Implementation of Forward Mode AD

- In the slides, we introduce how automatic differentiation can be implemented
- A corresponding technical report showing details is at https://www.csie.ntu.edu.tw/~cjlin/ papers/autodiff/
- A sample implementation is also available at https: //github.com/ntumlgroup/simpleautodiff
- For simplicity, we consider the forward mode. The reverse mode can be designed in a similar way

Implementation of Forward Mode AD II

- Consider a function $f: R^{n} \rightarrow R$ with

$$
y=f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- For any given \boldsymbol{x}, we show the computation of

$$
\frac{\partial y}{\partial x_{1}}
$$

as an example

Calculating Function Values I

- We are calculating the derivative, so at the first glance, function values are not needed
- However, we show that it is necessary to calculate the function value
- The main reason is due to the function structure and the use of the chain rule

Calculating Function Values II

- To explain this, we begin with knowing that the function of a network is usually a nested composite function

$$
f(x)=h_{k}\left(h_{k-1}\left(\ldots h_{1}(x)\right)\right)
$$

due to the layered structure

- To facilitate our discussion, let's assume that $f(x)$ is the following general composite function

$$
f(x)=g\left(h_{1}(x), h_{2}(x), \ldots, h_{k}(x)\right)
$$

Calculating Function Values III

- For example, we see that the function considered earlier

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\ln x_{1}+x_{1} x_{2}-\sin x_{2} \tag{1}
\end{equation*}
$$

can be written in the following composite function

$$
g\left(h_{1}\left(x_{1}, x_{2}\right), h_{2}\left(x_{1}, x_{2}\right)\right)
$$

with

$$
\begin{aligned}
& g\left(h_{1}, h_{2}\right)=h_{1}-h_{2} \\
& h_{1}\left(x_{1}, x_{2}\right)=\ln x_{1}+x_{1} x_{2} \\
& h_{2}\left(x_{1}, x_{2}\right)=\sin \left(x_{2}\right)
\end{aligned}
$$

Calculating Function Values IV

- To calculate the derivative at $x=x_{0}$ using the chain rule, we have

$$
\left.\frac{\partial f}{\partial x_{1}}\right|_{\boldsymbol{x}=\boldsymbol{x}_{0}}=\sum_{i=1}^{k}\left(\left.\frac{\partial g}{\partial h_{i}}\right|_{\boldsymbol{h}=\boldsymbol{h}\left(x_{0}\right)} \times\left.\frac{\partial h_{i}}{\partial x_{1}}\right|_{\boldsymbol{x}=\boldsymbol{x}_{0}}\right)
$$

where the notation

$$
\left.\frac{\partial g}{\partial h_{i}}\right|_{\boldsymbol{h}=\boldsymbol{h}\left(x_{0}\right)}
$$

means the derivative of g with respect to h_{i} evaluated at $\boldsymbol{h}\left(x_{0}\right)=\left[\begin{array}{lll}h_{1}\left(x_{0}\right) & \omega_{0} & h_{k}\left(x_{0}\right)\end{array}\right]^{T}$

Calculating Function Values V

- Clearly, we must calculate the inner function values $h_{1}\left(x_{0}\right), \ldots, h_{k}\left(x_{0}\right)$ first
- The process of computing all $h_{i}\left(x_{0}\right)$ is part of (or almost the same as) the process of computing $f\left(x_{0}\right)$
- This explanation tells why for calculating the partial derivatives, we need the function value first
- Next we discuss the implementation of getting the function value
- For the function (1), recall we have a table recording the order to get $f\left(x_{1}, x_{2}\right)$:

Calculating Function Values VI

$$
\left\lvert\, \begin{array}{lll}
x_{1} & =2 \\
x_{2} & =5 \\
\hline v_{1}=\ln x_{1} & =\ln 2 \\
v_{2}=x_{1} \times x_{2} & =2 \times 5 \\
v_{3}=\sin x_{2} & =\sin 5 \\
v_{4}=v_{1}+v_{2} & =0.693+10 \\
v_{5}=v_{4}-v_{3} & =10.693+0.959 \\
\hline y=v_{5} & =11.652
\end{array}\right.
$$

Calculating Function Values VII

- Also, we have a computational graph to generate the computing order

Calculating Function Values VIII

- Therefore, we must check how to build the graph

Creating the Computational Graph I

- A graph consists of nodes and edges
- We must discuss what a node/edge is and how to store information
- From the graph shown above, we see that each node represents an intermediate expression:

$$
\begin{aligned}
v_{1} & =\ln x_{1} \\
v_{2} & =x_{1} \times x_{2} \\
v_{3} & =\sin x_{2} \\
v_{4} & =v_{1}+v_{2} \\
v_{5} & =v_{4}-v_{3}
\end{aligned}
$$

