \dot{u}$$

Therefore if we follow the topological ordering, all \dot{v} (i.e., partial derivatives with respect to x_1) can be calculated.
An implementation to compute the partial derivatives is as follows

```python
def forward(rootNode):
    rootNode.partial_derivative = 1
    ordering = topological_order(rootNode)
    for node in ordering[1:]:
        partial_derivative = 0
        for i in range(len(node.parent_nodes)):
            dnode_dparent = node.grad_wrt_parents[i]
            dparent_droot = node.parent_nodes[i].partial_derivative
            partial_derivative += dnode_dparent * dparent_droot
        node.partial_derivative = partial_derivative
```

We store the resulting value in the member `partial_derivative` of each node.
The procedure for forward mode includes three steps:

1. Create the computational graph
2. Find a topological order of the graph associated with x_1
3. Compute the partial derivative with respect to x_1 along the topological order

We discuss not only how to run each step but also what information we should store.

This is a minimal implementation to show you all details of the forward mode.