Creating the Computational Graph II

- The expression in each node is produced by applying an operation to expressions in other nodes
- Therefore, it's natural to construct an edge

$$
u \rightarrow v,
$$

if the expression of a node v is based on the expression of another node u

- We say node u is a parent node (of v) and node v is a child node (of u)
- To do the forward calculation, at node v we should store v's parents

Creating the Computational Graph III

- Additionally, we need to record the operator applied on the node's parents and the resulting value
- For example, the construction of the node

$$
v_{2}=x_{1} \times x_{2}
$$

requires to store v_{2} 's parent nodes $\left\{x_{1}, x_{2}\right\}$, the corresponding operator " \times " and the resulting value

- Up to now, we can implement each node as a class Node with the following members

Creating the Computational Graph IV

member	data type	example for Node v_{2}
numerical value	float	10
parent nodes	List [Node]	$\left[x_{1}, x_{2}\right]$
child nodes	List [Node]	$\left[v_{4}\right]$
operator	string	"mul" (for \times)

- At this moment, it is unclear why we should store child nodes in our Node class. Later we will explain why such information is needed
- Once the Node class is ready, starting from initial nodes (which represent x_{i} 's), we use nested function calls to build the whole graph

Creating the Computational Graph V

- In our case, the graph for $y=f\left(x_{1}, x_{2}\right)$ can be constructed via

$$
\begin{gathered}
y=\operatorname{sub}(\operatorname{add}(\log (x 1), \operatorname{mul}(x 1, x 2)), \\
\sin (x 2))
\end{gathered}
$$

- Let's see this process step by step and check what each function must do

Creating the Computational Graph VI

- $\log (\mathrm{x} 1)$:

- In our log function, a Node instance is created to store

$$
\log \left(x_{1}\right)
$$

This node is the v_{1} node in our computational graph

Creating the Computational Graph VII

- To create this node, from the current log function and the input node x_{1}, we know contents of the following members
- parent nodes: $\left[x_{1}\right]$
- operator: "log"
- numerical value: log 2
- However, we have no information about children of this node
- The reason is obvious because we have not had a graph including its child nodes yet

Creating the Computational Graph VIII

- Instead, we leave this member "child nodes" empty and let child nodes to write back the information
- By this idea, our log function should add v_{1} to the "child nodes" of x_{1}
- See more discussion later about "wrapping functions"

Creating the Computational Graph IX

- mul(x1, x2)

Creating the Computational Graph X

- Similarly, the mul function generates a Node instance. However, different from $\log \left(x_{1}\right)$, the node created here stores two parents (instead of one)

Creating the Computational Graph XI

- add(log(x1), mul(x1, x2))

Creating the Computational Graph XII

- $\sin (x 2)$

Creating the Computational Graph XIII

- sub(add(log(x1), mul(x1, x2)), $\sin (x 2))$

Creating the Computational Graph XIV

- We can conclude that
- each function generates exactly one Node instance;
- however, the generated nodes differ in the operator, the number of parents, etc.

Wrapping Functions

- We mentioned that a function like "mul" does more than calculating the product of two numbers. Here we show more details
- These customized functions "add", "mul" and "log" in the previous pages are wrapping functions
- Wrapping functions "wrap" numerical operations with additional codes
- Each must maintain the relation between the constructed node and its parents/children
- This way, the information of graph can be preserved

Wrapping Functions II

- For example, you may expect the following in the source code

```
def mul(node1, node2):
    value = node1.value * node2.value
    parent_nodes = [node1, node2]
    newNode = Node(value, parent_nodes, "mul")
    node1.child_nodes.append(newNode)
    node2.child_nodes.append(newNode)
    return newNode
```

- The created node is added to the "child nodes" lists of the two input nodes: node1 and node2.

Wrapping Functions III

- As we mentioned earlier, when node1 and node2 were created, their lists of child nodes were empty. Each time a child node is created, it is appended to the list of its parent(s).
- The output of the function should be the created node. This setting enables the nested function call
- Then, calling $y=\operatorname{sub}(. .$.$) finishes the function$ evaluation. At the same time, we build the computational graph

Finding the Topological Order I

- We want to use the information in the graph to compute $\partial v_{5} / \partial x_{1}$

Finding the Topological Order II

Finding the Topological Order III

- Recall that $\partial v / \partial x_{1}$ is denoted by \dot{v}
- From chain rule,

$$
\begin{equation*}
\dot{v}_{5}=\frac{\partial v_{5}}{\partial v_{4}} \dot{v}_{4}+\frac{\partial v_{5}}{\partial v_{3}} \dot{v}_{3} \tag{2}
\end{equation*}
$$

- We can see that

$$
\frac{\partial v_{5}}{\partial v_{4}} \text { and } \frac{\partial v_{5}}{\partial v_{3}}
$$

can be calculated at v_{5} because we have information between v_{5} and its parents v_{4} and v_{3}. We will show details later

Finding the Topological Order IV

- Thus, the task we focus on now is to calculate \dot{v}_{4} and \dot{v}_{3}
- For \dot{v}_{4}, we further have

$$
\begin{equation*}
\dot{v}_{4}=\frac{\partial v_{4}}{\partial v_{1}} \dot{v}_{1}+\frac{\partial v_{4}}{\partial v_{2}} \dot{v}_{2} \tag{3}
\end{equation*}
$$

so \dot{v}_{1} and \dot{v}_{2} are needed

- On the other hand, we have $\dot{v}_{3}=0$ since the expression for v_{3}

$$
\sin \left(x_{2}\right)
$$

is not a function of x_{1}

Finding the Topological Order V

- From this example, we find that
v is not reachable from $x_{1} \Rightarrow \dot{v}=0$
- We say a node v is reachable from a node u if there exists a path from u to v in the graph
- Therefore, now we only care about nodes reachable from x_{1}
- From (2) and (3), we see that nodes reachable from x_{1} must be properly ordered so that, for example, in (2), \dot{v}_{4} and \dot{v}_{3} are ready before calculating \dot{v}_{5}

Finding the Topological Order VI

- To consider nodes reachable from x_{1}, from the whole computational graph $G=\langle V, E\rangle$, where V and E are respectively sets of nodes and edges, we define

$$
\begin{aligned}
V_{R} & =\left\{v \in V \mid v \text { is reachable from } x_{1}\right\}, \\
E_{R} & =\left\{(u, v) \in E \mid u \in V_{R}, v \in V_{R}\right\}
\end{aligned}
$$

- Then,

$$
G_{R} \equiv\left\langle V_{R}, E_{R}\right\rangle
$$

is a subgraph of G

Finding the Topological Order VII

- For our example, G_{R} is the following subgraph

$$
\begin{aligned}
& V_{R}=\left\{x_{1}, v_{1}, v_{2}, v_{4}, v_{5}\right\} \\
& E_{R}=\left\{\left(x_{1}, v_{1}\right),\left(x_{2}, v_{2}\right),\left(v_{1}, v_{4}\right),\left(v_{2}, v_{4}\right),\left(v_{4}, v_{5}\right)\right\}
\end{aligned}
$$

Finding the Topological Order VIII

- We aim to find a "suitable" ordering of V_{R} satisfying that each node $u \in V_{R}$ comes before all of its child nodes in the ordering
- By doing so, ù can be used in the derivative calculation of its child nodes; see (3)
- For our example, a "suitable" ordering can be

$$
x_{1}, v_{1}, v_{2}, v_{4}, v_{5}
$$

- In graph theory, such an ordering is called a topological ordering of G_{R}

Finding the Topological Order IX

- Since G_{R} is a directed acyclic graph (DAG), a topological ordering must exist
- We may use depth first search (DFS) to traverse G_{R} to find the topological ordering
- Earlier we did not explain why a member "child nodes" is needed in the Node class. Here we see why
- To traverse G_{R} from x_{1}, we must access children of each node

Finding the Topological Order X

- Here is an implementation

```
def topological_order(rootNode):
def add_children(node):
    if node not in visited:
                visited.add(node)
                for child in node.child_nodes:
                        add_children(child)
                ordering.append(node)
ordering, visited = [], set()
add_children(rootNode)
return list(reversed(ordering))
```


Finding the Topological Order XI

- The root node of G_{R} is x_{1}. We put it as the input of the add_children function
- The subroutine recursively explores all nodes reachable from the input node and appends the input node to the end
- Also, we must maintain a set of visited nodes to ensure that each node is included in the ordering exactly once

Finding the Topological Order XII

- For our example, the depth-first search has

$$
x_{1} \rightarrow v_{1} \rightarrow v_{4} \rightarrow v_{5},
$$

so v_{5} is added first. In the end, we get the following list

$$
\left[v_{5}, v_{4}, v_{1}, v_{2}, x_{1}\right]
$$

- Then, by reversing the list, a node always comes before its children
- Methods based on the topological ordering are called tape-based methods

Finding the Topological Order XIII

- They are used in some real-world implementations such as Tensorflow
- The ordering is regarded as a tape. We're going to read the nodes one by one from the beginning of the sequence (tape) to calculate the derivative value
- Based on the obtained ordering, let's see how to compute each \dot{v}

Computing the Partial Derivative

- By the chain rule, we have

$$
\dot{v}=\sum_{u \in v^{\prime} \text { s parents }} \frac{\partial v}{\partial u} \dot{u}
$$

- If we calculate the derivative according to the topological order, the second term

$$
\dot{u}=\frac{\partial u}{\partial x_{1}}
$$

should be readily available when we're computing \dot{v}

Computing the Partial Derivative II

- Therefore, all we need is to check the calculation of the first term

$$
\frac{\partial v}{\partial u}
$$

- At v, we know that u is one of its parent(s). We further know the operation involving v 's parent(s)
- For example, we have $v_{4}=v_{1} \times v_{2}$, so

$$
\frac{\partial v_{4}}{\partial v_{1}}=v_{2} \text { and } \frac{\partial v_{4}}{\partial v_{2}}=v_{1}
$$

These values can be computed and stored when we construct the computational graph

Computing the Partial Derivative III

- Therefore, we add a member "gradient w.r.t. parents" to our Node class
- Also we add a member "partial derivative" to store the partial derivative with respect to x_{1}

member	data type	example for Node v_{2}
numerical value	float	10
parent nodes	List [Node]	$\left[x_{1}, x_{2}\right]$
child nodes	List [Node]	$\left[v_{4}\right]$
operator	string	"mul"
gradient	List [float]	$[5,2]$
w.r.t parents		5

Computing the Partial Derivative IV

- We update the mul function accordingly

```
def mul(node1, node2):
    value = node1.value * node2.value
    parent_nodes = [node1, node2]
    newNode = Node(value, parent_nodes, "mul")
    newNode.grad_wrt_parents = [node2.value,node1.value]
    node1.child_nodes.append(newNode)
    node2.child_nodes.append(newNode)
    return newNode
```


Computing the Partial Derivative V

- As shown above, we must compute

$$
\partial \text { newNode }
$$

$\overline{\partial \text { parentNode }}$
for each parent node in constructing a new child node

- Here are some examples other than the mul function

Computing the Partial Derivative VI

- add(node1, node2): we have

$$
\frac{\partial \text { newNode }}{\partial \text { node1 }}=\frac{\partial \text { newNode }}{\partial \text { node } 2}=1,
$$

so the red line is replaced by
newNode.grad_wrt_parents $=[1 ., 1$.

Computing the Partial Derivative VII

- $\log ($ node $):$ we have

$$
\frac{\partial \text { newNode }}{\partial \text { node }}=\frac{1}{\text { node. value }}
$$

so the red line becomes
newNode.grad_wrt_parents = [1/node.value]

Computing the Partial Derivative VIII

- Now, we know how to get each term in the chain rule for calculating \dot{v} :

$$
\dot{v}=\sum_{u \in v^{\prime} \text { s parents }} \frac{\partial v}{\partial u} \dot{u}
$$

- Therefore if we follow the topological ordering, all \dot{v} (i.e., partial derivatives with respect to x_{1}) can be calculated

Computing the Partial Derivative IX

- An implementation to compute the partial derivatives is as follows

```
def forward(rootNode):
    rootNode.partial_derivative = 1
    ordering = topological_order(rootNode)
    for node in ordering[1:]:
        partial_derivative = 0
        for i in range(len(node.parent_nodes)):
            dnode_dparent = node.grad_wrt_parents[i]
            dparent_droot = node.parent_nodes[i].partial_derivative
            partial_derivative += dnode_dparent * dparent_droot
        node.partial_derivative = partial_derivative
```

- We store the resulting value in the member partial_derivative of each node

Summary I

- The procedure for forward mode includes three steps:
(1) Create the computational graph
(2) Find a topological order of the graph associated with x_{1}
(3) Compute the partial derivative with respect to x_{1} along the topological order
- We discuss not only how to run each step but also what information we should store
- This is a minimal implementation to show you all details of the forward mode

